Baker Lab website soon to be searchable on Google!

For some reason, this website was not populating when any combination of “Baker” and “lab” was searched through Google. We hope to have remedied this, and I am using this post as a way to get Google to crawl faster (by adding new “content”). Thanks to everyone who has been notifying me of this issue. …

Read more

Halloween 2016 – Rise of the Davids

dsc_0174

Happy Halloween! We celebrated early because a party on Monday isn’t as good as a Friday, of course. Take a look at the great costumes this year – it’ll have you seeing double, no, a score! There was also a menagerie of animals running amok, a beaten-up pinata, and an absolutely TERRIFYING scarecrow.

Read more

Accurate de novo design of hyperstable constrained peptides

Small constrained peptides combine the stability of small molecule drugs with the selectivity and potency of antibody-based therapeutics. However, peptide-based therapeutics have largely remained underexplored due to the limited diversity of naturally occurring peptide scaffolds, and a lack of methods to design them rationally. In an article published in Nature this week, Baker lab scientists …

Read more

The coming of age of de novo protein design

160915_summary_figure

Most protein design efforts to date have focused on reengineering existing proteins found in nature.  By contrast, de novo protein design generates new structures from scratch, with sequences unrelated to naturally occurring proteins.  Before 2011, the only successful de novo designed proteins were Top7 (2003), and an array of coiled coil peptides (helical bundles).  In …

Read more

Accurate design of megadalton-scale two-component icosahedral protein complexes

Nature provides many examples of self- and co-assembling protein-based molecular machines, including icosahedral protein cages that serve as scaffolds, enzymes, and compartments for essential biochemical reactions and icosahedral virus capsids, which encapsidate and protect viral genomes and mediate entry into host cells. Inspired by these natural materials, we report the computational design and experimental characterization …

Read more

Arrivederci, Fabio!

This past Friday we bid a fond farewell to Fabio Parmegianni as he embarked on his next stage of life, or as some call it, the P.B. (Post-Bakerite) era. Though we will miss him, we wish him the best of luck at the University of Bristol in the UK. The lab will undoubtedly be a …

Read more

Design of a hyperstable 60-subunit protein icosahedron

icos_full

The icosahedron is the largest of the Platonic solids, and icosahedral protein structures are widely used in biological systems for packaging and transport1, 2. There has been considerable interest in repurposing such structures3, 4, 5 for applications ranging from targeted delivery to multivalent immunogen presentation. The ability to design proteins that self-assemble into precisely specified, …

Read more

Undergrads Being Scientists!

KaraandTessa01

On Friday, May 20, 2016, three of our undergrads participated in the 19th annual Undergraduate Research Symposium. Tessa Howard, Kara Lau, and Vanessa Nguyen presented posters on projects/topics stemming from their work done in our labs. We’d like to recognize the excellent job they did on their presentations! Please see below for their titles and …

Read more

De novo design of protein homo-oligomers with modular hydrogen-bond network-mediated specificity

Boyken_Science_2016_summary_figure

General design principles for protein interaction specificity are challenging to extract. In DNA, specificity arises from a limited set of hydrogen-bonding interactions in the core of the double helix to design and build a wide range of shapes. In proteins, specificity arises largely from buried hydrophobic packing complemented by irregular peripheral polar interactions. Protein-based materials …

Read more