Publications
Preprints available on bioRxiv.
Ziatdinov, Maxim; Zhang, Shuai; Dollar, Orion; Pfaendtner, Jim; Mundy, Christopher J.; Li, Xin; Pyles, Harley; Baker, David; De Yoreo, James J.; Kalinin, Sergei V.
Quantifying the Dynamics of Protein Self-Organization Using Deep Learning Analysis of Atomic Force Microscopy Data Journal Article
In: Nano Letters, 2021.
@article{Ziatdinov2021,
title = {Quantifying the Dynamics of Protein Self-Organization Using Deep Learning Analysis of Atomic Force Microscopy Data},
author = {Ziatdinov, Maxim
and Zhang, Shuai
and Dollar, Orion
and Pfaendtner, Jim
and Mundy, Christopher J.
and Li, Xin
and Pyles, Harley
and Baker, David
and De Yoreo, James J.
and Kalinin, Sergei V.},
url = {https://pubs.acs.org/doi/10.1021/acs.nanolett.0c03447},
doi = {10.1021/acs.nanolett.0c03447},
year = {2021},
date = {2021-01-13},
journal = {Nano Letters},
abstract = {The dynamics of protein self-assembly on the inorganic surface and the resultant geometric patterns are visualized using high-speed atomic force microscopy. The time dynamics of the classical macroscopic descriptors such as 2D fast Fourier transforms, correlation, and pair distribution functions are explored using the unsupervised linear unmixing, demonstrating the presence of static ordered and dynamic disordered phases and establishing their time dynamics. The deep learning (DL)-based workflow is developed to analyze detailed particle dynamics and explore the evolution of local geometries. Finally, we use a combination of DL feature extraction and mixture modeling to define particle neighborhoods free of physics constraints, allowing for a separation of possible classes of particle behavior and identification of the associated transitions. Overall, this work establishes the workflow for the analysis of the self-organization processes in complex systems from observational data and provides insight into the fundamental mechanisms.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Yang, Jianyi; Anishchenko, Ivan; Park, Hahnbeom; Peng, Zhenling; Ovchinnikov, Sergey; Baker, David
Improved protein structure prediction using predicted interresidue orientations Journal Article
In: Proceedings of the National Academy of Sciences, 2020, ISBN: 0027-8424.
@article{Yang2020,
title = {Improved protein structure prediction using predicted interresidue orientations},
author = {Yang, Jianyi and Anishchenko, Ivan and Park, Hahnbeom and Peng, Zhenling and Ovchinnikov, Sergey and Baker, David},
url = {https://www.pnas.org/content/early/2020/01/01/1914677117
https://www.bakerlab.org/wp-content/uploads/2020/01/Yang2020_ImprovedStructurePredictionInterresidueOrientations.pdf
},
doi = {10.1073/pnas.1914677117},
isbn = {0027-8424},
year = {2020},
date = {2020-01-02},
journal = {Proceedings of the National Academy of Sciences},
abstract = {Protein structure prediction is a longstanding challenge in computational biology. Through extension of deep learning-based prediction to interresidue orientations in addition to distances, and the development of a constrained optimization by Rosetta, we show that more accurate models can be generated. Results on a set of 18 de novo-designed proteins suggests the proposed method should be directly applicable to current challenges in de novo protein design.The prediction of interresidue contacts and distances from coevolutionary data using deep learning has considerably advanced protein structure prediction. Here, we build on these advances by developing a deep residual network for predicting interresidue orientations, in addition to distances, and a Rosetta-constrained energy-minimization protocol for rapidly and accurately generating structure models guided by these restraints. In benchmark tests on 13th Community-Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP13)- and Continuous Automated Model Evaluation (CAMEO)-derived sets, the method outperforms all previously described structure-prediction methods. Although trained entirely on native proteins, the network consistently assigns higher probability to de novo-designed proteins, identifying the key fold-determining residues and providing an independent quantitative measure of the "ideality" of a protein structure. The method promises to be useful for a broad range of protein structure prediction and design problems.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Wu, Qi; Peng, Zhenling; Anishchenko, Ivan; Cong, Qian; Baker, David; Yang, Jianyi
Protein contact prediction using metagenome sequence data and residual neural networks Journal Article
In: Bioinformatics, vol. 36, no. 1, 2019.
@article{Wu2019,
title = {Protein contact prediction using metagenome sequence data and residual neural networks},
author = {Qi Wu and Zhenling Peng and Ivan Anishchenko and Qian Cong and David Baker and Jianyi Yang},
url = {https://academic.oup.com/bioinformatics/article/36/1/41/5512356},
doi = {10.1093/bioinformatics/btz477},
year = {2019},
date = {2019-06-07},
journal = {Bioinformatics},
volume = {36},
number = {1},
abstract = {Motivation: Almost all protein residue contact prediction methods rely on the availability of deep multiple sequence alignments (MSAs). However, many proteins from the poorly populated families do not have sufficient number of homologs in the conventional UniProt database. Here we aim to solve this issue by exploring the rich sequence data from the metagenome sequencing projects. Results: Based on the improved MSA constructed from the metagenome sequence data, we developed MapPred, a new deep learning-based contact prediction method. MapPred consists of two component methods, DeepMSA and DeepMeta, both trained with the residual neural networks. DeepMSA was inspired by the recent method DeepCov, which was trained on 441 matrices of covariance features. By considering the symmetry of contact map, we reduced the number of matrices to 231, which makes the training more efficient in DeepMSA. Experiments show that DeepMSA outperforms DeepCov by 10–13% in precision. DeepMeta works by combining predicted contacts and other sequence profile features. Experiments on three benchmark datasets suggest that the contribution from the metagenome sequence data is significant with P-values less than 4.04E-17. MapPred is shown to be complementary and comparable the state-of-the-art methods. The success of MapPred is attributed to three factors: the deeper MSA from the metagenome sequence data, improved feature design in DeepMSA and optimized training by the residual neural networks.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2024
FROM THE LAB
Sorry, no publications matched your criteria.
COLLABORATOR LED
Sorry, no publications matched your criteria.
2023
FROM THE LAB
Sorry, no publications matched your criteria.
COLLABORATOR LED
Sorry, no publications matched your criteria.
2022
FROM THE LAB
Sorry, no publications matched your criteria.
COLLABORATOR LED
Sorry, no publications matched your criteria.
2021
FROM THE LAB
Sorry, no publications matched your criteria.
COLLABORATOR LED
Sorry, no publications matched your criteria.
2020
FROM THE LAB
Sorry, no publications matched your criteria.
COLLABORATOR LED
Sorry, no publications matched your criteria.
2019
FROM THE LAB
Sorry, no publications matched your criteria.
COLLABORATOR LED
Sorry, no publications matched your criteria.
2018
FROM THE LAB
Sorry, no publications matched your criteria.
COLLABORATOR LED
Sorry, no publications matched your criteria.
2017-1988
ALL PAPERS
Sorry, no publications matched your criteria.