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Modeling the conformational heterogeneity of protein—small molecule interactions
is important for understanding natural systems and evaluating designed systems but
remains an outstanding challenge. We reasoned that while residue-level descriptions of
biomolecules are efficient for de novo structure prediction, for probing heterogeneity of
interactions with small molecules in the folded state, an entirely atomic-level description
could have advantages in speed and generality. We developed a graph neural network
called PLACER (protein-ligand atomistic conformational ensemble resolver) trained
to recapitulate correct atomic positions from partially corrupted input structures from
the Cambridge Structural Database and the Protein Data Bank; the nodes of the graph
are the atoms in the system. PLACER accurately generates structures of diverse organic
small molecules given knowledge of their atom composition and bonding. When given a
description of the larger protein context, it builds up structures of small molecules and
protein side chains for protein—small molecule docking. Because PLACER is rapid and
stochastic, ensembles of predictions can be readily generated to map conformational
heterogeneity. In enzyme design efforts described here and elsewhere, we find that using
PLACER to assess the accuracy and preorganization of the designed active sites results in
higher success rates and hiﬁher activities; we obtain a preorganized retroaldolase with a
k. Ky of 11,000 M 'min"", considerably higher than any pre—deep learning design for
this reaction. We anticipate that PLACER will be widely useful for rapidly generating
conformational ensembles of small molecule and small molecule—protein systems and
for designing higher activity preorganized enzymes.

machine learning | enzyme design | ligand docking

Interactions of proteins with nucleic acids (NAs), small organic and inorganic molecules,
and metals are critical to biological function, but atomistic modeling of such interactions
and their conformational heterogeneity remains a challenging problem. Deep learning
(DL)-based small molecule docking tools like DiffDock (1) improve on earlier methods
such as Glide (2) and GNINA/SMINA, but in the high accuracy regime, the difference
in performance is not pronounced, and performance also drops substantially on unseen
receptors (1, 3, 4). DL methods have also been devised to generate small molecule con-
formations from their chemical structure (5-7); when trained on the synthetic
GEOM-DRUGS dataset (8) of drug-like molecules computed with semiempirical QM
methods, diffusion generative models like DiffDock (1) and Torsional Diffusion (7) show
best-in-class performance on the hold-out test set. However, these approaches model
specific classes of interaction partners, limiting the ability to model the full spectrum of
protein functions, and the input features can differ depending on the type of input mol-
ecules, which could limit the ability of the networks to distill general physicochemical
principles. AlphaFold2 (AF2) (9) and RoseTTAFold (RF) (10) enabled atomically accurate
structure prediction of proteins and protein—protein complexes using sequences and struc-
tures of evolutionary-related proteins as inputs. These methods have recently been extended
by AF3 and related approaches to modeling the structures of protein—NA complexes and
more general biomolecular systems (11-13) by supplementing tokens representing residues
with full atomic representations of the nonprotein components of the system.

We reasoned that rapid and accurate modeling of structure and conformational hetero-
geneity could be achieved by an atom centric approach to predicting the structures of small
molecules and peptides in isolation and in the context of a protein binding or active site
defined at the backbone level. Networks such as AF2, AF3, and RF achieve accurate structure
prediction using a primarily residue-level description of biomolecules and multiple sequence
information to help infer contacts. At the atomic level close to the native structure, the
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complexity grows considerably, and evolutionary information is less
relevant. Hence, we reasoned that an appropriate starting point for
an ensemble generation method would not be the amino acid
sequence of a protein but rather the coordinates of the overall pro-
tein backbone surrounding a binding or catalytic pocket, along with
an atomic-level description of the bonded geometry of the interact-
ing small molecules and amino acid side chains. Such a network
would, by construction, not be useful for structure prediction from
sequence, but could be very useful for modeling the conformations
of small molecules and constrained peptides both in isolation and
in a protein binding site along with the conformations of the inter-
acting sidechains. Since the protein backbone structure is input, the
calculations could be faster than AF2, AF3, and RE enabling rapid
binding site refinement and evaluation. We reasoned that a network
that generated predictions stochastically could have the advantage
of enabling rapid generation of predicted ensembles for modeling
systems with a distribution of possible states (which is difficule with
AF2, AF3, and RF), and for evaluating the extent of preorganization
of designed molecules and functional sites.

Guided by this reasoning we set out to develop a stochastic deep
neural network called PLACER (protein-ligand atomistic confor-
mational ensemble resolver) for atomistic modeling of small mol-
ecules and small molecule—protein interactions (Fig. 14). In many
applications, a reliable structure of the target protein can be gen-
erated by AF2 (9) or RF (10), or obtained from the PDB, and
location of the putative interacting region on the protein surface
is also known; the task is then to dock a small molecule into the
region of interest, while adjusting conformations of the protein
side chains and the molecule itself. We framed the learning prob-
lem as a structure denoising task and trained PLACER to recapit-
ulate the correct atom positions from partially corrupted input
structures provided that all the chemical information about the
system being modeled is known from the start. We customized
the corruption strategy to the application of interest. In the case
of the protein—small molecule docking (Fig. 14), the inputs to
the network include the protein backbone coordinates, the amino
acid sequence with side chain coordinates randomly initialized
around the respective C-alpha atoms, and the small molecule
chemical structure with atomic positions randomly initialized in
the vicinity of the putative binding site.

At input, the molecular system is converted to a chemical graph
with nodes representing individual heavy atoms (hydrogen atoms
are not modeled to reduce computation cost) and edges represent-
ing chemical bonds between atoms (Fig. 1C). This representation
is uniform across molecule types. Each node in the network carries
information about the atom type and its 3D coordinates which
are initially corrupted. The network is tasked to iteratively denoise
the input coordinates and to estimate uncertainties in the atom
positions of the output model structure (Fig. 1D). PLACER has
a three-track architecture inspired by RF (10). After the initial
embedding of the 1D and 2D features, they are passed to a block
which iteratively updates the embeddings and the 3D structure.
In the iteration block, the atom neighbor graph is first constructed:
For every atom, the 32 closest neighbors are picked in equal pro-
portions based on both spatial proximity and proximity in the
chemical graph. 2D pair features are then projected by a
feed-forward adapter layer to edge embeddings, and, together with
the 1D features, the atom neighbor graph and the current atomic
3D structure serve as inputs to the SE3-Transformer network (14)
which updates the 3D coordinates and the 1D embeddings.
Information about the chiral centers is communicated to the net-
work via type-1 (vector) features (Fig. 1£). Features in the 2D
track undergo pair-to-pair updates with bias from structure (15).
Atom and atom pair confidence prediction heads branch off the

https://doi.org/10.1073/pnas.2427161122

1D and 2D tracks, respectively, completing the iteration block.
The fully trained network consists of eight iteration blocks with
shared weights.

PLACER is trained using a combination of structure and con-
fidence prediction losses applied after every iteration. The primary
structure loss is all-atom frame-aligned point error FAPE i, .
which is an extension of the original FAPE from ref. 9 to arbitrary
molecules (Fig. 1F). The confidence of the modeled structures is
evaluated on a per atom and per atom pair basis. Atom—atom pair
accuracies are estimated using the distance signed error approach
introduced in ref. 16. On the per-atom level, we predict all-atom
IDDT scores as in AF2 (9). The network also predicts deviations
in atomic positions o, (in A) in the generated model relative to
the reference structure (Fig. 1G). These predicted deviations can
then be combined over a subset of atoms of interest (e.g., a small

L oN  g\1/2
molecule) to give the predicted RMSD pRMSD = <ﬁ IR ) .

i=1"i

Tuning Network Architecture on Experimental
Structures of Small Molecules

While small rigid molecules have known three-dimensional struc-
tures, larger organic molecules can have unique ground states that
are very time consuming to predict with computational methods,
hence, accurate prediction of general molecular structure is an
important challenge. We explored network architecture and train-
ing hyperparameters on crystal structures of chemicals from the
Cambridge Structural Database (17). This also helped ensure that
the network architecture can handle diverse chemistry and con-
siderably reduced the architecture exploration time (PLACER
training on the PDB until convergence takes x10 longer). The
training task was to predict the small molecule conformation
observed in the crystal from the chemical structure and randomly
initialized starting coordinates (Fig. 24). The training and valida-
tion datasets consisted of 226,684 and 7,116 examples of organic
nonpolymeric small molecules, respectively (further details can be
found in ST Appendix, section 1.2), and confidence heads were
omitted. As PLACER is a denoising network, structurally diverse
samples of molecular conformations can be generated by running
the network multiple times with different random initialization
of the input coordinates. Training of PLACER on CSD structures
was done in two stages: in the first stage, four iteration blocks were
used and FAPE j;, ., was the only loss term. In the second stage,
the number of iterations was increased to eight and bonded geom-
etry loss terms were added to enhance the local quality of predicted
structures (red vs. violet in Fig. 2 Band C). Reducing the number
of iterations to two or replacing the FAPE loss with a combination
of coordinate and distance RMSD losses both result in predictions
of substantially lower quality (orange and blue in Fig. 2 Band C).
Performance also degraded when the 2D inputs did not include
the bond separation feature (an integer counting the number of
covalent bonds between any two atoms in the chemical graph)
but only included a binary feature flagging that the two atoms are
immediately connected by a bond. Fully trained PLACER gener-
ates the correct 3D structures of molecules as complex as macro-
cycles with over 50 atoms (Fig. 2D) with sub-A accuracy, including
peptidic macrocycles (18) shown in the top row of Fig. 2D.

Modeling Protein-Small Molecule Interactions

with PLACER
To train PLACER on the structures from the PDB (proteins plus

small molecules, rather than small molecules alone, as in the case

of the CSD) we parsed them into chemical graphs (Fig. 1C) using
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Fig. 1. Overview of PLACER. (A) PLACER is a denoising neural network which takes at input a partially corrupted protein structure and the chemical structure (but
not the coordinates) of any interacting molecules, and predicts the all-atom structure of the complex, as well as the uncertainties in the atom positions in the
generated model. (B) PLACER can be used for a wide range of tasks including docking of small molecules and metals to a protein target, modeling nonstandard
residues, and predicting side chain conformations of amino acid residues and nucleotides at the protein-DNA interface. Shown are X-ray structures (in gray)
superimposed with PLACER models (in blue and orange). (C) At input, the molecular system is represented by an annotated graph where nodes are individual
atoms and edges are chemical bonds between atoms. Information about chiral centers is supplied to the network as (O, A, B, and C) tuples where O is the central
pyramidal or tetrahedral atom and its neighboring atoms A, B, and C are ordered clockwise. (D) PLACER is a three-track network that iteratively updates 1D and
2D embeddings and the 3D structure, producing at each iteration a refined atomic structure model and estimating uncertainties in atom placements. (£) The
triple productV =2, - 5 x € - of the three unit vectors pointing from the central chiral atom to its neighbors (gray arrows) is a pseudoscalar that differs in sign
for the Rand S configurations: For ideal tetrahedral geometry, Vy = — 4 and Vs = =4 By comparingV in the nonideal geometry of the modeled structure to the

BN 33

ideal values V; or Vs and taking gradients w.r.t. atom coordinates, one gets biasing vectors fR s =Vp (V- Ve, S) showing the directions in which atoms should be
moved around in order to recreate the desired configuration. (F) All-atom FAPE is calculated by aligning the model and the reference structures on every three
respective bonded atoms a, b, c and calculating the deviations in atom positions between the aligned structures. FAPE,.om is then the mean over all atoms
and all superimpositions. Atom-atom distances are clamped at 10 A. (G) Assuming that uncertainties in atom positions in the modeled structure are normally
distributed, we let the dedicated head of the network predict the variances ¢,2 for every atom in the system to recapitulate actual deviations d;. These variances
are learned during training by maximizing the likelihood N(d;;0, 5;2).

the Chemical Component Dictionary (19) that provides detailed ~ molecules in the PDB may be nonbiological (e.g., solvents) and
chemical description for all residue and small molecule compo-  their interactions with the rest of the structure may be nonspecific,
nents found in the PDB. We reasoned that although some  these interactions could still carry information about
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Fig. 2. Modeling complex small molecules. (A) PLACER predicts the 3D structure of a small molecule from its chemical structure and randomly initialized atomic
coordinates. Running PLACER multiple times with different random initializations of atom positions yields a diverse set of molecular conformations. (B) Ablating
PLACER features negatively affects performance as measured by the RMSD in atom coordinates between the model and the reference X-ray structure after the
two are optimally superimposed. (C) Quality of the local geometry in models produced by the five networks from panel B. Shown are mean absolute errors in
bonds, bonded, planar, and chiral angles computed from the model and reference structures. Validation set of 7,116 small molecules from the CSD was used for
panels Band C. Asingle conformer was generated for every validation example; the error bars represent SD over five independent validation runs. (D) Examples
of seven macrocyclic molecules (18) for which PLACER generates the correct structure. Shown are the best RMSD models (in blue; out of 1,000 generated) overlaid
with the experimental crystal structures (gray). CCDC database identifiers shown in parentheses.

physicochemical preferences at molecular interfaces and thus be
informative for the network training; only water molecules were
excluded. Training and validation sets (112,828 and 7,090 exam-
ples, respectively) were compiled from higher resolution (<2.5 A)
structures deposited to the PDB before January 12, 2023. During
training, the input structures were cropped to at most 600 heavy
atoms and centered around a randomly selected atom. The non-
backbone-atom coordinates of all individual connected molecular
components in the crop were collapsed to their connected back-
bone atom (if residue or NA), or to a randomly selected atom
(ligands), and corrupted with Gaussian noise (¢ = 1.5 A). From
these starting points, PLACER was trained to recapitulate the
atomic coordinates of all atoms in the cropped regions. For a
detailed description of the training procedure, see SI Appendix,
Supplementary Methods.

We used PLACER to generate ensembles of small molecule
poses in the pocket of the target protein (Fig. 34) by repeated
runs with different random initialization of the input coordi-
nates. For each run, we chose one ligand atom at random, added
Gaussian noise (6 = 1.5 A) to its coordinates, collapsed all other
ligand atoms onto that atom (these starting positions from mul-
tiple network runs are shown in Fig. 3 B and (), and added
uncorrelated Gaussian noise (6 = 1.5 A) to the resulting coor-
dinates of all ligand atoms—exactly matching the initialization
used during training and ensuring that neither the internal
structure of the ligand nor its orientation in the pocket were
inferrable from the inputs to the network. Analyzing the result-
ing ensembles reveals that PLACER is not very sensitive to the
initial placement of the ligand: Multiple different starting posi-
tions yield near native predictions (Fig. 3B), and these positions
cover the entire space sampled at input (Fig. 3C). We also
observed that the predicted pRMSD score calculated over the
ligand atoms allows selection of more accurate models from the
sampled pool (Fig. 3E), with the best scoring models closel
matching the experimental structure [ligand RMSD = 0.53
and 0.77 A for heme (20) and cortisol (21), respectively,
Fig. 3D.

https://doi.org/10.1073/pnas.2427161122

To assess PLACER performance in a more realistic scenario of
docking against non-native protein conformations, we used a
standard test set of 65 drug targets from the Astex non-native set
(22). Each of these targets has a cocrystal structure with a drug
molecule, as well as a number of structures either without the drug
or with a different small molecule cocrystallized, totaling to 1,112
non-native structures over the 65 targets. The docking results
highlight the importance of both sampling and scoring aspects of
the network (Fig. 3F): The success rate of generating and selecting
a near-native conformation of the docked small molecule increases
if more models are generated. Among the three confidence pre-
diction metrics tested, the pPRMSD score shows the best power of
selecting near-native conformations (Fig. 3G, top 3 bars), with
higher docking success rates than Vina (23), GOLD (22), and
GalaxyDock (24) (Fig. 3G, bars in the middle; number were taken
from respective references). Compared to the best performing
Rosetta GALigandDock method (25). PLACER performance is
higher in the lower accuracy regime (% of complexes with ligand
RMSD <2 A, 82.4%vs. 73.6%), but is behind in the high-accuracy
regime (RMSD < 1 A, 41.8% vs. 51.6%). PLACER performance
is still notable, however, because unlike the other methods, the
network was not specifically trained on the non-native protein—
small molecule docking task. PLACER recreates both the confor-
mations of the small molecule and the protein side chains from
scratch, while the other methods tested rely largely on the input
protein coordinates. Improved performance can be obtained by
combining PLACER with physics-based methods: minimizing
the docks generated by the network using the generalized Rosetta
force field and estimating binding free energies of the minimized
structures gives +7.3% increase in docking success rate at <1 A
and no notable change at <2 A; likely due to improved sampling,
Astex benchmark performance showed no significant decline when
ligands with Tanimoto similarity > 0.5 to the training set were
excluded, indicating that data leakage is not substantial
(SI Appencdix, Table S3).

We further compared PLACER with AlphaFold3 and RF
All-Atom on the PoseBusters benchmark (26). This benchmark
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Fig. 3. Modeling protein-small molecule interactions with PLACER. (4) Starting with the protein backbone and the coordinates of the small molecule randomly
initialized in the vicinity of the binding site (cyan dots), PLACER predicts protein side chain conformations (which are initially randomized around the respective
C-alpha atoms, orange dots) and the structure and the placement of the small molecule relative to the target protein. By repeating this process multiple times,
PLACER generates a structurally diverse set of docks. (B and €) Sampled starting positions of the small molecule for the two de novo designed small molecule
binders. Panel C shows projections of the sampled starting points onto the three coordinate planes. Shades of gray show density of all sampled positions; orange
contours indicate density of points which resulted in docks with ligand RMSD < 2 A. The two densities largely overlap, suggesting that PLACER is not very sensitive
to the initial placement of the ligand in the binding pocket. (D) Poses with the lowest pRMSD scores (blue/orange) closely match the experimental structure (gray).
(E) Models with lower pRMSD scores are funneled toward the native conformation demonstrating the discriminative power of the predicted score. (F) Increasing
the sample size and rescoring PLACER models by the pRMSD score (orange curve) greatly increases the chance of picking a better model compared to a random
selection (blue curve). Scoring by pRMSD is however still not optimal (orange vs. gray dashed curve). (G) Among the three accuracy scores predicted by PLACER,
PRMSD shows best performance (the three bars at the top). Bright and pale bars show docking success rates in the Astex non-native set for ligand RMSD < 1A and
2A, respectively. The four bars in the middle show performance of the widely used docking tools Vina, GOLD, GalaxyDock, and Rosetta GALigandDock. Sampling
docks with PLACER and minimizing and rescoring them using GALigandDock increases docking success rate by 7.3% (ligand RMSD < 1A) over PLACER alone.

consists of 428 protein—ligand complexes from the PDB, and for ~ large effects on hydrogen bonding energies, the level of accuracy
PLACER, the prediction task was solely to predict the correct  in positioning required is quite high. Furthermore, the designed
ligand binding orientation, given a known ligand binding siteand ~  active site should be preorganized in the absence of substrate with
protein backbone structure. On the 118 complexes absent from the catalytic sidechains largely held in place by intraprotein inter-
PLACER’s training and validation sets, PLACER achieved 84% actions to reduce the entropic cost of binding and ensure that all
success at <2 A RMSD, better than AlphaFold3 (77%) and RE  catalytic groups are properly positioned; such preorganization is

All-Atom (38%) (the latter two solve the harder problem of de a notable feature of natural enzyme active sites. The most general
novo prediction of protein structure and small molecule docking; ~ way to evaluate such preorganization is molecular dynamics sim-
SI Appendix, Fig. S6). At the stricter <1 A threshold, however, ulations (27, 28), but as sidechain reconfiguration can occur on
AlphaFold3 remained superior (58% vs. 51%). the microsecond time scale, such simulations are computationally

expensive and cannot be applied to large numbers of designs.
Assessment of Enzyme Active Site Design Approximate discrete met'hods such as.the. Rosetta. R(.)tiamer
Accuracy and Preorganization B‘oltzm;.mn method (29).esF1mate preorganization at tbe 1nc.hv1dual

sidechain level, but are limited by the rotamer approximation and
A critical challenge in de novo enzyme design is to come up with  the inability to model coupled and concerted movements of side
amino acid sequences that not only encode the target backbone  chains and small molecules. We reasoned that PLACER could
structure but also position the catalytic sidechains and the reaction ~ enable assessment of the accuracy and preorganization of designed
substrate such that the key sidechain functional groups make the  active sites by generating ensembles of models of small molecules
hydrogen bonding and electrostatic interactions with the transi-  and interacting sidechain placements much more rapidly than
tion state and each other that are essential to catalysis. As 0.5 A molecular dynamics simulations and without the limitations of
deviations in distance and 30-degree deviations in angle can have  the Rotamer Boltzmann method.
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We applied PLACER to the RA95 series of previously designed
retro-aldolase (Fig. 44) enzymes, and directed evolution gener-
ated improved versions of these, for which high-resolution crys-
tal structures have been determined (30-32). For every
retro-aldolase intermediate shown in Fig. 44, we ran PLACER
50 times and analyzed the structural diversity of the active site
lysine (and covalent adducts of this lysine) through the mean
predicted RMSD (pRMSD) calculated over side chain atoms
and excluding backbone N, Ca, C, O. As illustrated in Fig. 4 B
and Cand S5, PLACER generated ensembles are highly varied
for the lower activity initial computational designs, indicating
a lack of preorganization, and become increasingly well ordered
for the more active evolved versions. This suggests that lack of

A O O OH
AN

HO Lys R
A~ Lys

”2 *quﬁon
step 4 + ’

/— OH
Lys step 1

H,0
H,0 Lys 2

+

H
+
~.NH Lys/\/N\\rYR
step 3 y OH
step 2 OMe
R™So R=

activity, M-'s!
RA95.0 1 1.9-10"
RA95.5 [ 1.4-10"

w

oL
. RA95.5-5 1 3.2 102
[a)

24 RA95.5-8 mmml 1.6-10°
x RA95.5-8F mmm 3.4 - 104
b 1.1-108
c RA95.5-8F ., W 1.

T 2

=

(9]

¢ | b 1 [

b}

v oA T T T T T

apo step 1 step 2 step 3 step 4

C
PLACER ensembles for designed & evolved RA95 variants

RA95.0 RA95.5

step 1

step 2

preorganization was a major shortcoming of early enzyme design
efforts [similar conclusions were reached using considerably
more expensive MD simulations (33)] and that PLACER pro-
vides a rapid means to assess this, and thus guide enzyme
design efforts.

We further tested the use of PLACER prospectively to guide
protein design by making a new round of designed retro-aldolases
using DL—generated NTF2-like folds (21, 34) that previously
yielded high activity de novo luciferases (35). We started from an
active site description based on the lysine-centered catalytic tetrad
found in the most active of the evolved retroaldolases (32)
(SI Appendix, Fig. S9). This active site contains an intricate net-
work of hydrogen bonds keeping the catalytic residues in place
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Fig. 4. Selecting designs with preorganized catalytic residues increases activity. (A) Mechanism of the retro-aldol reaction with the key intermediates shown. (B)
Five intermediate states of the RA reaction with methodol were modeled by PLACER for the RA95 series of designs to probe preorganization of the active site
lysine and its modifications. (C) Examples of PLACER ensembles for active sites of the three previously published retro-aldolases with increasing activity show
higher degree of preorganization in steps 1 and 2 along the reaction pathway. (D) Design model of the most active variant, cnRA-50, with the catalytic tetrad
highlighted in blue and substrate in orange. (E) PLACER generated ensembles of lysine-methodol conjugates of catalytic steps 1 and 2 of the active site of cnRA-50.
(F) PLACER active site preorganization ensemble metrics (opRMSD of conjugated lysine atoms, except backbone) in steps 1 and 2 enrich for selecting more active
de novo designed retro-aldolase enzymes. (G) Retro-aldol reaction catalyzed by cnRA-50: time-course following the formation of 6-methoxy-2-naphthaldehyde

(Left), and Michaelis-Menten plot (Right) obtained from initial velocities.
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(Fig. 4D); we reasoned that PLACER might be helpful to over-
come this difficulty by assisting in identification of preorganized
active sites. Designs were generated using RosettaMatch (36) and
LigandMPNN (37); full details of the design strategy are provided
in the supplemental methods. The activities of the 320 designs
were first evaluated in an in vitro transcription translation system
(IVTT), enabling rapid identification of promising variants with-
out the need for protein purification. The most active of these
were expressed and purified in Escherichia coli, and their £ /Ky
values determined by measuring activity as a function of substrate
concentration. We then examined how PLACER preorganization
correlated with activity over all of the tested designs, focusing on
the conformational flexibility of the catalytic lysine conjugated to
reaction intermediates in the ensembles at each step in the reaction
pathway (Fig. 4F). We found that the designs with the highest
k. /Ky values were more preorganized than the low activity
designs from the initial IVTT screen (Fig. 4F and SI Appendix,
Figs. $13-S15). The most active design, cnRA-50, displayed one
of the highest preorganization levels according to PLACER and
had a k_ /Ky of 11,000 M™" min™" (Fig. 4G), much higher than
earlier computational designs prior to directed evolution, and
comparable to recent designs made using RFdiffusion and pro-

teinMPNN (38).

Conclusions

PLACER provides a versatile and rapid approach for generating
conformational ensembles of molecules both in isolation and in
the context of a protein binding site given the sequence of the
protein and the positions of the backbone atoms. Unlike AF3,
RF All-Atom, and other protein structure prediction methods,
PLACER does not predict protein backbone structure—the
benefit is that calculations are considerably more rapid, enabling
stochastic generation of conformational ensembles. The use of
a consistent atom-level representation for all interactions enables
facile extension beyond biomolecules to macrocycles and other
complex small molecules. The ability to rapidly generate con-
formational ensembles for protein—small molecule assemblies
should be of considerable utility for computational enzyme
design and small molecule binder design efforts: The accuracy
with which the intended active sites are recapitulated and the
extent of preorganization of the key catalytic/interacting
sidechain functional groups can be readily assessed. PLACER
assessment of active site accuracy and preorganization consider-
ably improves discovery success rates for multistep serine hydro-
lases (39) and Zn-dependent metallohydrolases (40), and we
describe here the design of retroaldolases with much higher
activities than pre-DL designs for this reaction, prior to exper-
imental optimization. We anticipate that PLACER-based ensem-
ble generation will be broadly useful for modeling the structures
of complex nonprotein molecules both in isolation and in a
protein context, and for evaluating enzyme and protein—small
molecule binder designs quite generally.

Materials and Methods

Training on the PDB. Training and validation sets were compiled from structures
deposited to the Protein Data Bank (41) before January 12, 2023. We selected
X-ray and EM structures with resolution 2.5 A and better and filtered out entries
having =10% of unresolved atoms, as well as entries with =20 nonstandard res-
idues across all polypeptide chains in the asymmetric unit. These filters reduced
the size of the set by 33% from 200,713 to 135,172. We additionally removed
entries which share similarity to the test set [we used Astex Non-Native Set (22)
as our primary small molecule docking benchmark set] either on the protein
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or the small molecule levels. A PDB structure was discarded if any of its protein
chains had >30% sequence identity to any of the protein chains in the test set.
Structures containing small molecules with =80% Tanimoto similarity to the
small molecules in the test set were also excluded. We used Open Babel (42)
to first compute the small molecule FP4 fingerprints and then to calculate the
Tanimoto coefficients. The remaining 119,916 PDB structures were randomly split
into training (112,828) and validation (7,090) sets such that none of the protein
chains in the two sets share >30% sequence identity.

During training and validation, we do not split the PDB entries into individual
chains or molecules but operate on the whole asymmetric units. We directly
parse PDBx/mmCIF files keeping all molecular content; only water molecules
are excluded. The Chemical Component Dictionary (19) is used to construct
chemical graphs for individual residues and small molecules observed in a PDB
entry; nodes in a chemical graph representindividual atoms (only nonhydrogen
atoms are considered) and edges represent chemical bonds between atoms. The
residue-level graphs are joined together into a single chemical graph for the
whole PDB entry. Edges are added to connect subgraphs representing individual
residues within a polymer chain (proteins, DNA, and RNA), as well as are edges
parsed from the struct_conn data records of the PDBx/mmClIF file. Atomic coor-
dinates are parsed from the PDBx/mmCIF file and are saved on a corresponding
node of the chemical graph.

PDB structures were cropped to at most 600 heavy atoms to fit the GPU mem-
ory. First, we split all atoms in the input structure into four classes (protein, NA,
small molecule, and metal), then randomly choose one of these classes with ratios
1:1:5:1, and finally sample a random heavy atom from the selected class to be
the center of the cropped region. The crop is defined as the collection of residues
and small molecules in the PDB structure which are closest in space to the residue
or the small molecule the crop center belongs to. Atom coordinates in the crop
undergo corruption. First, we collect all atoms in the 8-hop neighborhood of the
crop center in the chemical graph and add them to the corruption set. Backbone
atoms in polypeptide (N, CA, and C), polyribo- and polydeoxyribonucleotide
chains (03’, C3’, C4’, C5’, 05’, and P) which are not part of the corruption set
are kept fixed with only a minor Gaussian noise (¢ = 0.1 A) added to the atom
coordinates to make the network more robust to small displacements in atomic
coordinates of the backbone atoms (43). All the remaining nonbackbone atoms
areincluded in the corruption set. The chemical graph corresponding to the crop
is then split into connected components. If a connected component has fixed
backbone atoms, then the corrupted atoms in that component are initialized with
the coordinates of the closest backbone atom in the graph (based on the shortest
path in the graph). Otherwise, a random atom is picked from the component,
Gaussian noise with ¢ = 1.5 A is added to its coordinates, and all other atoms
reachable from the selected atom are collapsed to it. Finally, Gaussian noise with
o ="1.5Aisapplied to all atoms in the corruption set.

For more information, see S/ Appendix, section 1.1.

Training on the €sD. The PDB-derived datasets were complemented by the
crystal structures of small molecules deposited to the Cambridge Structural
Database (CSD v5.43; November 2021) (17). We used structures with R-factor
7.5% and better and no disorder and excluded polymeric and organo-metallic
entries; the number of heavy atoms per small molecule was limited to the 3 to
80 range. Only molecules which could be successfully parsed by Open Babel were
retained. CSD structures with multiple molecules in the asymmetric unit were
splitinto individual molecules, followed by merging of identical molecules with
the same canonical SMILES string into one entry for training and validation. Upon
merging, we kept 3D coordinates of all the instances to account for alternative con-
formations during training. Training and validation splits were done using 75%
Tanimoto similarity cutoff, yielding 226,684 and 7,116 examples, respectively.
During training, molecules were sampled with frequencies inversely proportional
to the number of similar molecules in the set at Tanimoto similarity 75%.

Astex Non-Native Benchmark. To evaluate PLACER's performance in ligand
docking tasks, we applied it on the Astex non-native benchmark set, consisting of
65 target molecules, placed into their non-native protein structures, with a total of
1,112 unique ligand-protein pairs (22). PLACER was run on each protein-ligand
pair, generating 1,000 models. The performance of PLACER was evaluated by
ranking the 1,000 models based on three confidence metrics (pRMSD, pLDDT,
and pLDDT-pDE), and using RMSD of the highest confidence model as the result.
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We further explored the impact of applying physics-based minimization on
the PLACER-produced models. For this, we used the minimization protocol avail-
able in GALigandDock (25) on all of the produced 1,000 models. The produced
models were ranked based on the computed dG metric, and the RMSD of the
best model used as the final result.

For more information, see SI Appendix, section 2.

PoseBusters Benchmark. We evaluated PLACER's docking performance against
AlphaFold3 (12) and RF All-Atom (11) using the 428 protein-ligand complexes
from the PoseBusters benchmark (as implemented in the 2023 preprint) (26).
Predictions were based on the corresponding crystal structure mmCIF files, with
target ligands initialized by randomizing their ground-truth coordinates with
the same procedure as used during training (Training on the PDB). Known buffer
components and crystallization additives, as listed in the AlphaFold3 study (12),
were excluded, while relevant cofactors within 600 atoms of the ligand were
retained with their crystallographic coordinates approximately fixed. For each
complex, PLACER generated 100 models.

Ligand similarity to the PLACER training set was assessed using Tanimoto coef-
ficients [ECFP4 fingerprints, OpenBabel (42)]. Of the 118 PoseBusters complexes
absent from the PLACER training and validation sets, 59 contained ligands with
TC < 0.7 forming a more challenging benchmark subset (S/ Appendix, Table S5
and Fig. S5). Further details are provided in S/ Appendix, section 3.

Computational De Novo Design of Retroaldolases in NTF2 Fold. Structurally
diverse set of 10,000 backbones in NTF2 fold was generated using RF joint
inpainting (RFjoint2) (44). We used XML-Matcher protocol (36) to identify loca-
tionsin NTF2 fold compatible with the placement of the catalytic residues forming
retro-aldolase catalytic tetrad (32). Protein backbones with preinstalled catalytic
residues were designed in the presence of the substrate using LigandMPNN (37).
Self-consistency of the sequence and desired scaffold was determined using AF2
(9)(insingle sequence prediction mode, using model 4 ptm and three recycles).
AF2 models with IDDT higher than 85 formed a pool of designs subjected to in
silico selection strategies including or skipping PLACER-assisted selection.
For more information, see SI Appendix, section 5.

Application of PLACER for Design Selection. We used PLACER to assist in
picking the most promising designs from the same pool of 17,810 variants relies
on a set of geometrical and uncertainty metrics from generating an ensemble
of 50 structures with PLACER, predicting interactions between the ligand and
the active site residues in the context of AF2 predicted backbones. The obtained
metrics included distances between polar atoms of the theozyme side chains
and uncertainty (pRMSD) in polar atom positions computed over the ensemble
of 50 models. To identify a smaller subset of PLACER metrics, we trained a sim-
ple logistic regression model to classify designs as active or inactive on a set of
designs characterized in the preliminary experiment performed to identify the
focus theozyme configuration.

IVTT-Based Retroaldolase Activity Testing Assay. We developed a protocol
for medium-throughput semiquantitative retro-aldolase activity testing of the
designs using IVTT. We obtained linear duplex DNA, encoding protein of interest,
flanked by appropriately spaced T7 promoter and T7 terminator sequences as
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eBlocks™ gene fragments from IDT, and by mixing it directly with 2 uL compo-
nents of PurExpress IVTT system produced enough protein to screen for active
variants. Genes of several control proteins with a range of activities previously
determined in purified form were included with each batch of tested designs to
assist in ranking activity of the new variants, and help to compare experiments
run under different experimental conditions. It should be noted that in this format
of the experiment, concentration of the soluble protein remains unknown, and
therefore, activity level should be treated as apparent activity defined as a product
of the amount of soluble protein and intrinsic activity of each variant. Typically,
a batch of 90 designs and 6 controls were used to evaluate performance of a
particular computational workflow.

Characterization of Individual Variants.To get more accurate and quantitative
data describing catalytic activities of the designs and validate IVTT-based assay,
we cloned, expressed in E. coli, purified by IMAC (Ni-NTA) and size-exclusion
chromatography, and determined Michaelis-Menten parameters for 24 designs
with the highest apparent activities. Additionally, we purified and tested under
similar experimental conditions three previously characterized proteins possess-
ing retro-aldolase activity. This group of control proteins consists of published
RA95.5-8F (32), RA110-4.6 (45), and RABb-16.2 (46) retro-aldolases.

Data, Materials, and Software Availability. Code and neural network weights
are available for download on GitHub (https://github.com/baker-laboratory/
PLACER) (47). The model files and sequences of designed retroaldolases are
available for download at Zenodo (https://doi.org/10.5281/zenodo.14591000)
(48). All other data are included in the manuscript and/or SI Appendix.
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