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Modeling the conformational heterogeneity of protein–small molecule interactions 
is important for understanding natural systems and evaluating designed systems but 
remains an outstanding challenge. We reasoned that while residue-level descriptions of 
biomolecules are efficient for de novo structure prediction, for probing heterogeneity of 
interactions with small molecules in the folded state, an entirely atomic-level description 
could have advantages in speed and generality. We developed a graph neural network 
called PLACER (protein-ligand atomistic conformational ensemble resolver) trained 
to recapitulate correct atomic positions from partially corrupted input structures from 
the Cambridge Structural Database and the Protein Data Bank; the nodes of the graph 
are the atoms in the system. PLACER accurately generates structures of diverse organic 
small molecules given knowledge of their atom composition and bonding. When given a 
description of the larger protein context, it builds up structures of small molecules and 
protein side chains for protein–small molecule docking. Because PLACER is rapid and 
stochastic, ensembles of predictions can be readily generated to map conformational 
heterogeneity. In enzyme design efforts described here and elsewhere, we find that using 
PLACER to assess the accuracy and preorganization of the designed active sites results in 
higher success rates and higher activities; we obtain a preorganized retroaldolase with a 
kcat/KM of 11,000 M−1min−1, considerably higher than any pre–deep learning design for 
this reaction. We anticipate that PLACER will be widely useful for rapidly generating 
conformational ensembles of small molecule and small molecule–protein systems and 
for designing higher activity preorganized enzymes.

machine learning | enzyme design | ligand docking

 Interactions of proteins with nucleic acids (NAs), small organic and inorganic molecules, 
and metals are critical to biological function, but atomistic modeling of such interactions 
and their conformational heterogeneity remains a challenging problem. Deep learning 
(DL)-based small molecule docking tools like DiffDock ( 1 ) improve on earlier methods 
such as Glide ( 2 ) and GNINA/SMINA, but in the high accuracy regime, the difference 
in performance is not pronounced, and performance also drops substantially on unseen 
receptors ( 1 ,  3 ,  4 ). DL methods have also been devised to generate small molecule con-
formations from their chemical structure ( 5   – 7 ); when trained on the synthetic 
GEOM-DRUGS dataset ( 8 ) of drug-like molecules computed with semiempirical QM 
methods, diffusion generative models like DiffDock ( 1 ) and Torsional Diffusion ( 7 ) show 
best-in-class performance on the hold-out test set. However, these approaches model 
specific classes of interaction partners, limiting the ability to model the full spectrum of 
protein functions, and the input features can differ depending on the type of input mol-
ecules, which could limit the ability of the networks to distill general physicochemical 
principles. AlphaFold2 (AF2) ( 9 ) and RoseTTAFold (RF) ( 10 ) enabled atomically accurate 
structure prediction of proteins and protein–protein complexes using sequences and struc-
tures of evolutionary-related proteins as inputs. These methods have recently been extended 
by AF3 and related approaches to modeling the structures of protein–NA complexes and 
more general biomolecular systems ( 11   – 13 ) by supplementing tokens representing residues 
with full atomic representations of the nonprotein components of the system.

 We reasoned that rapid and accurate modeling of structure and conformational hetero-
geneity could be achieved by an atom centric approach to predicting the structures of small 
molecules and peptides in isolation and in the context of a protein binding or active site 
defined at the backbone level. Networks such as AF2, AF3, and RF achieve accurate structure 
prediction using a primarily residue-level description of biomolecules and multiple sequence 
information to help infer contacts. At the atomic level close to the native structure, the 
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complexity grows considerably, and evolutionary information is less 
relevant. Hence, we reasoned that an appropriate starting point for 
an ensemble generation method would not be the amino acid 
sequence of a protein but rather the coordinates of the overall pro-
tein backbone surrounding a binding or catalytic pocket, along with 
an atomic-level description of the bonded geometry of the interact-
ing small molecules and amino acid side chains. Such a network 
would, by construction, not be useful for structure prediction from 
sequence, but could be very useful for modeling the conformations 
of small molecules and constrained peptides both in isolation and 
in a protein binding site along with the conformations of the inter-
acting sidechains. Since the protein backbone structure is input, the 
calculations could be faster than AF2, AF3, and RF, enabling rapid 
binding site refinement and evaluation. We reasoned that a network 
that generated predictions stochastically could have the advantage 
of enabling rapid generation of predicted ensembles for modeling 
systems with a distribution of possible states (which is difficult with 
AF2, AF3, and RF), and for evaluating the extent of preorganization 
of designed molecules and functional sites.

 Guided by this reasoning we set out to develop a stochastic deep 
neural network called PLACER (protein-ligand atomistic confor-
mational ensemble resolver) for atomistic modeling of small mol-
ecules and small molecule–protein interactions ( Fig. 1A  ). In many 
applications, a reliable structure of the target protein can be gen-
erated by AF2 ( 9 ) or RF ( 10 ), or obtained from the PDB, and 
location of the putative interacting region on the protein surface 
is also known; the task is then to dock a small molecule into the 
region of interest, while adjusting conformations of the protein 
side chains and the molecule itself. We framed the learning prob-
lem as a structure denoising task and trained PLACER to recapit-
ulate the correct atom positions from partially corrupted input 
structures provided that all the chemical information about the 
system being modeled is known from the start. We customized 
the corruption strategy to the application of interest. In the case 
of the protein–small molecule docking ( Fig. 1A  ), the inputs to 
the network include the protein backbone coordinates, the amino 
acid sequence with side chain coordinates randomly initialized 
around the respective C-alpha atoms, and the small molecule 
chemical structure with atomic positions randomly initialized in 
the vicinity of the putative binding site.        

 At input, the molecular system is converted to a chemical graph 
with nodes representing individual heavy atoms (hydrogen atoms 
are not modeled to reduce computation cost) and edges represent-
ing chemical bonds between atoms ( Fig. 1C  ). This representation 
is uniform across molecule types. Each node in the network carries 
information about the atom type and its 3D coordinates which 
are initially corrupted. The network is tasked to iteratively denoise 
the input coordinates and to estimate uncertainties in the atom 
positions of the output model structure ( Fig. 1D  ). PLACER has 
a three-track architecture inspired by RF ( 10 ). After the initial 
embedding of the 1D and 2D features, they are passed to a block 
which iteratively updates the embeddings and the 3D structure. 
In the iteration block, the atom neighbor graph is first constructed: 
For every atom, the 32 closest neighbors are picked in equal pro-
portions based on both spatial proximity and proximity in the 
chemical graph. 2D pair features are then projected by a 
feed-forward adapter layer to edge embeddings, and, together with 
the 1D features, the atom neighbor graph and the current atomic 
3D structure serve as inputs to the SE3-Transformer network ( 14 ) 
which updates the 3D coordinates and the 1D embeddings. 
Information about the chiral centers is communicated to the net-
work via type-1 (vector) features ( Fig. 1E  ). Features in the 2D 
track undergo pair-to-pair updates with bias from structure ( 15 ). 
Atom and atom pair confidence prediction heads branch off the 

1D and 2D tracks, respectively, completing the iteration block. 
The fully trained network consists of eight iteration blocks with 
shared weights.

 PLACER is trained using a combination of structure and con-
fidence prediction losses applied after every iteration. The primary 
structure loss is all-atom frame-aligned point error  FAPEallatom , 
which is an extension of the original  FAPE    from ref.  9  to arbitrary 
molecules ( Fig. 1F  ). The confidence of the modeled structures is 
evaluated on a per atom and per atom pair basis. Atom–atom pair 
accuracies are estimated using the distance signed error approach 
introduced in ref.  16 . On the per-atom level, we predict all-atom 
lDDT scores as in AF2 ( 9 ). The network also predicts deviations 
in atomic positions  �i    (in Å) in the generated model relative to 
the reference structure ( Fig. 1G  ). These predicted deviations can 
then be combined over a subset of atoms of interest (e.g., a small 

molecule) to give the predicted RMSD  pRMSD =
�

1

N

∑N

i=1 �
2
i

�1∕2
   . 

Tuning Network Architecture on Experimental 
Structures of Small Molecules

 While small rigid molecules have known three-dimensional struc-
tures, larger organic molecules can have unique ground states that 
are very time consuming to predict with computational methods, 
hence, accurate prediction of general molecular structure is an 
important challenge. We explored network architecture and train-
ing hyperparameters on crystal structures of chemicals from the 
Cambridge Structural Database ( 17 ). This also helped ensure that 
the network architecture can handle diverse chemistry and con-
siderably reduced the architecture exploration time (PLACER 
training on the PDB until convergence takes ×10 longer). The 
training task was to predict the small molecule conformation 
observed in the crystal from the chemical structure and randomly 
initialized starting coordinates ( Fig. 2A  ). The training and valida-
tion datasets consisted of 226,684 and 7,116 examples of organic 
nonpolymeric small molecules, respectively (further details can be 
found in SI Appendix, section 1.2 ), and confidence heads were 
omitted. As PLACER is a denoising network, structurally diverse 
samples of molecular conformations can be generated by running 
the network multiple times with different random initialization 
of the input coordinates. Training of PLACER on CSD structures 
was done in two stages: in the first stage, four iteration blocks were 
used and  FAPEallatom    was the only loss term. In the second stage, 
the number of iterations was increased to eight and bonded geom-
etry loss terms were added to enhance the local quality of predicted 
structures (red vs. violet in  Fig. 2 B  and C  ). Reducing the number 
of iterations to two or replacing the  FAPE    loss with a combination 
of coordinate and distance RMSD losses both result in predictions 
of substantially lower quality (orange and blue in  Fig. 2 B  and C  ). 
Performance also degraded when the 2D inputs did not include 
the bond separation feature (an integer counting the number of 
covalent bonds between any two atoms in the chemical graph) 
but only included a binary feature flagging that the two atoms are 
immediately connected by a bond. Fully trained PLACER gener-
ates the correct 3D structures of molecules as complex as macro-
cycles with over 50 atoms ( Fig. 2D  ) with sub- Å accuracy, including 
peptidic macrocycles ( 18 ) shown in the top row of  Fig. 2D  .          

Modeling Protein–Small Molecule Interactions 
with PLACER

 To train PLACER on the structures from the PDB (proteins plus 
small molecules, rather than small molecules alone, as in the case 
of the CSD) we parsed them into chemical graphs ( Fig. 1C  ) using D
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the Chemical Component Dictionary ( 19 ) that provides detailed 
chemical description for all residue and small molecule compo-
nents found in the PDB. We reasoned that although some 

molecules in the PDB may be nonbiological (e.g., solvents) and 
their interactions with the rest of the structure may be nonspecific, 
these interactions could still carry information about 
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Fig. 1.   Overview of PLACER. (A) PLACER is a denoising neural network which takes at input a partially corrupted protein structure and the chemical structure (but 
not the coordinates) of any interacting molecules, and predicts the all-atom structure of the complex, as well as the uncertainties in the atom positions in the 
generated model. (B) PLACER can be used for a wide range of tasks including docking of small molecules and metals to a protein target, modeling nonstandard 
residues, and predicting side chain conformations of amino acid residues and nucleotides at the protein–DNA interface. Shown are X-ray structures (in gray) 
superimposed with PLACER models (in blue and orange). (C) At input, the molecular system is represented by an annotated graph where nodes are individual 
atoms and edges are chemical bonds between atoms. Information about chiral centers is supplied to the network as (O, A, B, and C) tuples where O is the central 
pyramidal or tetrahedral atom and its neighboring atoms A, B, and C are ordered clockwise. (D) PLACER is a three-track network that iteratively updates 1D and 
2D embeddings and the 3D structure, producing at each iteration a refined atomic structure model and estimating uncertainties in atom placements. (E) The 
triple product V = �⃗e

A
⋅ �⃗e

B
× �⃗e

C
 of the three unit vectors pointing from the central chiral atom to its neighbors (gray arrows) is a pseudoscalar that differs in sign 

for the R and S configurations: For ideal tetrahedral geometry, V
R
=

− 4

3

√

3

 and V
S
=

+ 4

3

√

3

 . By comparing V  in the nonideal geometry of the modeled structure to the 

ideal values V
R
 or V

S
 and taking gradients w.r.t. atom coordinates, one gets biasing vectors �⃗f

R∕S = ∇⃗
r

(

V −V
R∕S

)

2 showing the directions in which atoms should be 
moved around in order to recreate the desired configuration. (F) All-atom FAPE is calculated by aligning the model and the reference structures on every three 
respective bonded atoms a,b, c and calculating the deviations in atom positions between the aligned structures. FAPE

allatom
 is then the mean over all atoms 

and all superimpositions. Atom–atom distances are clamped at 10 Å. (G) Assuming that uncertainties in atom positions in the modeled structure are normally 
distributed, we let the dedicated head of the network predict the variances �

i

2 for every atom in the system to recapitulate actual deviations d
i
 . These variances 

are learned during training by maximizing the likelihood N
(

d
i
;0, �

i

2

)
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physicochemical preferences at molecular interfaces and thus be 
informative for the network training; only water molecules were 
excluded. Training and validation sets (112,828 and 7,090 exam-
ples, respectively) were compiled from higher resolution (<2.5 Å) 
structures deposited to the PDB before January 12, 2023. During 
training, the input structures were cropped to at most 600 heavy 
atoms and centered around a randomly selected atom. The non-
backbone-atom coordinates of all individual connected molecular 
components in the crop were collapsed to their connected back-
bone atom (if residue or NA), or to a randomly selected atom 
(ligands), and corrupted with Gaussian noise (σ  = 1.5 Å). From 
these starting points, PLACER was trained to recapitulate the 
atomic coordinates of all atoms in the cropped regions. For a 
detailed description of the training procedure, see SI Appendix, 
﻿Supplementary Methods﻿ .

 We used PLACER to generate ensembles of small molecule 
poses in the pocket of the target protein ( Fig. 3A  ) by repeated 
runs with different random initialization of the input coordi-
nates. For each run, we chose one ligand atom at random, added 
Gaussian noise (σ = 1.5 Å) to its coordinates, collapsed all other 
ligand atoms onto that atom (these starting positions from mul-
tiple network runs are shown in  Fig. 3 B  and C  ), and added 
uncorrelated Gaussian noise (σ = 1.5 Å) to the resulting coor-
dinates of all ligand atoms—exactly matching the initialization 
used during training and ensuring that neither the internal 
structure of the ligand nor its orientation in the pocket were 
inferrable from the inputs to the network. Analyzing the result-
ing ensembles reveals that PLACER is not very sensitive to the 
initial placement of the ligand: Multiple different starting posi-
tions yield near native predictions ( Fig. 3B  ), and these positions 
cover the entire space sampled at input ( Fig. 3C  ). We also 
observed that the predicted  pRMSD    score calculated over the 
ligand atoms allows selection of more accurate models from the 
sampled pool ( Fig. 3E  ), with the best scoring models closely 
matching the experimental structure [ligand RMSD = 0.53 Å 
and 0.77 Å for heme ( 20 ) and cortisol ( 21 ), respectively, 
 Fig. 3D  ].        

 To assess PLACER performance in a more realistic scenario of 
docking against non-native protein conformations, we used a 
standard test set of 65 drug targets from the Astex non-native set 
( 22 ). Each of these targets has a cocrystal structure with a drug 
molecule, as well as a number of structures either without the drug 
or with a different small molecule cocrystallized, totaling to 1,112 
non-native structures over the 65 targets. The docking results 
highlight the importance of both sampling and scoring aspects of 
the network ( Fig. 3F  ): The success rate of generating and selecting 
a near-native conformation of the docked small molecule increases 
if more models are generated. Among the three confidence pre-
diction metrics tested, the  pRMSD  score shows the best power of 
selecting near-native conformations ( Fig. 3G  , top 3 bars), with 
higher docking success rates than Vina ( 23 ), GOLD ( 22 ), and 
GalaxyDock ( 24 ) ( Fig. 3G  , bars in the middle; number were taken 
from respective references). Compared to the best performing 
Rosetta GALigandDock method ( 25 ). PLACER performance is 
higher in the lower accuracy regime (% of complexes with ligand 
RMSD < 2 Å, 82.4% vs. 73.6%), but is behind in the high-accuracy 
regime (RMSD < 1 Å, 41.8% vs. 51.6%). PLACER performance 
is still notable, however, because unlike the other methods, the 
network was not specifically trained on the non-native protein–
small molecule docking task. PLACER recreates both the confor-
mations of the small molecule and the protein side chains from 
scratch, while the other methods tested rely largely on the input 
protein coordinates. Improved performance can be obtained by 
combining PLACER with physics-based methods: minimizing 
the docks generated by the network using the generalized Rosetta 
force field and estimating binding free energies of the minimized 
structures gives +7.3% increase in docking success rate at <1 Å 
and no notable change at <2 Å; likely due to improved sampling. 
Astex benchmark performance showed no significant decline when 
ligands with Tanimoto similarity ≥ 0.5 to the training set were 
excluded, indicating that data leakage is not substantial 
(SI Appendix, Table S3 ).

 We further compared PLACER with AlphaFold3 and RF 
All-Atom on the PoseBusters benchmark ( 26 ). This benchmark 

chemical
structure

atom
coordinates repeat

N times

sampled conformations

1

…

A

B C

D

2 N

rms = 0.66ÅÅ
(FOLQAC)

0.29ÅÅ
(FOLNUT)

0.89ÅÅ
(FOLNON)

0.55ÅÅ (QAFWAW) 0.79ÅÅ (BUKVOU)

Fig. 2.   Modeling complex small molecules. (A) PLACER predicts the 3D structure of a small molecule from its chemical structure and randomly initialized atomic 
coordinates. Running PLACER multiple times with different random initializations of atom positions yields a diverse set of molecular conformations. (B) Ablating 
PLACER features negatively affects performance as measured by the RMSD in atom coordinates between the model and the reference X-ray structure after the 
two are optimally superimposed. (C) Quality of the local geometry in models produced by the five networks from panel B. Shown are mean absolute errors in 
bonds, bonded, planar, and chiral angles computed from the model and reference structures. Validation set of 7,116 small molecules from the CSD was used for 
panels B and C. A single conformer was generated for every validation example; the error bars represent SD over five independent validation runs. (D) Examples 
of seven macrocyclic molecules (18) for which PLACER generates the correct structure. Shown are the best RMSD models (in blue; out of 1,000 generated) overlaid 
with the experimental crystal structures (gray). CCDC database identifiers shown in parentheses.
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consists of 428 protein–ligand complexes from the PDB, and for 
PLACER, the prediction task was solely to predict the correct 
ligand binding orientation, given a known ligand binding site and 
protein backbone structure. On the 118 complexes absent from 
PLACER’s training and validation sets, PLACER achieved 84% 
success at <2 Å RMSD, better than AlphaFold3 (77%) and RF 
All-Atom (38%) (the latter two solve the harder problem of de 
novo prediction of protein structure and small molecule docking; 
﻿SI Appendix, Fig. S6 ). At the stricter <1 Å threshold, however, 
AlphaFold3 remained superior (58% vs. 51%).  

Assessment of Enzyme Active Site Design 
Accuracy and Preorganization

 A critical challenge in de novo enzyme design is to come up with 
amino acid sequences that not only encode the target backbone 
structure but also position the catalytic sidechains and the reaction 
substrate such that the key sidechain functional groups make the 
hydrogen bonding and electrostatic interactions with the transi-
tion state and each other that are essential to catalysis. As 0.5 Å 
deviations in distance and 30-degree deviations in angle can have 

large effects on hydrogen bonding energies, the level of accuracy 
in positioning required is quite high. Furthermore, the designed 
active site should be preorganized in the absence of substrate with 
the catalytic sidechains largely held in place by intraprotein inter-
actions to reduce the entropic cost of binding and ensure that all 
catalytic groups are properly positioned; such preorganization is 
a notable feature of natural enzyme active sites. The most general 
way to evaluate such preorganization is molecular dynamics sim-
ulations ( 27 ,  28 ), but as sidechain reconfiguration can occur on 
the microsecond time scale, such simulations are computationally 
expensive and cannot be applied to large numbers of designs. 
Approximate discrete methods such as the Rosetta Rotamer 
Boltzmann method ( 29 ) estimate preorganization at the individual 
sidechain level, but are limited by the rotamer approximation and 
the inability to model coupled and concerted movements of side 
chains and small molecules. We reasoned that PLACER could 
enable assessment of the accuracy and preorganization of designed 
active sites by generating ensembles of models of small molecules 
and interacting sidechain placements much more rapidly than 
molecular dynamics simulations and without the limitations of 
the Rotamer Boltzmann method.

Fig. 3.   Modeling protein–small molecule interactions with PLACER. (A) Starting with the protein backbone and the coordinates of the small molecule randomly 
initialized in the vicinity of the binding site (cyan dots), PLACER predicts protein side chain conformations (which are initially randomized around the respective 
C-alpha atoms, orange dots) and the structure and the placement of the small molecule relative to the target protein. By repeating this process multiple times, 
PLACER generates a structurally diverse set of docks. (B and C) Sampled starting positions of the small molecule for the two de novo designed small molecule 
binders. Panel C shows projections of the sampled starting points onto the three coordinate planes. Shades of gray show density of all sampled positions; orange 
contours indicate density of points which resulted in docks with ligand RMSD < 2 Å. The two densities largely overlap, suggesting that PLACER is not very sensitive 
to the initial placement of the ligand in the binding pocket. (D) Poses with the lowest pRMSD scores (blue/orange) closely match the experimental structure (gray). 
(E) Models with lower pRMSD scores are funneled toward the native conformation demonstrating the discriminative power of the predicted score. (F) Increasing 
the sample size and rescoring PLACER models by the pRMSD score (orange curve) greatly increases the chance of picking a better model compared to a random 
selection (blue curve). Scoring by pRMSD is however still not optimal (orange vs. gray dashed curve). (G) Among the three accuracy scores predicted by PLACER, 
pRMSD shows best performance (the three bars at the top). Bright and pale bars show docking success rates in the Astex non-native set for ligand RMSD < 1Å and 
2Å, respectively. The four bars in the middle show performance of the widely used docking tools Vina, GOLD, GalaxyDock, and Rosetta GALigandDock. Sampling 
docks with PLACER and minimizing and rescoring them using GALigandDock increases docking success rate by 7.3% (ligand RMSD < 1Å) over PLACER alone.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 "
U

N
IV

E
R

SI
T

Y
 O

F 
W

A
SH

IN
G

T
O

N
 L

IB
R

A
R

IE
S,

 A
R

C
S 

- 
SE

R
IA

L
S"

 o
n 

N
ov

em
be

r 
5,

 2
02

5 
fr

om
 I

P 
ad

dr
es

s 
20

5.
17

5.
11

8.
18

6.

http://www.pnas.org/lookup/doi/10.1073/pnas.2427161122#supplementary-materials


6 of 9   https://doi.org/10.1073/pnas.2427161122� pnas.org

 We applied PLACER to the RA95 series of previously designed 
retro-aldolase ( Fig. 4A  ) enzymes, and directed evolution gener-
ated improved versions of these, for which high-resolution crys-
tal structures have been determined ( 30   – 32 ). For every 
retro-aldolase intermediate shown in  Fig. 4A  , we ran PLACER 
50 times and analyzed the structural diversity of the active site 
lysine (and covalent adducts of this lysine) through the mean 
predicted RMSD ( pRMSD ) calculated over side chain atoms 
and excluding backbone N, Cα, C, O. As illustrated in  Fig. 4 B  
and C   and S5, PLACER generated ensembles are highly varied 
for the lower activity initial computational designs, indicating 
a lack of preorganization, and become increasingly well ordered 
for the more active evolved versions. This suggests that lack of 

preorganization was a major shortcoming of early enzyme design 
efforts [similar conclusions were reached using considerably 
more expensive MD simulations ( 33 )] and that PLACER pro-
vides a rapid means to assess this, and thus guide enzyme 
design efforts.        

 We further tested the use of PLACER prospectively to guide 
protein design by making a new round of designed retro-aldolases 
using DL–generated NTF2-like folds ( 21 ,  34 ) that previously 
yielded high activity de novo luciferases ( 35 ). We started from an 
active site description based on the lysine-centered catalytic tetrad 
found in the most active of the evolved retroaldolases ( 32 ) 
(SI Appendix, Fig. S9 ). This active site contains an intricate net-
work of hydrogen bonds keeping the catalytic residues in place 

PLACER ensembles for designed & evolved RA95 variants
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Fig. 4.   Selecting designs with preorganized catalytic residues increases activity. (A) Mechanism of the retro-aldol reaction with the key intermediates shown. (B) 
Five intermediate states of the RA reaction with methodol were modeled by PLACER for the RA95 series of designs to probe preorganization of the active site 
lysine and its modifications. (C) Examples of PLACER ensembles for active sites of the three previously published retro-aldolases with increasing activity show 
higher degree of preorganization in steps 1 and 2 along the reaction pathway. (D) Design model of the most active variant, cnRA-50, with the catalytic tetrad 
highlighted in blue and substrate in orange. (E) PLACER generated ensembles of lysine–methodol conjugates of catalytic steps 1 and 2 of the active site of cnRA-50. 
(F) PLACER active site preorganization ensemble metrics (pRMSD of conjugated lysine atoms, except backbone) in steps 1 and 2 enrich for selecting more active 
de novo designed retro-aldolase enzymes. (G) Retro-aldol reaction catalyzed by cnRA-50: time-course following the formation of 6-methoxy-2-naphthaldehyde 
(Left), and Michaelis–Menten plot (Right) obtained from initial velocities.D
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( Fig. 4D  ); we reasoned that PLACER might be helpful to over-
come this difficulty by assisting in identification of preorganized 
active sites. Designs were generated using RosettaMatch ( 36 ) and 
LigandMPNN ( 37 ); full details of the design strategy are provided 
in the supplemental methods. The activities of the 320 designs 
were first evaluated in an in vitro transcription translation system 
(IVTT), enabling rapid identification of promising variants with-
out the need for protein purification. The most active of these 
were expressed and purified in Escherichia coli , and their k﻿cat /K﻿M  
values determined by measuring activity as a function of substrate 
concentration. We then examined how PLACER preorganization 
correlated with activity over all of the tested designs, focusing on 
the conformational flexibility of the catalytic lysine conjugated to 
reaction intermediates in the ensembles at each step in the reaction 
pathway ( Fig. 4E  ). We found that the designs with the highest 
﻿k﻿cat /K﻿M  values were more preorganized than the low activity 
designs from the initial IVTT screen ( Fig. 4F   and SI Appendix, 
Figs. S13–S15 ). The most active design, cnRA-50, displayed one 
of the highest preorganization levels according to PLACER and 
had a k﻿cat /K﻿M  of 11,000 M−1  min−1  ( Fig. 4G  ), much higher than 
earlier computational designs prior to directed evolution, and 
comparable to recent designs made using RFdiffusion and pro-
teinMPNN ( 38 ).  

Conclusions

 PLACER provides a versatile and rapid approach for generating 
conformational ensembles of molecules both in isolation and in 
the context of a protein binding site given the sequence of the 
protein and the positions of the backbone atoms. Unlike AF3, 
RF All-Atom, and other protein structure prediction methods, 
PLACER does not predict protein backbone structure—the 
benefit is that calculations are considerably more rapid, enabling 
stochastic generation of conformational ensembles. The use of 
a consistent atom-level representation for all interactions enables 
facile extension beyond biomolecules to macrocycles and other 
complex small molecules. The ability to rapidly generate con-
formational ensembles for protein–small molecule assemblies 
should be of considerable utility for computational enzyme 
design and small molecule binder design efforts: The accuracy 
with which the intended active sites are recapitulated and the 
extent of preorganization of the key catalytic/interacting 
sidechain functional groups can be readily assessed. PLACER 
assessment of active site accuracy and preorganization consider-
ably improves discovery success rates for multistep serine hydro-
lases ( 39 ) and Zn-dependent metallohydrolases ( 40 ), and we 
describe here the design of retroaldolases with much higher 
activities than pre–DL designs for this reaction, prior to exper-
imental optimization. We anticipate that PLACER-based ensem-
ble generation will be broadly useful for modeling the structures 
of complex nonprotein molecules both in isolation and in a 
protein context, and for evaluating enzyme and protein–small 
molecule binder designs quite generally.  

Materials and Methods

Training on the PDB. Training and validation sets were compiled from structures 
deposited to the Protein Data Bank (41) before January 12, 2023. We selected 
X-ray and EM structures with resolution 2.5 Å and better and filtered out entries 
having ≥10% of unresolved atoms, as well as entries with ≥20 nonstandard res-
idues across all polypeptide chains in the asymmetric unit. These filters reduced 
the size of the set by 33% from 200,713 to 135,172. We additionally removed 
entries which share similarity to the test set [we used Astex Non-Native Set (22) 
as our primary small molecule docking benchmark set] either on the protein 

or the small molecule levels. A PDB structure was discarded if any of its protein 
chains had ≥30% sequence identity to any of the protein chains in the test set. 
Structures containing small molecules with ≥80% Tanimoto similarity to the 
small molecules in the test set were also excluded. We used Open Babel (42) 
to first compute the small molecule FP4 fingerprints and then to calculate the 
Tanimoto coefficients. The remaining 119,916 PDB structures were randomly split 
into training (112,828) and validation (7,090) sets such that none of the protein 
chains in the two sets share >30% sequence identity.

During training and validation, we do not split the PDB entries into individual 
chains or molecules but operate on the whole asymmetric units. We directly 
parse PDBx/mmCIF files keeping all molecular content; only water molecules 
are excluded. The Chemical Component Dictionary (19) is used to construct 
chemical graphs for individual residues and small molecules observed in a PDB 
entry; nodes in a chemical graph represent individual atoms (only nonhydrogen 
atoms are considered) and edges represent chemical bonds between atoms. The 
residue-level graphs are joined together into a single chemical graph for the 
whole PDB entry. Edges are added to connect subgraphs representing individual 
residues within a polymer chain (proteins, DNA, and RNA), as well as are edges 
parsed from the struct_conn data records of the PDBx/mmCIF file. Atomic coor-
dinates are parsed from the PDBx/mmCIF file and are saved on a corresponding 
node of the chemical graph.

PDB structures were cropped to at most 600 heavy atoms to fit the GPU mem-
ory. First, we split all atoms in the input structure into four classes (protein, NA, 
small molecule, and metal), then randomly choose one of these classes with ratios 
1:1:5:1, and finally sample a random heavy atom from the selected class to be 
the center of the cropped region. The crop is defined as the collection of residues 
and small molecules in the PDB structure which are closest in space to the residue 
or the small molecule the crop center belongs to. Atom coordinates in the crop 
undergo corruption. First, we collect all atoms in the 8-hop neighborhood of the 
crop center in the chemical graph and add them to the corruption set. Backbone 
atoms in polypeptide (N, CA, and C), polyribo- and polydeoxyribonucleotide 
chains (O3′, C3′, C4′, C5′, O5′, and P) which are not part of the corruption set 
are kept fixed with only a minor Gaussian noise (σ = 0.1 Å) added to the atom 
coordinates to make the network more robust to small displacements in atomic 
coordinates of the backbone atoms (43). All the remaining nonbackbone atoms 
are included in the corruption set. The chemical graph corresponding to the crop 
is then split into connected components. If a connected component has fixed 
backbone atoms, then the corrupted atoms in that component are initialized with 
the coordinates of the closest backbone atom in the graph (based on the shortest 
path in the graph). Otherwise, a random atom is picked from the component, 
Gaussian noise with σ = 1.5 Å is added to its coordinates, and all other atoms 
reachable from the selected atom are collapsed to it. Finally, Gaussian noise with 
σ = 1.5 Å is applied to all atoms in the corruption set.

For more information, see SI Appendix, section 1.1.

Training on the CSD. The PDB-derived datasets were complemented by the 
crystal structures of small molecules deposited to the Cambridge Structural 
Database (CSD v5.43; November 2021) (17). We used structures with R-factor 
7.5% and better and no disorder and excluded polymeric and organo-metallic 
entries; the number of heavy atoms per small molecule was limited to the 3 to 
80 range. Only molecules which could be successfully parsed by Open Babel were 
retained. CSD structures with multiple molecules in the asymmetric unit were 
split into individual molecules, followed by merging of identical molecules with 
the same canonical SMILES string into one entry for training and validation. Upon 
merging, we kept 3D coordinates of all the instances to account for alternative con-
formations during training. Training and validation splits were done using 75% 
Tanimoto similarity cutoff, yielding 226,684 and 7,116 examples, respectively. 
During training, molecules were sampled with frequencies inversely proportional 
to the number of similar molecules in the set at Tanimoto similarity 75%.

Astex Non-Native Benchmark. To evaluate PLACER’s performance in ligand 
docking tasks, we applied it on the Astex non-native benchmark set, consisting of 
65 target molecules, placed into their non-native protein structures, with a total of 
1,112 unique ligand–protein pairs (22). PLACER was run on each protein–ligand 
pair, generating 1,000 models. The performance of PLACER was evaluated by 
ranking the 1,000 models based on three confidence metrics (pRMSD, pLDDT, 
and pLDDT-pDE), and using RMSD of the highest confidence model as the result.D
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We further explored the impact of applying physics-based minimization on 
the PLACER-produced models. For this, we used the minimization protocol avail-
able in GALigandDock (25) on all of the produced 1,000 models. The produced 
models were ranked based on the computed dG metric, and the RMSD of the 
best model used as the final result.

For more information, see SI Appendix, section 2.

PoseBusters Benchmark. We evaluated PLACER’s docking performance against 
AlphaFold3 (12) and RF All-Atom (11) using the 428 protein–ligand complexes 
from the PoseBusters benchmark (as implemented in the 2023 preprint) (26). 
Predictions were based on the corresponding crystal structure mmCIF files, with 
target ligands initialized by randomizing their ground-truth coordinates with 
the same procedure as used during training (Training on the PDB). Known buffer 
components and crystallization additives, as listed in the AlphaFold3 study (12), 
were excluded, while relevant cofactors within 600 atoms of the ligand were 
retained with their crystallographic coordinates approximately fixed. For each 
complex, PLACER generated 100 models.

Ligand similarity to the PLACER training set was assessed using Tanimoto coef-
ficients [ECFP4 fingerprints, OpenBabel (42)]. Of the 118 PoseBusters complexes 
absent from the PLACER training and validation sets, 59 contained ligands with 
TC ≤ 0.7 forming a more challenging benchmark subset (SI Appendix, Table S5 
and Fig. S5). Further details are provided in SI Appendix, section 3.

Computational De Novo Design of Retroaldolases in NTF2 Fold. Structurally 
diverse set of 10,000 backbones in NTF2 fold was generated using RF joint 
inpainting (RFjoint2) (44). We used XML-Matcher protocol (36) to identify loca-
tions in NTF2 fold compatible with the placement of the catalytic residues forming 
retro-aldolase catalytic tetrad (32). Protein backbones with preinstalled catalytic 
residues were designed in the presence of the substrate using LigandMPNN (37). 
Self-consistency of the sequence and desired scaffold was determined using AF2 
(9) (in single sequence prediction mode, using model 4 ptm and three recycles). 
AF2 models with lDDT higher than 85 formed a pool of designs subjected to in 
silico selection strategies including or skipping PLACER-assisted selection.

For more information, see SI Appendix, section 5.

Application of PLACER for Design Selection. We used PLACER to assist in 
picking the most promising designs from the same pool of 17,810 variants relies 
on a set of geometrical and uncertainty metrics from generating an ensemble 
of 50 structures with PLACER, predicting interactions between the ligand and 
the active site residues in the context of AF2 predicted backbones. The obtained 
metrics included distances between polar atoms of the theozyme side chains 
and uncertainty (pRMSD) in polar atom positions computed over the ensemble 
of 50 models. To identify a smaller subset of PLACER metrics, we trained a sim-
ple logistic regression model to classify designs as active or inactive on a set of 
designs characterized in the preliminary experiment performed to identify the 
focus theozyme configuration.

IVTT-Based Retroaldolase Activity Testing Assay. We developed a protocol 
for medium-throughput semiquantitative retro-aldolase activity testing of the 
designs using IVTT. We obtained linear duplex DNA, encoding protein of interest, 
flanked by appropriately spaced T7 promoter and T7 terminator sequences as 

eBlocks™ gene fragments from IDT, and by mixing it directly with 2 µL compo-
nents of PurExpress IVTT system produced enough protein to screen for active 
variants. Genes of several control proteins with a range of activities previously 
determined in purified form were included with each batch of tested designs to 
assist in ranking activity of the new variants, and help to compare experiments 
run under different experimental conditions. It should be noted that in this format 
of the experiment, concentration of the soluble protein remains unknown, and 
therefore, activity level should be treated as apparent activity defined as a product 
of the amount of soluble protein and intrinsic activity of each variant. Typically, 
a batch of 90 designs and 6 controls were used to evaluate performance of a 
particular computational workflow.

Characterization of Individual Variants. To get more accurate and quantitative 
data describing catalytic activities of the designs and validate IVTT-based assay, 
we cloned, expressed in E. coli, purified by IMAC (Ni-NTA) and size-exclusion 
chromatography, and determined Michaelis–Menten parameters for 24 designs 
with the highest apparent activities. Additionally, we purified and tested under 
similar experimental conditions three previously characterized proteins possess-
ing retro-aldolase activity. This group of control proteins consists of published 
RA95.5-8F (32), RA110-4.6 (45), and RAβb-16.2 (46) retro-aldolases.

Data, Materials, and Software Availability. Code and neural network weights 
are available for download on GitHub (https://github.com/baker-laboratory/
PLACER) (47). The model files and sequences of designed retroaldolases are 
available for download at Zenodo (https://doi.org/10.5281/zenodo.14591000) 
(48). All other data are included in the manuscript and/or SI Appendix.
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