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Rapid and accurate prediction of protein
homo-oligomer symmetry using Seq2Symm

Meghana Kshirsagar 1 , Artur Meller 2,3,13, Ian R. Humphreys4,5,13,
Samuel Sledzieski 1,6, Yixi Xu1, Rahul Dodhia1, Eric Horvitz7,8, Bonnie Berger6,9,
Gregory R. Bowman 10, Juan Lavista Ferres 1, David Baker 4,5,11 &
Minkyung Baek 12

The majority of proteins must form higher-order assemblies to perform their
biological functions, yet few machine learning models can accurately and
rapidly predict the symmetry of assemblies involving multiple copies of the
same protein chain. Here, we address this gap by finetuning several classes of
protein foundation models, to predict homo-oligomer symmetry. Our best
model named Seq2Symm, which utilizes ESM2, outperforms existing
template-based and deep learning methods achieving an average AUC-PR of
0.47, 0.44 and 0.49 across homo-oligomer symmetries on three held-out test
sets compared to 0.24, 0.24 and 0.25 with template-based search. Seq2Symm
uses a single sequence as input and canpredict at the rate of ~80,000proteins/
hour. We apply this method to 5 proteomes and ~3.5million unlabeled protein
sequences, showing its promise to be used in conjunction with downstream
computationally intensive all-atom structure generation methods such as
RoseTTAFold2 and AlphaFold2-multimer. Code, datasets, model are available
at: https://github.com/microsoft/seq2symm.

Across nature, proteins often form assemblies involving multiple
subunits to perform their biological functions.Whenmultiple identical
protein subunits are held together by non-covalent interactions, the
resulting protein complex is called a homo-oligomer. Homo-oligomers
can range in size from dimers, which have two identical subunits, to
large oligomeric complexes with hundreds of subunits. Homo-
oligomerization can be essential for the proteins’ stability, folding,
and function. For instance, some enzymes require the formation of a
homo-oligomer to recognize their substrates1.

The global arrangement of the identical subunits (>=95%
sequence identity over 90% of the length of the subunits) in a homo-

oligomer defines their symmetry. This can be either point group sym-
metry, involving the placements of subunits along one ormore axes of
rotation, or a helical symmetry, which involves both rotation and
translation of the subunits along the axis of rotation2. The most com-
mon type of point group symmetry is cyclic (Cn symmetry) where the
complex consists of n subunits rotated around a central axis. For
example, this type of symmetry is often found in membrane proteins3

which require a central pore, such as the β-Barrel pore-forming toxins
(β-PFT), a large family of bacterial toxins4. Another common point
group symmetry is dihedral symmetry (Dn symmetry), in which homo-
oligomers contain both a rotational axis of symmetry and
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perpendicular axes of two-fold symmetry. Dihedral symmetry is
commonamong cytoplasmic enzymesbecause it facilitates a variety of
protein-protein interfaces, enabling allosteric control2. In addition,
homo-oligomers may adopt a cubic symmetry that combines 3-fold
rotational axes with other non-perpendicular rotational axes such as
icosahedral symmetry seen in viral capsules.

Despite the importance of homo-oligomerization for protein
function, predicting the quaternary state and symmetry group of a
protein given a single chain remains challenging. Currently, annota-
tions of oligomeric states in the Protein Data Bank (PDB) are based on
predictions from the PISA algorithm5,6, supplemented by the assign-
ments made by the researchers who deposit the structure. Although
PISA is recognized for its high accuracy6, this method relies upon an
experimentally determined structure to extract assembly information
and inform the most likely oligomeric state.

Methods that predict oligomeric state without experimental data
often rely on homology template searches (such as HHSearch7) against
known assemblies or employ docking-based symmetric transforma-
tions of monomers to model complexes8. One such method,
GalaxyHomomer9, combines template-based and docking-based
approaches, and incorporates loop refinement to improve structure
prediction. Recently, as a result ofmethods for highly accurate protein
structure prediction10,11, AlphaFold has been shown to predict homo-
dimers at a proteome-scale, and in select cases higher order oligomeric
assemblies12. However, usingAlphaFold11 or RoseTTAFold10 for ab initio
oligomeric state prediction poses significant computational chal-
lenges, as it requires running inference for each potential number of
chains to score various copy number models, and is generally limited
to proteins with high-quality MSAs.

More computationally efficient methods to fold large protein
oligomers, such as Uni-Fold Symmetry13 still require the pre-specified
symmetry group as input to make predictions. MoLPC214 presents an
approach that can algorithmically determine symmetry by building a
multi-chain structure iteratively using a Monte Carlo Tree Search
(MCTS) approach, starting from a single chain and scoring all the
possible intermittent combinations of chains using AlphaFold-
Multimer. This is, however, an inefficient approach as it requires run-
ning the five different AlphaFold-Multimer models for every assembly
attempted in the MCTS. Protein embeddings from ESM215 have been
used to predict the most likely quaternary state of a protein chain
(QUEEN16); however, in this approach, the model only predicts the
multiplicity of the oligomer thereby giving no clue as to global sym-
metry of the protein.

We set out to fine-tune protein foundation models (pFMs) to
predict homo-oligomer symmetry. We define as pre-trained any
approach that involves a protein model being used as a feature
extractor feeding a classifier model (for instance, a logistic regression
or neural network classifier) which is then trained on homo-oligomer
symmetry prediction. We use fine-tuning to refer to any approach that
involvesmodifying any parameters from the proteinmodel by training
them explicitly for oligomer symmetry prediction. Our approach,
outlined in Fig. 1, can be applied to diverse protein families and its
rapid runtime enables proteome-scale annotations.

Here, we show results from fine-tuning ESM2, ESM-MSA and
RoseTTAFold2, as well as a baseline using template-matching for
homo-oligomer symmetry prediction.We evaluate various approaches
quantitatively on three different test sets, thereby providing broad
support for the performance obtained by our approach. We experi-
ment with both sequence and MSA as input representations to the
methods we explore. We further provide rigorous evaluation of our
best-performing model, which we call Seq2Symm, under different
application scenarios involving varying levels of homology thereby
giving insights into the capabilities and limitations of our approach.
We illustrate the speed of Seq2Symm with large-scale evaluation on
multiple proteomes and find that the results align qualitatively, with

prior work. Finally, we show how Seq2Symm can be used with
AlphaFold2-multimer to generate homo-oligomer structures and show
the significant computational gains as compared to a brute-force
search-based approach using AF2-multimer. In addition to these
results, our analysis of the homo-oligomer symmetry data from PDB,
provides valuable information for future work.

Results
We evaluate the various methods on our PDB-derived benchmarking
dataset consisting of 129,013 structures which are split into training,
validation and test splits in a sequence-aware manner (30% sequence
identity over 80% coverage is used to define sequence-similar pro-
teins), to restrict the similarity between the training and test splits. We
call this data split a ‘conventional split’, since the same criterion has
been used in prior work to define data splits in deep learning models
such as AlphaFold11, DeepMSA17, DeepTMHMM18. A pairwise sequence
identity of 30% is at the threshold of the “twilight zone” of homology,
as prior work19 found that among protein pairs with less than 25%
sequence identity, fewer than 10% were homologous. We use three
additional datasets for evaluation: a UniFold test set13, a dataset cura-
ted from the latest PDB homo-oligomers (“PDB 2024”), and a de novo
set of proteins (see Methods and the Supplementary material for
details).

An ESM2 fine-tuned model outperforms other approaches
We evaluated pre-trained and fine-tuned variants of ESM-MSA20 (Evo-
lutionary ScaleModeling usingMultiple SequenceAlignments), ESM215

(Evolutionary Scale Modeling 2) and RoseTTAFold221 (RF2) against a
template-based method, HHSearch7, using metrics suited for class-
imbalanced datasets and multi-label classification: Area Under
Precision-Recall Curve (AUC-PR), confusion matrices, F1-scores, and
Precision-Recall curve plots (detailed results in Supplementary
Tables 1–3 and Supplementary figs. 1–4). We experiment with fine-
tuning a varying number of layers in the pFM and try different feed-
forward neural network architectures for the classifier head block
shown in Fig. 1 (see Methods).

We find that an ESM2fine-tunedmodel (whichwe call Seq2Symm)
with a modified version of the language modeling head used in
RoBERTa, trainedwithmargin loss (seeMethods) performs the best on
all datasets (Fig. 2a,b), with further improvements seen with an
expanded training dataset (i.e. with distillation). The next best macro
averagedAUC-PR is obtainedby the ESM2pre-trainedmodelwith0.47,
0.40, 0.38 and 0.24 on the validation, test, UniFold and PDB-2024
datasets, respectively, while ESM-MSA fine-tuned and RF2 fine-tuned
models perform worse (test AUC-PR of 0.36 and 0.34 respectively). In
comparison, the template-based HHSearch method achieved a far
lower performance thanmost of the pFMswith a AUC-PR of 0.34, 0.24,
0.24 and 0.25 on the validation, test, UniFold and PDB-2024 datasets,
respectively.

Next, we interrogated the strengths and weaknesses of Seq2-
Symm, by looking at class-wise AUC-PR (Fig. 2d and class distribution
of the test set shown in Fig. 2g). We find that it accurately identifies
proteins across most cyclic symmetries (except C7–C9), across D
symmetries such as D2, D3, D5, as well as helical and icosahedral
symmetries. Looking at the confusionmatrices, Seq2Symmhas a lower
tendency to overpredict themajority C1 and C2 class (Fig. 2c; bottom),
unlikemany othermodels (Supplementary fig. 4) and compared to the
template-based method HHSearch (Fig. 2c; top), it is more likely to
correctly predict dihedral, higher order cyclical, helical, and icosahe-
dral symmetry groups. The only symmetries it performs worse on are
‘O’ (octahedral) and ‘T’ (tetrahedral). Some confusion categories are
more easily rationalized: C4 confused as D2, C10–C17 are confused as
helical, C7–C9are confused asD6–D12 (likely due to the co-occurrence
of some higher-order C and D symmetry groups, Supplementary
Table 4), while some others are unclear: O confused as C6.
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Understanding the strength of sequence-based modeling
We observed that ESM2-based models outperform RF2 and ESM-MSA
(Fig. 2a) and analyze this difference further in Fig. 2e, where we average
the performance of the various sequence-based models and compare it
with the average of the various MSA-based models. We find that the
sequence-based models (blue bars) outperform the MSA-based models
(gray bars) on all oligomer symmetries except ‘O’ and ‘I’. To assess the
effectiveness of sequence-based models, we construct another training
regime that features no homology between examples in the train and
validation/test splits (e-value <0.1; see Supplementary Table 5), that we
call the ‘no-homology’ split, which is relevant in applications where de
novo proteins are encountered, such as in protein design. Interestingly,
we find that while ESM2-basedmodels still marginally outperform other
methods on this split, the difference between methods and the overall
performance significantly decreases (Supplementary figs. 5–6). This,
along with model performance on de novo designed proteins (Supple-
mentary fig. 7), indicates that pLM approaches struggle on proteins
without homology to the training dataset.

This promptedus to examine the relationshipbetweenoligomeric
symmetry in our dataset and the broad notion of protein similarity, in
particular, how the latter impacts the former. Investigating through
the lens of protein family annotations, we find that proteins from the
same Pfam family can have different homo-oligomer symmetry. For
instance, the protein family PF00072 has proteins spanning the fol-
lowing symmetries: C6, C2, D2, T, H, D3. This is true for 3621 PFam
protein families, representing 50% of all PFam families in our full
dataset, where two proteins from the same family have a different
homo-oligomer symmetry (Supplementary fig. 8). In the remaining
50% of PFam families, all proteins have the same symmetry. These
constitute ~14% of the structures in our dataset and are largely (57%)
monomers (C1).

Stratifying Seq2Symm’s performance at the protein family level,
based on protein families that were ‘seen’ or ‘unseen’ during training,
we observe that out of 589 unseen protein families, Seq2Symm has
100% recall and 100% precision, respectively, on 276 and 259 unseen
families (Supplementary fig. 9c,d). This illustrates some ability to

Fig. 1 | Protein foundation models can be fine-tuned to predict a protein’s
homo-oligomer symmetry. a Schematic showing our modeling setup for multi-
label prediction of homo-oligomer symmetry, illustrated for the bovine seminal
ribonuclease protein (PDB id:11bg). The input canbe either theprotein amino-acid
sequence and/or the multiple sequence alignment (MSA). The ‘protein foundation
model’ (pFM) can be ESM-MSA, ESM2, or RoseTTAFold2 (RF2).We experimentwith

various architectures for the ‘classifier head’ (seeMethods). We vary the number of
layers we fine-tune in the pFM, from a fully frozen model with a single trainable
prediction head (i.e., “pre-trained only”) to a model with all weights freely tunable
(i.e., “fine-tuned”).bThehomo-oligomer symmetryprediction can thenbesupplied
to a structure prediction algorithm (e.g., AlphaFold, RoseTTAFold2, or ESMFold) to
guide the generation of an atomic-resolution homo-oligomer structure.
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generalize to less homologous proteins (see Supplementary Table 6a
for detailed results, Supplementary Table 6b for CATH-stratified
analysis).

Moving to the coarser level of MSAs (Supplementary fig. 10a,b),
wherewe analyze the diversity of predicted oligomer symmetries over
all proteins within an MSA, and a qualitative look at orthologous pro-
teins picked from some of these MSAs (Supplementary fig. 11), we
notice that similar proteins can adopt different oligomeric symmetries
in different organisms. These diverse oligomeric symmetries may
contribute significant noise in MSA-based methods that rely on co-

evolution based representations which can group more distant
proteins.

Finally, to get a fair assessment of template-based methods, we
design a setting to simulate the “typical” manner of applying
HHSearch-like methods that are not “trained”. Using a sequence
identity threshold of 95% at a coverage of 90%, we create a data-split
where the test set does not have identical or near-identical structures
to the training set. We evaluate both HHSearch and Seq2Symm (a
model trained on this “95% seq-id” training split) on this test set. We
find that HHSearch has a macro-averaged test AUC-PR of 0.542 with
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Seq2Symm at 0.643 (detailed results are in Supplementary fig. 12 and
the accompanying text). It is worth noting that this setting represents
the opposite extreme of the ‘no-homology’ split.

Fine-tuning improves performance on minority classes
Given that fine-tuned models outperform pre-trained models on our
test dataset (Fig. 2a), we investigated which homo-oligomer classes
explain thedifference in performance (Fig. 3a).Wefind thatfine-tuning
improves performance on higher-order oligomer symmetries, which
are also rarer in the dataset, except in the cases of class C5, where the
pre-trainedmodels substantially outperform the fine-tunedmodel. For
themost frequent symmetries inour dataset, such asC1, C2, C3, D2, we

find that pre-trained models are comparable, suggesting that the
effects of fine-tuning aremost significant for minority data classes.We
also note that the benchmarking test split which contains a greater
percentage of higher-order oligomer symmetries demonstrates the
highest gains from fine-tuning as compared to the Unifold test split,
wheremany of these rarer symmetries aremissing (see Supplementary
Table 7). These trends are representation-agnostic, as we see a similar
behavior with both the MSA-based (ESM-MSA) and the sequence-
based (ESM2) models.

To further investigate the benefits of model fine-tuning, we
compare the quaternary state predictions of Seq2Symm (our best
ESM2 fine-tunedmodel) with those of a prior approach, QUEEN, which

Fig. 2 | Protein foundation models predict homo-oligomer symmetry more
accurately than current template-based methods. a Performance, measured
using area under the precision-recall curve (AUC-PR), for the various methods on
the held-out test split of our dataset. The AUC-PR shown is themacro-average over
class-wise AUC-PR, with class-weighted AUC-PR results as well as validation set
results in Supplementary fig. 1. b Performance of representative models on two
other completely unseen datasets, the “UniFold test set” from prior work (see
Methods for dataset details, Supplementary Table 7) and “PDB 2024” involving
homo-oligomers released by PDB in 2024 (see Supplementary Table 13 for details).
The AUC-PR is a macro-average over class-wise AUC-PR for the classes in this
dataset. (c) Confusion matrix of one of the baselines: HHSearch and Seq2Symm (a
fine tuned ESM2-based model), showing the symmetries where there is confusion.
This matrix is shown for only proteins with a single label (i.e. multi-label examples
are excluded). d Test AUC-PR for each homo-oligomer symmetry shown for the

best model, an ESM2-based fine tuned model. e Class-wise AUC-PR on the test set,
averaged over sequence-based models (orange bars) and MSA-basedmodels (blue
bars) in the bar chart, with individual model performances in each category shown
by the points. We find that the models using a sequence-only representation (tri-
angle points, n = 3) achieve a higher AUC-PR for nearly every symmetry class, as
compared to the MSA representation-based models (circular points, n = 3). The
biggest gains are seen on higher-order symmetries such as C4, C5, C7–C9, D5.
f Inference and training time taken by each protein foundation model, shown per
input example. The rightmost plot compares the time taken for full structure
prediction using a brute-force search involving AF2 multimer vs. an approach that
uses Seq2Symm to obtain the homo-oligomer symmetry first followed by structure
generation using AF2. Total time is shown in seconds averaged over 10 proteins
with C5 symmetry. g Distribution of homo-oligomer symmetries in our test set.

Fig. 3 | Fine-tuning protein foundation models improves homo-oligomer
symmetry prediction and quaternary state prediction. a Fine-tuning improves
model performance across nearly every symmetry group,with themost improvements

over pre-trained performance seen in rarer classes. b Seq2Symm (ESM2 fine-tuned)
outperforms QUEEN, a pre-trained model from prior work on quaternary state pre-
diction c The class-wise AUC-PR of Seq2Symm on the filtered test set.
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uses a pre-trained ESM2model. Specifically, QUEEN uses ESM2 feature
embeddings and a supervised head with a single layer (equivalent to
logistic regression) to predict one of several quaternary state classes in
a multi-class classification setting (see Supplementary Table 8–9, and
Supplementary fig. 13 for detailed results). We created a filtered ver-
sion of our test dataset for comparison purposes by removing proteins
that are homologous to any proteins in the QUEEN training set (30%
identity, 80% coverage, 1e-3 e-value). This results in a 66% reduction in
test structures (from 64,723 to 21,441). Since QUEEN only predicts
quaternary state, we convert our test data labels from homo-oligomer
symmetries to quaternary states (ex: ‘C1’ is mapped to 1) producing a
many-to-many mapping (‘D6’ and ‘C12’ mapped to 12; ‘C14’ and ‘D7’
mapped to 14; ‘O’ and ‘I’ mapped to 24). This is difficult for some
symmetries (‘H’ can be any of 5,6,7…10,12,13-18,24 and ‘T’ canbe either
12 or 24) and as a result, some structures (848), were discarded due to
the lack of a unique label match. Mapping Seq2Symm’s output to a
single unique quaternary state, for comparison to QUEEN, is compli-
catedby the fact thatwecoalesce somehigher-order symmetries into a
single class (Fig. 3c). Nonetheless, Seq2Symm shows superior perfor-
mance to QUEEN’s pre-trained ESM2 model on all quaternary states
except 24. This suggests that fine-tuning protein languagemodels for a
specific task, rather than simply using their embeddings as inputs to a
trainable classifier, can improve performance.

Rapid predictions of homo-oligomer symmetry across
proteomes
Given the rapid inference time of Seq2Symm, we apply it to five pro-
teomes (Pyrococcus furiosus, Escherichia coli, Saccharomyces cerevi-
siae, Homo sapiens, and Exaiptasia pallida) and to a large set of ~3.5
million unlabeled sequences from UniRef50 and metagenomic sour-
ces, spanning diverse life forms (see Supplementary Table 10 for
details). We show the distribution of various homo-oligomer symme-
tries, shown as a percentage of the proteome, among the five pro-
teomes in Fig. 4a. We find that the distribution of homo-dimers in our
predictions for the four proteomes, 45%, 42%, 35%, 35% in P. furiosus, E.
coli, S. cerevisiae, H. sapiens respectively, alignswith the findings from12

(which reported 43%, 44%, 21%, and 21% of the four proteomes

respectively). Across the five proteomes, the prevalence of higher-
order symmetries is similar among simpler organisms (P. furiosus and
E. coli) and among the complex organisms (S. cerevisiae, H. sapiens, E.
pallida), except in the case of proteins with Helical (‘H’), Octahedral
(‘O’) and Icosahedral (‘I’) symmetries. In Supplementary fig. 14, we see
the prevalenceofmultiple homo-oligomeric symmetries per protein in
the five proteomes. ~20% of the proteins from P. furiosus and E. coli
have more than one symmetry, while this statistic is ~13% for S. cere-
visiae and H. sapiens.

To analyze Seq2Symm’s homo-oligomer symmetry predictions
over the ~3.5 million unlabeled proteins, we assign each protein to a
superkingdom / kingdom using annotations from UniprotKB and the
Taxonomy database. Bacterial proteins constitute 53% of the proteins in
this set and the rest come fromother organisms (see the ‘Overall’bar). In
Fig. 5, we show the percentage of proteins in each symmetry class from
the various life-forms. We find a significantly higher representation of
simpler organisms, mainly bacteria, in the lower-order symmetries C1,
C2, C3, D2, D3, with exceptions seen for ‘C6’, ‘H’, ‘O’, ‘T’. Reassuringly,
viral proteins are overrepresented among ‘I’ (icosahedral) homo-
oligomers. Higher-order C symmetries (‘C4’,‘C5’, ‘C7–C9’) see sig-
nificantly higher representation, and D symmetries (‘D4’, ‘D5’, ‘D6–D12’)
are, to some extent more prominent, in higher-order organisms.

To demonstrate the utility of Seq2Symm in generating structures
for higher-order oligomeric symmetries, we use Seq2Symm’s highest
confidence predictions as chain copy number inputs to AlphaFold2
Multimer22 or ColabFold23 and generate structures which are depicted
in Fig. 4b. By using Seq2Symm, it is possible to bypass an exhaustive
search of different homo-oligomer quaternary states as is historically
done12 and instead predict a single homo-oligomer structure based on
the output from Seq2Symm (see Supplementary material for details).
We compare the computational efficiency of Seq2Symm to a brute-
force search using AlphaFold2-multimer for a single protein in Fig. 2f
by averaging over ten different C5 homomers (N = 5) with an average
chain length of 162. The run-time of MoLPC2 will be comparable to
that of AF2 multimer N = 1 to 7, where several multiplicities are
explored before picking the best structure. These are run-times on an
Nvidia A100 gpu with 80gb gpu memory. Further, a one-sided paired

P33348 
(89.1, 0.867)

P0ADR2 
(92.2, 0.919)

P45581
(95.2, 0.886)

Fig. 4 | Seq2Symm’s rapid predictions enable proteome-wide annotation of
homo-oligomer symmetry. a Proteome-wide distribution of predicted homo-
oligomer symmetries in five different organisms depicted as the percentage of all
proteins in the proteome reveals a higher percentage of D2 complexes in P. furiosus
(an archaea) and E.coli and a higher percentage of complexes with octahedral
symmetry in H. sapiens and E. pallida (a sea anemone species). b Homo-oligomer

structures generated using AlphaFold2 based on some of Seq2Symm’s homo-
oligomer symmetry predictions with (pLDDT, iPTM) scores shown in brackets:
Q12036 (S. cerevisiae) with ‘C3’, P33348 (E. coli) with ‘C6’, P0ADR2 (E. coli) with ‘C3’,
P45581 (E. coli) with ‘C3’. High structure quality metrics suggest that Seq2Symm’s
predictions can aid in generating accurate structures for homo-oligomers.
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t-test that compared predicted confidence scores by AlphaFold-
multimer using Seq2Symm’s predictions to generate the structure
vs. the useof a randomprediction (N = 2 to 6) to generate the structure
found that the structures produced by Seq2Symm’s symmetry scored
significantly higher in all comparisons (pTM comparison with p value:
6e-4, pLDDT comparison with p-value: 1e-3, piTM comparison with p
value of 1e-2).

Discussion
We describe a rapid deep learning method for accurate prediction of
homo-oligomer symmetry. Our approach is computationally efficient
and, unlike template-based approaches, does not rely on the avail-
ability of symmetry annotations for homo-oligomers on homologous
structures.Weexplore various configurations involving different pFMs
and find that the sequence-based ESM2 model upon fine-tuning
(Seq2Symm) outperforms template-based homology searches, as well
as approaches that finetune or use ESM-MSA or RoseTTAFold2 as pre-
trained feature extractors.

Seq2Symm outperforms previous methods and pre-trained
approaches by an average of approximately 19% on higher-order oli-
gomer symmetries, which are less common in our dataset. Its perfor-
mance on rare classes, such as C6, C10–C17, and D5, is notable, with
AUC-PRs of 0.71, 0.78, and 0.49 on the test dataset, respectively. This
suggests that Seq2Symm has likely learned characteristics of these
more complex oligomeric symmetry proteins. Our training setup,
which involves 1) grouping similar and very rare higher order sym-
metries into broader classes (e.g., C10–C17 and D6–D12), 2) over-
sampling the minority classes, and 3) undersampling the majority
classes, leads to a reasonable performance on C3, C4, C5, C6, D2, D3,
D5, H, and I.We also include ahierarchical loss term for ‘coarse classes’,
grouping all higher-order C and D symmetries into single CX and DX
classes, respectively. These strategies have improved the Seq2Symm’s
performance from 0.50 to 0.52 on the validation set and the ESM-MSA
fine-tuned model’s performance from 0.27 to 0.45 on the same set.
Further improvement is achieved through distillation (see Methods),
boosting performance from 0.52 to 0.58 on the validation set.

Wenote that ourmodel’s successful performance is guaranteed in
the setting established by our default training regime that defines
train/test splits based on a 30% sequence identity cut-off. The perfor-
mance is expected to be lower in applications involving lesser
sequence similarity, as is the case with de novo proteins (as we show in
Supplementary fig. 7) or sequences from organisms that might not
have related proteins in the PDB (shown by the results in Supple-
mentary figs. 5, 6 on the no-homology data split).

We find that several proteins that have identical sequences
and are part of the same MSA, have different labels. For example,
the same bovine seminal ribonuclease is assigned different sym-
metry labels across similar PDB entries (e.g., C2 for 11ba, ‘C2, D2’
for 11bg). This diversity in labels acts as noise for machine learn-
ing models and presents a significant challenge. Prior work has
suggested that there are discrepancies in oligomer-symmetry
annotations, where up to ~10% of biological assembly labels in the
PDB are potentially incorrect24. Our analysis of the errors made by
Seq2Symm reveals that incorrect predictions are often made on
proteins that belong to clusters with heterogeneous oligomer
symmetries. For instance, in Supplementary fig. 15a which shows
the model’s predictions for one such heterogeneous cluster, sev-
eral ‘H’ symmetry class examples are predicted to be ‘C1’ or ‘CX’
(some higher order C symmetry) possibly because the cluster
contains many structures with ‘C1’ and ‘C6’ labels.

We further report Seq2Symm’s performance stratified by main
protein structural classes (alpha, beta etc.) and transmembrane pro-
teins in Supplementary Table 11a,b and Supplementary Table 12
respectively. Overall, we find that the models do better more often on
structures with mainly-beta folds than on other structural classes.

One key limitation of this work is the high error rate in the con-
fusion region for each class (i.e. in the region with predicted prob-
ability of 0.5--0.7) as shown in Supplementary fig. 16. Several avenues
exist for improving the performanceofmodels in this study. Currently,
all errors are assigned the same penalty during training, but adjusting
loss based on class relationships could offer a more nuanced
approach, for instance, a misprediction fromC3 to C4 being penalized

Fig. 5 | Large-scale predictions reveal patterns across biological kingdoms.
Homo-oligomer symmetrypredictions for ~3.5million unlabeledprotein sequences
across several biological kingdoms reveal differences in symmetry propensities
(e.g., icosahedral symmetry is overrepresented in viruses). For each predicted

symmetry, we show the proportion of proteins with that predicted label from each
animal kingdom. The leftmost column shows the prevalence of the different
kingdoms in the dataset.
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less than one to C17 or D10. This approach, facilitated by a matrix of
size = (# labels) x (# labels), could allow for expressing and optimizing
misprediction penalties in a context-aware manner. Our models con-
sider sequence and MSAs as input representations; however, we can
also incorporate the structure of the single chain as input (the true
structure from PDB where available or the predicted structure other-
wise). This is straightforward formodels such as RoseTTAFold2, which
aredesigned to input 3D representations. Onepossibility to extend the
applicability of sequence-based models like ESM2, is to use embed-
dings of 3D structures from structure predictionmodels, as additional
inputs. Another possibility is to fine-tune these models to predict
coarse-grained symmetry directly, rather than framing it as a multi-
label classification problem.

Lastly, our work predicts homo-oligomer symmetry for a protein,
which does not always explicitly encode the quaternary state of the
protein (number of subunits), especially in the case of helical (‘H’) and
icosahedral (‘I’) symmetries. Predicting the symmetry type and qua-
ternary state simultaneouslywith a singlemodel (e.g., ‘H’with 6 chains,
‘I’ with 180 chains) could improve its utility, possibly without com-
promising performance.

Nonetheless, Seq2Symm, in its current form, accelerates the
modeling of homo-oligomer structural models and the annota-
tion of symmetry groups at the proteome scale. By integrating the
output from Seq2Symm with protein structure prediction algo-
rithms, it becomes possible to generate physically realistic 3D
structural models of complicated homo-oligomers (Figs. 2c, 4c).
Furthermore, Seq2Symm’s rapid runtime facilitates the compar-
ison of symmetry group distributions across different species and
kingdoms. Thus, Seq2Symm has the potential to become a valu-
able tool for both proteomic-scale protein structure prediction
and comparative analysis.

Methods
Datasets
We derive a dataset of 298,771 homo oligomeric labels (that are at
the chain-level, such as 11ba_A, 11ba_B) over 129,013 structures
from the PDB. For each structure, the global symmetry annota-
tions assigned to all the deposited biological assemblies are con-
sidered while defining the homo-oligomer symmetry of the
structure. We use all annotations in a multi-label prediction setting
and try different approaches to incorporate the multiple labels of a
single structure such as using soft labels for all symmetry anno-
tations other than the one from ‘biological assembly 1’, lower
misclassification penalty for annotations from later biological
assemblies. We find that treating all labels equally results in a
model with the best performance on validation data.

The symmetry annotations in the PDB are assigned by the depos-
iting authors and/or computed by the PISA algorithm6, which computes
various statistics using the deposited atomic structures obtained from
X-ray crystallography experiments. PISA uses a scoring function that
combines several criteria such as interface contact area, number of
interfacial buried residues, salt bridges, disulfide bonds etc25. to distin-
guish the biologically relevant interfaces that define an oligomeric
complex from the irrelevant lattice contacts in protein crystals. While
there are several other newer tools in the field26,27, PISA is still considered
the gold-standard for estimating the quaternary state27.

There are 45 different homo-oligomer symmetry labels in our
dataset, the most frequent being the ‘monomeric’ (C1) and the ‘cyclic
dimeric’ (C2) symmetries while higher order symmetry labels are less
well represented (Supplementary Table 4). Since certain structures
have multiple assemblies, these can have multiple homomer symme-
tries in our dataset. For example, 6nal28 has ‘C1’ and ‘C2’ labels. There
are 17,758 such structures (~6% of the dataset), with some structures
having as many as 4 labels and a total of 131 different label combina-
tions (Supplementary Table 4).

Data splits
To ensure that the test data does not contain homologs of proteins
seen during training, we create the train/validation/test splits based on
sequence similarity. We use MMSeqs229 with a threshold of >30%
sequence identity and >80% sequence coverage to cluster the struc-
tures, which results in a total of 19,200 clusters. Each cluster is then
assigned to one of the train, validation or test splits. This is a more
relaxed criterion for clustering proteins as compared to the >80%
coverage and >50% sequence identity cut-offs used in the ESM
models15,30, thereby resulting in data splits, where the similarity across
splits is much lower. The multi-domain structure of proteins is most
likely preserved when using a coverage of >80%.

We select 70% of the clusters to be the training data (13,433
clusters), 10% for the validation split (1860 clusters) and 20% for the
test split (3907 clusters). In terms of protein structures, this is
equivalent to 205,548 training, 28,509 validation and 64,723 test
structures. In MSAs this equates to 49,584 training, 7304 validation
and 15,710 test MSAs (one MSA made per unique protein sequence,
which results in fewerMSAs due to homologous proteins). Allmachine
learning methods were trained using the same data splits. We discuss
the no-homology split in the Supplementary material.

Evaluation
We use the training split for training all models and the validation split
for hyper-parameter and model selection. The test split and other
evaluation sets were unseen until the final models were selected and
were then used to evaluate final performance.

UniFold test set
In addition to our curated dataset, we use another completely unseen
set of protein structures for the final evaluation of themodels, curated
from the test set of theUniFold structurepredictionmodel13, whichhas
163 structures. After filtering for hetero-oligomer labels we get
96 structures, of which, we were able to construct MSAs for 94 struc-
tures using the HHblits algorithm31 with an e-value cut-off 1e-3
(searching over the following databases: protein sequences from the
UniRef30_2023_0232 version and BFD33) and filtered for quality using
hhfilter with 90% identity and 75% coverage. We remove proteins that
were sequence-similar to our homo-oligomer dataset (30% identity,
80% coverage, 1e-3 e-value); this gives us 83 structures with 85 labels
(Supplementary Table 7). All methods are evaluated on these
83 structures as we have both sequence and MSA for these.

PDB 2024 test set
We curate 152 homo-oligomer structures from the PDB 2024 release
(see Supplementary Table 13 for details and Supplementary Table 14
for the dataset).

De novo test set
To expand the scope of inference and test the transferability of
methods to examples, which have highly divergent amino acid
sequences from those in the training data, we curated a small test-set
of de novo-designed proteins. Additionally, in protein design, an in
silico method to screen for oligomeric symmetry prediction would
assist in oligomeric design. We collect experimentally resolved sym-
metric oligomers generated using hallucination34 andRFdiffusion35 and
sequences fit with ProteinMPNN36. Symmetry groups of designs were
validated using one or more of the following methods: size-exclusion
chromatography (SEC-MALS), negative stain electron microscopy
(nsEM), cryo-EM, orX-ray crystallography (See Supplementary Table 15
for the dataset).

Class imbalance
Our dataset of protein homomer symmetries is heavily class imbal-
anced due to the high prevalence of certain symmetries such as C1
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(monomers) and C2 (cyclic dimers) (Supplementary Table 4). Given
the dearth of labels on several higher order symmetry categories, we
either prune very rare classes ormerge the rarer categories into larger
groups. The following classes are merged: C7–C9, C10–C17,
and D6–D12.

While the merging of the rarer classes addresses this to an extent,
further techniques are needed to adjust for class imbalance during
training. We use under-sampling of the majority class, where we under-
sample the majority classes C1 and C2 to 70% of their original sizes,
followed by oversampling of the minority classes. We over-sample the
“extrememinority” classes with fewer than 10,000 protein structures to
5 times their original size (for instance C5 with ~4000 training examples
is upsampled to be ~20,000 examples) and the “moderate minority”
classes which have more than 10,000 examples to twice their original
size. For example, C3 with ~7000 training examples is upsampled to
~14,000 examples. This sampling is done as a pre-processing step prior
to training, and is only done on the training split of the data and all
models were trained using the same sampled dataset.

Pre-trained models as feature encoders
The pre-trainedmodels: ESM-MSA, ESM2, and RoseTTAFold2 are used
as feature encoders, whereby input proteins are embedded using the
hidden layer representations from the neural network models.

The ESM-MSA Transformer uses only the multiple sequence
alignment (MSA) of the given protein as input and produces 768-
dimensional embeddings for each input residue, which we aggregate
by averaging into a single 768-dimensional embedding. To prevent
out-of-memory errors during inference, we crop input MSAs by trun-
cating the N-terminal portion of the sequence at 1024 residues (~1% of
the structures in our dataset have protein sequences longer than
1024). Further, we select nomore than 128 protein sequences perMSA
using a greedy selection algorithm based on pairwise Hamming-
distances between the protein sequences from the input MSA, as
prescribed in the original work.

We obtain 256-dimensional embeddings from RoseTTAFold-2
(RF2), by excluding the 3D track of the model and using as inputs: the
MSA of the given protein (1D track), a default structure template (2D
track), and averaging the embeddings over the residues of the input
protein. The input MSA is cropped to a length of 1024 residues for
computational efficiency, by taking a random region of the MSA of
length 1024.

The ESM2model operates on single protein amino acid sequences
as input and the embeddings produced by this model have a dimen-
sionality of 1,280. We specifically use the esm2_t33_650M_UR50D
version of themodel consisting of 33 layers and 650Mparameters that
was trained on the UniRef50 database. Analogous to ESM-MSA, we
truncate protein sequences longer than 1024 amino acids, by deleting
the N-terminal.

Given the embeddings obtained from these pre-trainedmodels as
the ‘features’ for an input protein, we train supervised models for
predicting the protein’s homomer symmetry using both linear (logistic
regression) and non-linear model architectures.

Fine Tuning protein language models
In addition to using the protein languagemodels as pre-trained feature
extractors, we also fine-tune the weights from the original models to
adapt to the task of homo-oligomer symmetry prediction. While fine-
tuning thesemodels, we do not use the loss functions (such asmasked
amino-acid prediction or pLDDT, etc.) that were used to train the
original models and instead optimize the model for predicting the
homomer symmetry. Towards this, we experiment with the following
supervised neural network architectures and loss functions.

The number of layers to fine-tune was a hyper-parameter that we
picked based on validation set performance. We tried to fine-tune 1, 2,
4, 8 layers from all protein foundation models, and the following

additional options for the number of layers from ESM-MSA and ESM2:
12 and ‘all’ layers, with gpumemory and compute-time setting the limit
on how many layers were possible to fine-tune from each model. We
found that there were no gains in performance beyond fine-tuning 2
layers of the model for all three models: ESM2, ESM-MSA and RF2.

Architecture of the supervised head
Multilayer perceptron. This is a simple one- or two-layer feedforward
neural network with linear or ReLU activation. We do not incorporate
layer normalization or drop-out here as we did not see any changes to
the performance on the validation set.

RobertaLMHead. The architecture of this module is an extension of
the masked language modeling prediction head from ESM. This
module begins with a linear transformation, followed by the applica-
tion of a GELU (Gaussian Error Linear Unit)37 activation function,
introducing non-linearity. A dropout layer, with a configurable rate, is
applied post-activation to enhancemodel robustness. Subsequently, a
custom layer normalization is applied (ESM1bLayerNorm) [esm/esm/
modules.py at main·facebookresearch/esm·GitHub]. Next, we average
over the protein residues, creating a summary representation. Finally,
the summary representation is linearly mapped to the output dimen-
sion (number of classes) using a dense layer.

Multitask RobertaLMHead. We train one supervised head per class,
where each head has a RobertaLMHead architecture. There are thus
separate parameters for each class, like in a multitask learning setting,
with only the protein language model parameters being shared
between them.

Loss functions. Since our goal is multi-label multi-class classification,
we use the binary cross entropy with logits loss function (BCE-
WithLogits). BCE with logits treats each class label independently,
where for each label, the loss is computed based on the predicted
probability and the true label and the total loss is a summation of the
independent class-level loss terms, thereby making it possible for an
example to have multiple labels.

Margin loss function. For each example, we compute a pairwise loss
inspired by contrastive learning that constructs pairs of positive and
negative labels (all oligomer-symmetries that are not the correct
symmetry are considered “negative”) and calculate the hinge-loss for
each pair as defined below. Given a protein sample x with oligomer
symmetry class vector given by y= ½0, 1�C where C is the number of
homo-oligomer symmetries, our model F predicts y0 2 RC = FðxÞ. We
then compute the sample loss as

L y0, yð Þ=
X

8 i, cð Þ, y0c≠1, y0i≠1
maxð0, � y0c � y0i

� �
+mÞ ð1Þ

wherem is the margin, here 1.0.
The loss in (1) encourages the model to rank the positive labels of

an example higher than negative labels by at least themargin. This loss
is unlike typical contrastive learning losses, where the positives and
negatives are examples, rather than different labels of the same
example.

Template-based prediction of homomer symmetry
We also implement a template matching procedure using HHSearch7.
The homomer symmetry label for a query structure is assigned based
on the homomer labels of the matched template structures, called the
“hits”. HHSearch sorts the matches by the estimated probability of the
matched template to be homologous to the query sequence. Since the
estimated probability being greater than 95% indicates that homology
is nearly certain, considering hits in this order always starts with the
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best matching homologs7. In this sorting, we find that top hits are also
roughly sorted by the hit-score and the e-value, but not by sequence
identity7.We assign all labels from the top-kmatches, which results in a
multi-label output. We vary the number of top matches ‘k’ that we
consider from the returned hits, to get a trade-off between the preci-
sion and recall for this approach. Tobe consistentwith the comparison
to themachine learningmodels, we exclude hits to proteins in the test
split while evaluating on the test data (we do this analogously while
evaluating on the validation data). The other parameters used to run
HHSearch are: maximum number of hits of 1000, e-value threshold of
0.001 (see Supplementarymaterial for details). No labels are predicted
for proteins where no hits were found. No matches are found for 744
and 1084 proteins from the validation and test sets respectively.

Distillation
Distillation, also called pseudo-labeling in semi-supervised learning,
involves training an initial model on labeled data and using it to assign
new “pseudo” labels on a very large unlabeled dataset. These “newly
labeled” examples are subsequently used to expand the training
dataset, on which a secondary model is trained, which can often gen-
eralize better. We use Seq2Symm to generate new labels on our dis-
tillation dataset which contains ~7.6 million proteins from UniRef50.
We first select proteins satisfying the cut-off of pLDDT > 0.8 and pick
one randomprotein per cluster (where clusters were protein sequence
based at 30% identity, 80%coverage, 1e-3 e-value) givingus ~2.8million
input proteins. We run inference on this set to get predicted prob-
abilities per oligomer symmetry class and select all structures that
satisfy our class-specific classifier thresholds and exclude C1 or C2
predictions, on account of their over-representation in our gold stan-
dard dataset.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Unless otherwise stated, all data supporting the results of this study
can be found in the article, supplementary, and source data files. All
data is also available at [https://github.com/microsoft/seq2symm]38

and [https://doi.org/10.5281/zenodo.14681124]39. Source Data is pro-
vided with this paper and available on GitHub38 and Zenodo39. Source
data are provided with this paper.

Code availability
Code to train themodel as well as a jupyter-notebook, colab notebook
and a python script illustrating how to obtain large-scale predictions
are made available in the repository at [https://github.com/microsoft/
seq2symm] on GitHub38 and [https://doi.org/10.5281/zenodo.
14681124] on Zenodo39.
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