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Enzymes are powerful catalysts that dramatically accelerate 
reaction rates in mild aqueous conditions. The ability to 
construct enzymes catalyzing arbitrary chemical reactions 
would have enormous utility across a wide range of 
applications, and hence, enzyme design has been a long-
standing goal of computational protein design (1). De novo 
enzyme design has generally started from a specification of 
arrangements of catalytic residues around the reaction 
transition state (a theozyme), and sought to identify 
placements of this active site in pre-existing scaffolds (2–7). 
Using fixed backbones restricts how accurately the catalytic 
geometry can be realized and has likely limited the activities 
of many designed enzymes to date prior to optimization by 
laboratory evolution, as recent studies of designed Kemp 
eliminases demonstrate (8–10). A further challenge of 
enzyme design is the preorganization of the active site such 
that the catalytic functional groups are accurately positioned 
relative to the transition state. Achieving preorganization is 
especially difficult for multistep reaction mechanisms 
because the enzyme must preferentially stabilize multiple 
transition states and intermediates, and current methods to 
evaluate design preorganization in silico are limited by low 
accuracy or computational cost (7, 11–14). To enable the 
accurate design of multistep enzymes, new methods are 
needed for both the generation of proteins housing a given 
active site, and the assessment of their structural 
compatibility with each step in the reaction. 

Ester hydrolysis has served as a model reaction for 

computational enzyme design for decades (15–20), and justi-
fiably so: numerous mechanisms can be used for ester hydrol-
ysis, enabling a range of distinct design approaches to target 
this reaction, activity is easily monitored by absorbance and 
fluorescence with reporter substrates, and esterases are 
highly valuable in industrial processes, most recently for 
their application in plastic recycling (21–23). The textbook ex-
ample of enzymatic ester hydrolysis is the double-displace-
ment reaction mechanism employed by serine hydrolases, in 
which a serine nucleophile undergoes acylation to form the 
acyl-enzyme intermediate (AEI) that is subsequently hydro-
lyzed by an activated water. Despite extensive structural, mu-
tational, and computational characterization of the 
mechanism of serine hydrolases found in nature (24–35), de 
novo design efforts attempting to employ this machinery 
have been unsuccessful, and to our knowledge, no previous 
efforts have successfully constructed a serine hydrolase that 
extends beyond the fold space found in nature. 

A major challenge in designing serine hydrolases is over-
coming the stability of the AEI, the resolution of which is typ-
ically rate-limiting when activated esters are employed. 
Numerous previously designed enzymes and peptide-based 
systems inactivate or dramatically slow down after acylation 
(6, 15–17). In addition to this chemical challenge, constructing 
the serine hydrolase active site combines some of the most 
difficult current challenges in protein design: 1) the catalytic 
site is very complex, requiring the scaffolding of at least four 
individual residues with atomic precision, a task that state-
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of-the-art design tools struggle to achieve (36), 2) the serine 
nucleophile requires activation by construction of intricate 
hydrogen bond networks, and 3) the active site must undergo 
subtle conformational changes throughout the multistep cat-
alytic cycle, and although there is recent progress in multi-
state design (37, 38), it remains challenging, particularly 
when the energetic difference between desired states are 
small. 

Previous efforts to design esterases have circumvented the 
challenges presented by serine hydrolases by employing sim-
pler, more easily designable active sites, leveraging nucleo-
philes more activated than serine, and by targeting reaction 
mechanisms that do not require the formation of stable cova-
lent intermediates. For example, previously designed metal-
lohydrolases skip the AEI by activating water to cleave esters 
in a single step (18, 39), the non-canonical amino acid Nδ-
methylhistidine has been employed to make the AEI less sta-
ble (17), and cysteine has been used in place of serine due to 
its greater nucleophilicity (6, 15). Structural analysis of the 
resulting cysteine esterases indicated key interactions be-
tween the cysteine nucleophile and histidine base of the de-
sired dyad or triad were not formed (6, 15), suggesting that 
the inherent chemical reactivity of the residues employed, 
not their coordinated effort, may have been responsible for 
the observed steady-state rate enhancements. Even with 
these chemical interventions, the efficiency of the initial com-
putational designs remain far below the range observed for 
natural enzymes. 

One hypothesis for the lack of designed serine hydrolases 
to date is a potential geometric incompatibility between the 
complex hydrolase active site and the sets of fixed protein 
scaffold libraries previously employed (6). We investigated 
whether increasing scaffold diversity could help identify 
backbones that more accurately reconstruct the desired ac-
tive site, and carried out a preliminary design campaign 
searching for placements of a serine hydrolase active site in 
a large library of scaffolds based on the Nuclear Transport 
Factor 2 (NTF2) fold (40) (fig. S1 and Computational meth-
ods, NTF2 design campaign). As in previous studies (7), ex-
perimental characterization of the resulting designs revealed 
activated serines but no catalytic turnover on ester sub-
strates, despite a close match between the experimental and 
designed structures (fig. S2). We suspect that an inability to 
install key catalytic features into NTF2s, such as the back-
bone oxyanion hole contact common to all serine hydrolases, 
limited the function of these designs. 

We reasoned that advances in deep learning for protein 
design could enable the design of proteins from scratch to 
directly scaffold the serine hydrolase active site and assess 
design compatibility for the entire multistep catalytic cycle. 
Recent advances in scaffolding functional sites with RFdiffu-
sion have yielded improved in silico and experimental 

success rates across a range of design tasks (36, 41, 42); we 
aimed to use the same approach to generate serine hydro-
lases starting from geometric descriptions of an active site 
(Fig. 1A). To assess preorganization and functional interac-
tions in each step of the catalytic cycle, we sought to leverage 
advances in deep learning-based prediction of protein-small 
molecule complexes by modeling structural ensembles of cat-
alytic intermediates (Fig. 1B). 

 
Assessing reaction path compatibility with PLACER 
We set out to understand why previously designed serine hy-
drolases failed to appreciably catalyze ester hydrolysis and 
hypothesized that modeling each step of the reaction could 
be critical for assessing the ability of a design to achieve cat-
alytic turnover. To model the extent to which a designed en-
zyme can stabilize each of the key states along the reaction 
coordinate and to assess the preorganization of the active site 
residues in the desired catalytic geometries, we developed a 
deep neural network that, given 1) the backbone coordinates 
of a small molecule binding pocket or active site, 2) the iden-
tities of the amino acid residues at each position, and 3) the 
chemical structures of bound small molecules (but not their 
positions), generates the full atomic coordinates of the bind-
ing site, comprising both protein sidechains and small mole-
cules. We trained this network, called PLACER (Protein-
Ligand Atomistic Conformational Ensemble Resolver) (43), 
on protein-small molecule complexes in the PDB by random-
izing the atomic coordinates of sidechains and small mole-
cules within spherical regions with up to 600 heavy atoms, 
and seeking to minimize a loss function assessing the reca-
pitulation of the atomic coordinates within the region. In 
benchmark tests, PLACER predicted regions within native 
structures with an average RMSD of 1.1 Å. PLACER is stochas-
tic, and repeated runs from different random seeds yield an 
ensemble of models for the predicted region (Fig. 1B). 

We used PLACER to generate structural ensembles for 
each step of the catalytic cycle for a set of native and previ-
ously designed serine hydrolases. The catalytic cycle of serine 
hydrolases can be divided into four steps (Fig. 1C). First, the 
substrate binds to the apoenzyme (apo) and the catalytic ser-
ine, deprotonated by the catalytic histidine, attacks the car-
bonyl carbon of the ester to form the first tetrahedral 
intermediate (TI1). Second, the catalytic histidine protonates 
the leaving group oxygen promoting its departure, leaving 
the active site serine covalently linked to the acyl group of the 
substrate (the acyl-enzyme intermediate (AEI) mentioned 
above). Third, the histidine deprotonates a water molecule, 
which attacks the AEI to generate a second tetrahedral inter-
mediate (TI2). Finally, this intermediate is resolved by histi-
dine-mediated protonation of serine and release of the acyl 
group, reconstituting the free enzyme and completing the 
catalytic cycle. Throughout, negatively charged transition 
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states and intermediates are stabilized by at least two hydro-
gen bond donors that constitute the oxyanion hole. Perturba-
tion of the histidine pKa, which tunes its acid/base function, 
is mediated by interaction with aspartate or glutamate, the 
final residue in the triad (44–46). 

Modeling this catalytic cycle with PLACER showed that 
native serine hydrolases are more preorganized than previ-
ous designed systems (Fig. 1D and fig. S3). At each step in the 
reaction coordinate, the catalytic residues sample the key hy-
drogen bonds essential for catalysis more often in native than 
previously designed serine hydrolases (fig. S3). Since the re-
action rate should be proportional to the fraction of the en-
zyme in the active state, limited preorganization of the 
designed active sites is expected to compromise catalysis. To 
quantify the extent of active site formation in PLACER en-
sembles, we compute the frequency of formation of key inter-
actions between the catalytic functional groups and reaction 
intermediates over each step of the reaction (see Computa-
tional methods, filtering section), and use this metric to as-
sess new designs in the following sections. 

 
Design and characterization of serine hydrolases 
We next set out to design proteins with active sites of increas-
ing complexity, using RFdiffusion to scaffold serine hydrolase 
active site motifs and PLACER to assess their preorganization 
in each step of the reaction (Fig. 2, A and B). We designed 
catalysts for the hydrolysis of 4-methylumbelliferone (4MU) 
esters (Fig. 2C) that fluoresce upon hydrolysis. To generate 
active site motifs, we sampled positions of the catalytic 
sidechains around a QM-optimized transition state (see Com-
putational methods, motif generation) based on an analysis 
of natural hydrolases (33), and enumerated α-helix and β-
strand backbone conformations for each catalytic residue, 
keeping the interactions with the transition state fixed in 
space. For each combination of the backbone N, Cα, and C 
atoms for each of the catalytic residues, we used RFdiffusion 
to build up backbones starting from random noise that have 
coordinates that nearly exactly match the input catalytic res-
idue backbone positions (average all-atom RMSD ~ 0.1 Å) and 
form a binding pocket for the substrate (see Computational 
Methods, motif generation and backbone generation). To 
drive folding to the designed state, and to make favorable in-
teractions with the substrate and active site residues, 
LigandMPNN (47) was used to design the sequence. Rosetta 
FastRelax (48) was used to refine the protein backbone and 
ligand pose, and sequence design with LigandMPNN was re-
peated with the new backbone as input (49). Following three 
cycles of LigandMPNN and FastRelax, the structures of the 
designs were predicted with AlphaFold2 (AF2) (50), and de-
signs for which all catalytic residue Cα atoms were positioned 
within 1.0 Å of the design models were selected for experi-
mental characterization (50) (see Computational methods, 

sequence design and filtering sections for details). 
In the first two rounds of design, we built relatively simple 

active sites consisting of Ser-His dyads with a single oxyanion 
hole contact from the backbone amide of the serine (Fig. 2, A 
and B), and explicitly evaluated the utility of PLACER to se-
lect designs for experimental characterization. Round 1 de-
signs were filtered with AF2 alone, whereas round 2 designs 
that passed the AF2 filter were selected for experimental 
screening if PLACER ensembles of the apo state indicated the 
key Ser-His hydrogen bond was formed (see Computational 
Methods, filtering; only 1.6% of round 2 designs that passed 
the AF2 RMSD filter were predicted to be preorganized by 
PLACER). For experimental testing, we obtained synthetic 
genes encoding 129 and 192 designs for rounds 1 and 2, re-
spectively, for E. coli overexpression and screening. 

We used a fluorophosphonate (FP) activity-based probe 
and fluorescent 4MU-acetate (4MU-Ac) and 4MU-butyrate 
(4MU-Bu) ester substrates to identify designs with activated 
serines and esterase activity, respectively (Fig. 2C). The frac-
tion of designs labeled by the FP probe in E. coli lysate in-
creased 5-fold from 3% to 17% from round 1 to round 2 (Fig. 
2B and fig. S4). Designs that reacted with the FP probe were 
purified and incubated with 4MU esters, and two round 1 de-
signs (1.6%) and 10 round 2 designs (5.2%) showed catalytic 
activity. Retrospective PLACER analysis of the round 1 de-
signs revealed that the Ser-His H-bonds in the two catalyti-
cally active designs were predicted to be among the most 
preorganized (fig. S5). PLACER filtering of round 2 designs 
on the extent of formation of the key Ser-His H-bond not only 
increased the fraction of designs exhibiting FP probe labeling 
and enzymatic activity, but also resulted in higher activities 
(Fig. 2, E and F). The progress curves for these round 1 and 2 
designs plateau after approximately one enzyme equivalent 
of fluorescent product is formed (Fig. 2E), suggesting the ser-
ine acylates but that the resulting AEI fails to hydrolyze, the 
rate-limiting step in the cleavage of activated esters (32). 
When incubated with substrate, mass spectra of these designs 
revealed a mass shift corresponding to acylation, further sup-
porting protein inactivation following formation of the acyl-
ated intermediate (fig. S6). 

We hypothesized that incorporating a histidine-stabiliz-
ing catalytic acid and a second oxyanion hole H-bond donor 
in a third round of designs (round 3) and filtering for 
PLACER preorganization in both the apo and AEI states 
could generate designs capable of catalytic turnover via hy-
drolysis of the AEI. For round 3 designs, we required all cat-
alytic triad and oxyanion hole H-bonds to be highly 
preorganized in PLACER ensembles of both the apo and AEI 
states. Of 132 round 3 designs, 111 (84%) displayed FP probe 
labeling, 20 hydrolyzed 4MU substrates (18%), and two de-
signs (1.5%) displayed multiple turnover activity (Fig. 2, B and 
E). Active designs from all three rounds showed reduced 
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activity upon mutation of any one of the catalytic residues 
(Ser, His, Asp/Glu, and oxyanion sidechain contact) (Fig. 2E), 
suggesting that the observed activities are dependent on the 
designed active site. To determine the kinetic parameters of 
the active designs, initial or steady-state rates were measured 
to determine k2/Km or kcat/Km for single-turnover and multi-
ple-turnover designs, respectively (Fig. 2F and fig. S7). For the 
two designs that displayed catalytic turnover, called ‘super’ 
and ‘win,’ kcat/Km values were 22 M−1 s−1 (kcat = 0.00137 ± 
0.00005 s−1, Km = 64 ± 6 μM) and 410 M−1 s−1 (kcat = 0.00117 ± 
0.00003 s−1, Km = 2.8 ± 0.3 μM), respectively for the more pre-
ferred of the two 4MU substrates (win and super preferen-
tially hydrolyzed 4MU-Ac and 4MU-Bu, respectively (fig. S8)). 
Despite the low Km observed for win, we were unable to reach 
saturation of the initial burst phase of the reaction by increas-
ing substrate concentration up to 100 μM (fig. S9), suggesting 
that Ks >> Km and that the low apparent Km observed for win 
is a result of rapid acylation and not tight substrate binding. 

 
Structural characterization of designed serine hydro-
lases 
We pursued x-ray crystallography to determine the accuracy 
with which super and win were designed. We were able to 
solve crystal structures of both super and win, and found that 
they had very low Cα RMSDs of 0.8 Å οver 165 residues and 
0.83 Å over 160 residues (Fig. 3, A and D), respectively, to the 
design models. The design accuracy extends to the geometry 
of the active site: the sidechain conformations of the catalytic 
residues are in atomic agreement for super (all-atom RMSD 
= 0.38 Å over 22 atoms) and for win (all-atom RMSD = 0.86 
Å over 20 atoms) except for a rotamer shift in the sidechain 
oxyanion contact, Thr99 (Fig. 3, B and E). In the active site of 
super, a water molecule sits above the nucleophilic serine and 
forms hydrogen bonds with the oxyanion hole contacts, 
which likely mimics the positioning of the carbonyl oxygen of 
its ester substrate (Fig. 3B). Similarly, in win, an acetate mol-
ecule is positioned at the catalytic center and hydrogen bonds 
to the catalytic serine (Ser142), the sidechain oxyanion hole 
(Thr99), and the histidine acid/base residue (His17) (Fig. 3E). 

Although the structures were solved in the absence of 
bound small molecule substrate or transition state analog, 
overlay of the design model and crystal structure of super re-
veals high shape complementarity to the butyrate acyl group 
of its preferred substrate (Fig. 3C and fig. S8). At the same 
time, the 4MU moiety is largely exposed, corroborating the 
selectivity of super for 4MU-Bu over 4MU-Ac and suggesting 
that substrate binding, in this case, is largely driven by bind-
ing to the acyl group. For win, a rotamer shift in F98 in the 
crystal structure would clash with the butyrate moiety, and 
indeed, win is selective for the smaller substrate 4MU-Ac that 
avoids this clash (Fig. 3F and fig. S8). 

The structures of super and win are very different from 

known structures; the closest matches found from Foldseek 
searches against all databases have TM-scores of 0.52 and 
0.46 for super and win, respectively (at or below the 0.5 cutoff 
below which structures are considered to have different top-
ological folds), are proteins of unknown function, and have 
no similarity to known hydrolases at the fold or active site 
level (fig. S10, A and B), demonstrating that the design 
method employed here yields structural solutions for serine 
hydrolase activity that extend well beyond those found in na-
ture, expanding the structural space of this ancient enzyme 
family. 

 
Filtering for preorganization across the reaction coordi-
nate improves catalysis 
We next sought to generate and compare designs filtered ex-
plicitly with PLACER for preorganization over two states (apo 
and AEI) or over all four states of the reaction path by carry-
ing out additional iterations of LigandMPNN and FastRelax 
starting from the active design win (fixing only the identities 
of the four catalytic residues) (Fig. 4A and fig. S1). We ob-
tained genes encoding 45 two-state filtered designs for exper-
imental characterization, all of which were diverse in 
sequence compared to the original designs (mean sequence 
identity to the parent design of 58% and 61% within the active 
site), and found 38 (84%) labeled with FP-probe (fig. S11A), 
and 9 (20%) displayed activity over background in a lysate 
screen (fig. S11C). Three of these, win1, win11, and win31, dis-
played higher catalytic turnover compared to the starting de-
sign: win has a kcat of 0.00117 s−1, which increases 15-fold in 
win1 (0.018 s−1), 17-fold in win11 (0.0197 s−1), and 9-fold in 
win31 (0.0105 s−1) (Fig. 4B and fig. S7). Of the 11 four-state 
filtered designs tested, 10 (91%) labeled with FP-probe (fig. 
S11B) and 8 (73%) displayed activity (fig. S11D). Two of these, 
dadt1 and wint4, displayed higher catalytic efficiencies than 
win, with kcat/Km values of 3800 M−1 s−1 and 640 M−1 s−1, driven 
by increases to kcat and decreases in Km relative to win (Fig. 4, 
B to D, and fig. S7). Catalytic triad residue knockouts for all 
designs showed reductions in activity, and for win11 and 
win31, mutation of stabilizing residues in the second shell of 
the active site that H-bond to the catalytic aspartate also re-
duced activity (fig. S12). The two redesigns with the highest 
kcat values (win1 and win11) do not display burst phase kinet-
ics, suggesting that deacylation is no longer rate-limiting (fig. 
S7). 

We determined the crystal structures of win1, win31, and 
dadt1 and comparison to the design models revealed Cα 
RMSDs of 1.42 Å, 0.7 Å, and 1.2 Å, respectively (Fig. 4, E to G). 
For win1, the active site closely matches the designed archi-
tecture (mean all-atom RMSD = 0.54 Å) (Fig. 4E), and T99, 
the oxyanion hole contact, occupies the designed rotamer, 
which may account for the 15-fold increase in kcat compared 
to win, in which T99 is rotated relative to the designed 
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rotamer (Fig. 3E). In chain B of the win1 structure, the cata-
lytic serine partially occupies a second conformer with an oc-
cupancy of 0.23 (fig. S13A). For win31, five chains are present 
in the asymmetric unit, all of which closely match the design 
model (average Cα RMSD = 0.7 Å) at the backbone level (Fig. 
4F and fig. S13B). Analysis of the active site across all chains 
in the asymmetric unit revealed mobility in the catalytic ser-
ine, sidechain oxyanion threonine, and a second shell tyro-
sine (fig. S13C), but overall a very close match to the design 
model active site with a mean all-atom RMSD of 0.7 Å. Tar-
trate, derived from the crystallization solution, fit the elec-
tron density present in the active site of all five chains, and 
forms hydrogen bonds with the serine, histidine, and oxyan-
ion hole contacts (Fig. 4F), likely mimicking key contacts em-
ployed throughout the catalytic cycle. For dadt1, the active 
site closely matches the design model with a mean all-atom 
RMSD of 0.95 Å, and the T99 sidechain oxyanion residue oc-
cupies the designed conformation. 

We next explored whether stringent PLACER filtering for 
optimal catalytic geometry and preorganization across the re-
action coordinate could generate active esterases with novel 
backbone topologies and active site geometries. We per-
formed sequence design and PLACER filtering for the com-
plete reaction coordinate on round 3 backbones excluding 
win (fig. S1), and of 20 designs tested, two (charliet2 and 
kent1) displayed esterase activity, with catalytic efficiencies 
of 180 M−1 s−1 and 1400 M−1 s−1 (Fig. 4, H to K), suggesting that 
structural variability in intermediate states of the reaction co-
ordinate may have limited otherwise functional designs. We 
also used sequence design combined with PLACER filtering 
to modify the substrate selectivity of win1, converting it from 
accepting only the small acyl group of 4MU-Ac to processing 
the larger 4MU-phenylacetate (4MU-PhAc) substrate (fig. 
S14). 

To test the generality of RFdiffusion combined with 
PLACER filtering, we applied it to a different active site con-
figuration in which the oxyanion hole consists of two back-
bone amides, rather than a backbone amide and a sidechain 
H-bond donor, and where the first backbone amide of the ox-
yanion hole is the residue following the catalytic serine (N+1) 
rather than the catalytic serine itself (N) as in the previous 
designs (Fig. 4L). We used the RFdiffusion and 
LigandMPNN/FastRelax design pipeline to generate 66 de-
signs for this new catalytic site and the larger 4MU-PhAc sub-
strate (fig. S1). The most active of these, momi, displayed a 
kcat/Km of 1240 M−1 s−1 and a kcat of 0.1 s−1, a 5-fold faster rate 
than win11, the previous best design in terms of turnover 
number. The distribution of folds generated by RFdiffusion 
for this active site geometry differed from that of the original 
geometry, with more α/β fold solutions (as in the case of 
momi), showing how the RFdiffusion buildup approach 
crafts overall protein structure topology to the specific active 

site of interest. Natural esterases to our knowledge exclu-
sively employ the momi N+1 oxyanion hole motif, suggesting 
that it is particularly well suited for ester hydrolysis. The high 
activity achieved without any prior experimental characteri-
zation for this new catalytic site shows that filtering for pre-
organization across the reaction cycle can yield novel 
catalysts in one shot. 

Several experimental results identify areas to address for 
improved function. First, kent1 inactivates after roughly 10 
turnovers, and mass spectra of the catalyst and the serine 
knockout incubated with substrate reveal stable acylated spe-
cies (fig. S15), indicating that designs that hydrolyze the AEI 
are still susceptible to inactivation, potentially from off-
mechanism acylation events in the active site or acylation-
induced conformational changes. Second, mutation of the 
sidechain oxyanion hole residue had variable effects on activ-
ity. In three designs (dadt1, charliet2, kent1) from design 
rounds 4 and 5 that underwent stringent PLACER filtering, 
mutation of the sidechain oxyanion hole residue had a mod-
est effect on activity, suggesting limited contribution to catal-
ysis (fig. S12). Analysis of the oxyanion hole geometries in 
these designs and others in earlier design rounds reveal in-
plane hydrogen bonds to the oxygen of the substrate carbonyl 
(fig. S16, Supplementary Text), in contrast to those found in 
nature, which are perpendicular to the plane of the carbonyl, 
where they likely stabilize the sp3 oxyanion transition state 
over the sp2 carbonyl ground state (34, 51, 52). 

We next explored whether existing designs could be im-
proved by rebuilding suboptimal regions using RFdiffusion. 
Using the momi backbone as input to RFdiffusion, we built 
out the N terminus to further stabilize the active site but 
made no changes to the parent backbone or sequence (figs. 
S1 and S17). Of 65 designs tested, all showed activity, and one 
design, momi120, displayed a catalytic efficiency of 4300 M−1 
s−1, 3.5-fold greater than momi, driven by a 2-fold increase in 
kcat and 1.5-fold decrease in Km (fig. S17). We also used RFdif-
fusion to improve the suboptimal in-plane (with respect to 
the substrate carbonyl) oxyanion hole H-bond formed by 
Gln71 in super. The serine protease subtilisin uses a chemi-
cally similar sidechain oxyanion hole, Asn155, with an amide 
positioned perpendicular to the plane of the substrate car-
bonyl (fig. S16A). Using the subtilisin oxyanion hole geometry 
as a guide, we mutated Gln71 to Asn in super, and reposi-
tioned it to form an analogous out-of-plane H-bond to the 
substrate carbonyl, then rebuilt the surrounding backbone of 
the protein with RFdiffusion to accommodate this change 
(fig. S18). Of the 150 designs screened, the two most active 
designs, superfast and supercool, showed 8-fold and 7-fold 
improvements in kcat over the parent design super (kcat = 
0.00137 s−1), and 19-fold and 13-fold improvements in kcat/Km, 
respectively (fig. S18). These results highlight productive de-
sign interventions made possible by RFdiffusion that are not 
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easily accessible with traditional engineering tools like ra-
tional mutagenesis and directed evolution, where the se-
quence can be readily changed but not easily augmented with 
new structural features. 

We redesigned momi120 for the hydrolysis of polyeth-
ylene terephthalate (PET) and screened 85 designs for activ-
ity on the sterically similar 4MU-PhAc substrate. All 85 
designs displayed activity above background in a lysate 
screen and two of the most active designs were further kinet-
ically characterized and found to have kcat/Km >104 M−1 s−1 (fig. 
S19). The most efficient design, momi120-103, has a kcat for 
4MU-PhAc of 0.057 s−1, Km of 0.26 μM, and a kcat/Km of 2.2x105 
M−1 s−1 (Fig. 4N). PLACER and Chai-1 predictions suggest that 
4MU-PhAc fits with high shape complementarity into the re-
designed pocket; the substitutions lining the binding pocket, 
particularly F76G (fig. S19), appear to provide a deeper pocket 
that may be the structural basis of the sub-micromolar Km. 

 
Structural determinants of catalysis 
The high structural conservation of catalytic geometry in na-
tive serine hydrolases suggests that it is close to optimal for 
catalysis (33, 53), but it is difficult to assess how activity de-
pends on the detailed geometry of the interactions of the 
transition states with the catalytic serine, histidine, and oxy-
anion hole functional groups as although the identities of the 
catalytic residues can be readily changed by mutation, it is 
not straightforward to systematically vary backbone geome-
try. In contrast, our de novo buildup approach samples a 
wide range of catalytic geometries. To investigate how active 
site geometry and preorganization influence catalytic activ-
ity, we generated PLACER ensembles of all 812 experimen-
tally characterized designs, categorized as inactive, FP probe 
labeling, acylation, and catalytic turnover, for each reaction 
step in the hydrolysis of 4MU-Ac (including design rounds 1-
3 and previous NTF2-based designs). We summarize the 
strongest trends in the following paragraphs. 

Increased preorganization and bending of the Ser-His H-
bond were associated with higher rates of probe-labeling, ac-
ylation, and turnover. All designs capable of catalyzing turn-
over displayed highly preorganized Ser-His H-bonds across 
all four states, whereas inactive designs often displayed rota-
mer shifts causing loss of the interaction (Fig. 5, A and B). 
Designs that catalyzed turnover had Ser(Oγ):His(Nε-Cε) 
bond angles that were more acute (median, all states = 94°) 
than inactive designs (median, all states = 108°), which were 
more similar to serine-histidine hydrogen bonds across the 
PDB (~125°) (34) (Fig. 5C). This acute H-bond is consistent 
with the reaction mechanism, as this geometry allows histi-
dine to participate, without changing conformation, in all of 
the necessary proton transfers involving serine, the leaving 
group oxygen in TI1, and the hydrolytic water (35, 54). This 
compromise in positioning is observed not only in our active 

designs but also in many of those found in nature (34, 54, 55). 
The geometry of the serine rotamer throughout the cata-

lytic cycle was also strongly correlated with experimental out-
come. For designs that display acylation or turnover, we 
found that serine largely occupies the active g- rotamer (53) 
in the apo state. Designs that display turnover retain the g- 
serine conformer upon formation of the AEI, but designs that 
irreversibly acylate switch to the g+ rotamer in the AEI (Fig. 
5, H to J). The g+ serine rotamer is catalytically incompetent 
in these designs because it leads to an acyl group confor-
mation that occludes interaction of the hydrolytic water with 
histidine (Fig. 5G), increases the median Ser-His H-bond dis-
tance (Fig. 5G), and reduces the frequency that the Ser-His 
and oxyanion hole-acyl group H-bonds form (Fig. 5E). The 
same retention of the g- rotamer in the AEI is observed in 
native crystal structures (35). PLACER analysis also revealed 
that the presence of a second oxyanion hole residue favors 
the active g- serine rotamer: those designs with only one ox-
yanion hole H-bond (from the backbone amide of the serine 
nucleophile) shift from g- to g+ upon acylation, and designs 
with two oxyanion hole H-bonds predominantly occupy g- Ser 
rotamers (Fig. 5J, right). The second oxyanion hole contact in 
serine hydrolases thus not only stabilizes the transition state 
but likely helps orient intermediates in catalytically produc-
tive conformations. 

Differential preorganization may also explain activity 
trends in the win, win1, win31, and dadt1 series. PLACER 
analysis of the crystal structures of these designs revealed 
that in the AEI state, the more active redesigns win1, win31, 
and dadt1 sample the designed T99 oxyanion hole rotamer in 
56, 60, and 100% of predictions, respectively, but the less ac-
tive win never adopts this rotamer (Fig. 5K). Although both 
observed rotamers place T99 Oγ within hydrogen bonding 
distance of the oxyanion, the designed rotamer-oxyanion di-
hedral angle (91°) adopted by the redesigns much more 
closely matches the angles observed in native serine hydro-
lases, suggesting it is likely more optimal for selective transi-
tion state stabilization (34, 51, 52). We also observed 
differences in the serine rotameric state and the preorganiza-
tion of the acyl group in the AEI state. Both win and win31 
occupy the catalytically unfavorable g+ rotamer across the 
entire AEI ensemble, but win1 and dadt1 both display a less 
pronounced rotameric shift, which leads to shorter Ser-His 
H-bond distances (mean H-bond distance of 2.8 Å in win1 and 
dadt1 compared to 3.1 Å in win and win31). Overall, the acyl 
groups of win1 and especially win31 and dadt1 display less 
conformational heterogeneity than that of win, which may 
increase the likelihood of histidine-mediated water attack 
(Fig. 5K). 

 
Conclusion 
The substantial catalytic efficiencies, the complexity of the 
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active sites, and the atomic accuracy of the designs described 
here represent major advances in computational enzyme de-
sign. The serine catalytic triad plus oxyanion hole mechanism 
involves complex machinery that is challenging to scaffold 
(compared to, for example, the Kemp eliminase, which re-
quires only a general base in a hydrophobic environment (2)), 
necessitates chemical activation of serine, and proceeds 
through a complex multistep mechanism that traverses a 
chemically stable AEI. The designed serine hydrolases de-
scribed here have efficiencies up to 2.2x105 M−1 s−1, a major 
improvement in function for computationally designed en-
zymes. For example, the previously designed esterase OE1 has 
a kcat/Km = 210 M−1 s−1 and reached an efficiency of 3190  
M−1 s−1 after four rounds of directed evolution and screening 
over 12,000 clones, despite the use of a more activated  
Nδ-methylhistidine nucleophile (17). The closest comparable 
de novo design in terms of mechanism, in which a cysteine-
based catalytic triad was mutated into a peptide-based helical 
barrel that proceeds via a more activated thioester interme-
diate (15), has a kcat/Km of 3.7 M−1 s−1 and kcat of 0.0005 s−1, 
60000x less efficient and 400x slower than the most efficient 
(momi120-103) and highest turnover design (momi120) de-
scribed here, respectively. The ability to accelerate the hydrol-
ysis of a chemically stable acyl-enzyme intermediate has been 
a decades-old challenge in enzyme design. To approximate 
the deacylation rate enhancement, we compared the uncata-
lyzed rate of hydrolysis of ethyl acetate (2.5–5.0)x10−10 s–1, 
(56)) to the lower limit of the deacylation rate constant of 
momi (kcat, 0.076 s−1, pH 7.0, 25°C), yielding an estimated rate 
enhancement of over 108. Taken together, the design of serine 
hydrolases spanning five folds not represented in natural es-
terases, the considerable improvement in activity over previ-
ously designed esterases, and the acceleration of deacylation 
represent key advances in enzyme design. 

The designs described here are not as efficient as native 
serine hydrolases with their cognate substrates (e.g., the 
kcat/Km of acetylcholinesterase with acetylcholine is >108  
M−1 s−1) (57), but they have efficiencies comparable or better 
than natural proteases for activated esters (α-chymotrypsin 
with p-nitrophenyl acetate kcat/Km: 3530 M−1 s−1, kcat: 0.0053 
s−1; subtilisin with p-nitrophenyl acetate kcat/Km: 610 M−1s−1, 
kcat: 0.23 s−1) (58, 59), and are within the distribution of effi-
ciencies observed in nature (57). Higher kcat could likely be 
achieved through optimization of the catalytic geometry, fur-
ther preorganization of the active site (8, 9), and increasing 
active site complexity. Acetylcholinesterase employs three 
backbone amide hydrogen bonds to the oxyanion and an ad-
ditional network of hydrogen bonds to stabilize the catalytic 
aspartate (60, 61). The current designs do not employ this ma-
chinery, and comparison of catalytic triad and oxyanion hole 
geometries to those found in highly efficient native serine hy-
drolases highlights differences that could be responsible for 

the remaining activity gap (see Supplementary Text). Our de 
novo buildup approach using RFdiffusion coupled with 
PLACER ensemble analysis to ensure design accuracy and 
preorganization should allow us to test these hypotheses by 
direct construction, which should complement more tradi-
tional approaches based on structural examination, compu-
tational analysis, and optimization by experimental 
approaches like directed evolution. 

Previous efforts to design catalytic triad-based designs 
have failed to achieve multiple turnover; in some cases, such 
as our preliminary NTF2-based designs, a backbone amide 
oxyanion hole was impossible to achieve due to scaffold lim-
itations, whereas in others based on native scaffolds, the his-
tidine geometry was difficult to control which likely limited 
activation of the leaving groups and water (fig. S20) (7). De 
novo backbone generation building outward from a specified 
active site with RFdiffusion, described here for serine hydro-
lases and also recently used to generate retroaldolases (62), 
overcomes these limitations by enabling generation of almost 
any desired catalytic geometry. We further show that the 
deep neural network PLACER can rapidly generate ensem-
bles for a series of reaction intermediates to predict preor-
ganization, and provide insights that would otherwise 
require labor-intensive structural studies. For example, 
PLACER revealed pervasive off-target conformational 
changes in the acyl-enzyme intermediate, providing feedback 
on design flaws that would go unnoticed when considering 
only a single state in the catalytic cycle. The value of this ap-
proach is evident in the dramatic improvement in experi-
mental success rate upon filtering with PLACER, suggesting 
that such ensemble generation will be useful for enzyme de-
sign moving forward. Although the designs described here do 
use a known mechanism, the geometries sampled and the 
folds that scaffold them are distinct from those found in na-
tive proteins, and the insights provided by PLACER for these 
geometries suggests that the approach should prove valuable 
for assessing catalytic geometries for which no native prece-
dent exists. We anticipate that the ability to precisely position 
multiple catalytic groups using RFdiffusion, and to assess ac-
tive site organization throughout a complex reaction cycle us-
ing PLACER should enable the design of a wide variety of new 
catalysts, such as PETases, amidases, and ligases, in the near 
future. 

 
Materials and methods 
NTF2 design campaign 
Catalytic geometries from a previous analysis of native serine 
hydrolases (33) were used to generate constraint files for use 
in the RosettaMatch algorithm (63). The scaffold set used for 
matching was a set of idealized Nuclear Transport Factor 2 
(NTF2) fold proteins generated with trRosetta (40). After 
matching, sequence design was performed using 
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LigandMPNN and FastRelax and designs were filtered using 
AlphaFold2 as described below. An additional filter was used 
requiring that all catalytic hydrogen bonds in the active site 
be formed in the AlphaFold2 prediction. 

 
Computational design of serine hydrolases 
Motif generation 
Motifs were built in an iterative process. First, a substrate ro-
tamer in a transition state geometry (either 4MU-Bu or 4MU-
Ac) was placed in accordance with geometries in ref (33) in 
relation to a 3-residue stub of the serine and local oxyanion 
hole from one of two natural serine hydrolase crystal struc-
tures, in which all residues other than serine were mutated 
to alanine (N oxyanion hole: 1scn, residues 220-222; N+1 ox-
yanion hole: 1lns, residues 347-349). The transition state ge-
ometry of the substrate ester group was determined by DFT 
geometry optimization (B3LYP-D3(BJ)/6-31G(d)). Next, posi-
tions and rotamers of histidine on 3-residue helical or strand 
stubs flanked by alanine were sampled around the catalytic 
serine and filtered for those structures in which the histidine 
simultaneously formed hydrogen bonds with the catalytic 
serine and the substrate leaving group oxygen. This process 
resulted in 108 unique motifs for design rounds 1 and 2. For 
the round 3 motifs, initially the aspartate or glutamate resi-
due and second oxyanion hole hydrogen bond were added in 
a similar manner using geometric sampling of hydrogen-
bonding conformations and rotamers. However, backbones 
produced from these motifs had exceedingly low AF2 success 
rates, presumably due to the generation of incompatible com-
binations of backbone conformations. To ensure that the re-
maining catalytic residue stubs were placed in physically 
plausible geometries, we generated 10,000 backbones with 
RFdiffusion using the simple substrate-Ser-His motifs as in-
put, and then searched these backbones using Rosetta for po-
sitions on secondary structure that could accommodate the 
aspartate or glutamate triad residue to hydrogen bond to his-
tidine. These stubs were then extracted, and in a final step, 
the same process was repeated to generate stubs for the sec-
ond oxyanion hole, considering all hydrogen bond donating 
sidechains, ultimately producing 2238 unique round 3 motifs 
with Ser-His-Asp/Glu catalytic triads, and 
Ser/Thr/Tyr/His/Trp oxyanion holes. 

 
Backbone generation 
See supplemental text for a detailed description of CA diffu-
sion, which was employed to generate backbones to scaffold 
the generated active sites. 
 
Sequence design 
We performed three cycles of LigandMPNN (47) and Rosetta 
FastRelax (64) to design sequences for backbones generated 
from RFdiffusion. To encourage formation of hydrogen bond 

contacts to the catalytic histidine (for round 1 motifs) and to 
the catalytic aspartate/glutamate (round 3 motifs), the log 
probabilities used by LigandMPNN to select residues were bi-
ased toward polar amino acids for all residues with Cα within 
8 Å of the active site. Catalytic residues were kept fixed and 
Rosetta enzyme constraints (63, 65) were applied during the 
relax steps to maintain the catalytic geometry during each 
LigandMPNN/FastRelax cycle. Constraints were defined for 
each hydrogen bonding interaction between the catalytic 
dyad, backbone oxyanion hole, and substrate using the start-
ing motif geometry with tolerances of 0.1 Å for distances and 
5° for angles and dihedrals. For designs with catalytic triads, 
the His-Asp interaction was constrained. 

 
Filtering 
After sequence design, designs were filtered on the recapitu-
lation of the motif catalytic geometry after FastRelax and the 
shape complementarity of the binding site to the substrate 
using Rosetta. Passing designs were used as input to AF2 (50) 
for single sequence structure prediction. AF2 was run using 
model 4 with three recycles. Designs were filtered for a global 
Cα RMSD < 1.5 Å, pLDDT > 75, and catalytic residue Cα 
RMSD < 1.0 Å. In the case of final round N+1 oxyanion hole 
designs, a modified version of Initial Guess AF2 was used to 
predict designs with sparse template information provided 
(see Supplementary Text). 

Designs that passed AF2 filters were subsequently analyzed 
using PLACER. PLACER is a denoising neural network trained 
on X-ray and EM structures from the PDB to recapitulate the 
correct atom positions from partially corrupted input structures 
provided the atom type and bond connectivity is known. 
PLACER predictions were done for a spatial crop of 600 atoms 
closest to the active site. The inputs to the network included the 
protein backbone coordinates within the crop and the amino 
acid sequence with side chain coordinates randomly initialized 
around the respective Cα atoms. For proteins without a crystal 
structure, the AF2 model was used. For every designed protein, 
we modeled 5 reaction states representing the chemical modifi-
cations the catalytic serine undergoes in the course of the reac-
tion: 1) apo, 2) substrate bound, 3) tetrahedral intermediate 1 
(TI1), 4) acylenzyme intermediate (AEI), and 5) tetrahedral in-
termediate 2 (TI2). We used 50 different seeds to generate an 
ensemble of 50 PLACER models for each reaction state (apo, 
substrate bound, TI1, AEI, and TI2). For each of the 50 models 
in a given ensemble, the presence and geometry of key hydrogen 
bonds in each individual model (see Supplementary Text) were 
determined. To analyze native hydrolases with PLACER, a set of 
native crystal structures was collected (34) (PDB IDs: 1ACB_E, 
1C5L_H, 1H2W_A, 1IC6_A, 1IVY_A, 1PFQ_A, 1QNJ_A, 1QTR_A, 
1ST2_A, 2H5C_A, 2QAA_A, 3MI4_A, 5JXG_A), the active site lo-
cations identified, and the aforementioned process applied. 
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Backbone resampling for momi and super redesign cam-
paigns 
The design model of momi was provided as input to RFdiffu-
sion and the entirety of the protein was fixed while a region 
of secondary structure was diffused at the N terminus. The 
length of this region was randomly sampled from a range of 
20 to 50 amino acids for 1000 independent diffusion trajec-
tories. The contigs flag for RFdiffusion was as follows: con-
tigs:{region_length},A1-160. For each backbone, the sequence 
of the original momi input was kept fixed while the newly 
diffused region at the N terminus was designed as described 
previously with LigandMPNN and FastRelax, with ten se-
quences generated per backbone. 

To generate designs in complex with the PET substrate, 
momi120 was redesigned around a 2-mer of the PET polymer. 
The PET 2-mer was aligned into the active site based on the 
geometry of the original momi120 design in complex with 
4MU-PhAc substrate. Two regions of secondary structure 
which clashed with the aligned PET substrate, region 1 (resi-
dues 66-87) which flanks the lower cleft of the active site and 
region 2 (residues 94-104) which sits above the catalytic his-
tidine, were subsequently remodeled with RFdiffusion. The 
lengths of region 1 and 2 were randomly sampled from a 
range of 18 to 28 amino acids and 7 to 17 amino acids, respec-
tively, for 1000 independent diffusion trajectories. The con-
tigs flag for RFdiffusion was formatted as follows: contigs:A1-
65,{region1_length},A88-93,{region2_length},A105-194. The 
sequence of the entire structure was designed as described 
above. Twenty sequences were generated per backbone and 
designs were filtered as previously described with AF2 and 
PLACER. For 74 backbones that passed AF2 and PLACER fil-
ters, sequences were designed again as described above with 
1000 sequences generated per backbone and subsequently fil-
tered for confidence and self-consistency by single sequence 
AF2 prediction. 

To generate a version of super with an optimized oxyan-
ion hole sidechain geometry, we started by superimposing 
the active sites of super and subtilisin (PDB: 1scn) by align-
ment of the catalytic serine backbone atoms. Residues 56-91 
that flank the oxyanion hole residue Gln71 in super were re-
moved and Asn155 that was aligned from subtilisin was cop-
ied into the structure. We used RFam (66), a backbone 
generation model capable of scaffolding individual atoms or 
functional groups, to reconstruct the removed region of super 
and scaffold the newly placed amide group of Asn. We sam-
pled lengths between 48-58 residues to generate 10,000 
unique backbones which were then designed and filtered as 
described above. 

 
In-gel fluorescence screening with activity-based 
probes 
DNA encoding the designed proteins was ordered from IDT 

as eblocks and the GoldenGate method was used to clone 
them into vector LM627 (addgene), which contains a C-ter-
minal SNAC tag followed by a hexahistidine-tag. Resulting 
plasmid was transformed into BL21(DE3) cells and grown 
overnight in 1 mL of LB supplemented with 50 μg/ml kana-
mycin. For expression, 100 μL of overnight culture was used 
to inoculate 1 mL of LB media and grown for 1.5 hours at 37°C 
on a Heidolph shaker at 1300 rpm and then 10 μL of 100 mM 
IPTG was added and cultures were incubated at 37°C with 
shaking for an additional 3 hours. Cultures were centrifuged 
at 4000g for 10 min and supernatant removed. Cell pellets 
were resuspended in 200 μL of 20 mM HEPES (pH 7.4), con-
taining 50 mM NaCl, 0.1 mg/mL lysozyme, and 0.01 mg/mL 
DNaseI. After 15 min, lysates were frozen in liquid nitrogen 
and subsequently thawed at room temperature. For labeling, 
10 μL of lysate was incubated with 1 μM FP-TAMRA probe 
(10 μL of 2 μM stock in lysis buffer) for 1 hour at room tem-
perature before quenching with 2x Laemmli sample buffer. 
Labeled samples were heated at 95°C for 5 min and 10 μL of 
each sample was separated on a BioRad AnykD Criterion pre-
cast gel and fluorescence imaging performed using a LI-COR 
Odyssey M imager. Gels were subsequently stained with coo-
massie blue and imaged again. 

 
Lysate screening 
DNA encoding the designed proteins was ordered from IDT 
as eblocks and cloned by the GoldenGate method into vector 
pCOOL1 which contains a C-terminal mScarlet-i3 fusion to 
enable normalization of activity in lysate by enzyme concen-
tration. Resulting plasmid was transformed into BL21(DE3) 
cells and cultures were grown overnight at 1 mL scale in 2 mL 
deep-well 96-well round bottom plates on a Heidolph shaker 
at 1300 rpm and 37°C. For expression, 50 μL of the overnight 
cultures were used to inoculate 1 mL of autoinduction media 
in 2 mL deep-well 96-well round bottom plates and incubated 
at 1300 rpm and 37°C for approximately 24 hours. Cultures 
were centrifuged at 4000g for 10 min and supernatant de-
canted, washed with buffer (20 mM HEPES, 50 mM NaCl, pH 
7.4), and incubated on a Heidolph shaker at 1300 rpm at room 
temp for 5 min to resuspend. Plates were centrifuged again 
at 4000g for 10 min and supernatant decanted. For lysis, cell 
pellets were resuspended with 500 μL of lysis buffer (20 mM 
HEPES, 50 mM NaCl, 0.01 mg/mL DNAseI, 0.01 mg/mL lyso-
zyme, 1 mM EDTA, 0.1% triton X-100) and incubated for 2 
hours on a Heidolph shaker (1300 rpm, 37°C). Plates were 
centrifuged at 4300g for 30 min and supernatant collected 
for screening. For activity screening, 4 or 6 μL of lysate was 
aliquoted into microtiter plates and reactions initiated by ad-
dition of 36 or 54 μL of buffer containing 111.1 μM 4MU-Ac 
or 4MU-Bu, 20 mM HEPES, 50 mM NaCl, pH 7.4, 5% DMSO. 
Volume sizes were modified depending on plate type used, 
where half-area plates were used for 40 μL reaction volume 
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and full-area plates were used with 60 μL reaction volume. 
Upon addition of substrate, microtiter plates were measured 
once for mScarlet-i3 signal and then subsequently monitored 
continuously for the generation of 4MU (ex: 365 nm, em: 445 
nm) on a Neo2 plate reader. 

 
Protein expression and purification 
Genes encoding the designed proteins were ordered from IDT 
as eblocks and cloned via the Golden Gate method into vector 
LM627 as previously described (67). Resulting plasmid was 
transformed into BL21(DE3) cells and grown overnight in 1 
mL of LB supplemented with 50 μg/ml kanamycin, after 
which 500 μL of overnight was used to inoculate 50 mL of 
autoinduction media (68), which was grown 4-6 hours at 
37°C and then overnight at 18°C. Cultures were spun down at 
4000g for 15 min, and supernatant decanted. Cell pellets were 
resuspended in 25 mL of cold wash buffer (40 mM imidazole, 
500 mM NaCl, 50 mM sodium phosphate, pH 7.4) with 1 
mg/mL lysozyme and 0.1 mg/mL DNAse I. Cell slurries were 
sonicated on ice for 2.5 min at 80% amplitude, 10s on 10s off. 
The resulting lysate was centrifuged at 14000g for 30 min and 
the supernatant was applied to 1 mL of Ni-NTA resin equili-
brated with wash buffer. The resin was subsequently washed 
with 15 mL of wash buffer 3 times and once with 400 μL of 
elution buffer (400 mM imidazole, 500 mM NaCl, 50 mM so-
dium phosphate, pH 7.4) followed by elution with 1.3 mL elu-
tion buffer. The eluate was purified by size-exclusion 
chromatography on a Superdex 75 Increase 10/300 GL with 
running buffer of 20 mM HEPES, 50 mM NaCl, pH 7.4. Sam-
ples were either used immediately in downstream experi-
ments or snap frozen in liquid nitrogen and stored at -80 C. 
Protein molecular weight was confirmed by LC-MS. 

 
Kinetic analysis 
To characterize hits identified from in-gel fluorescence and 
lysate screens for catalytic turnover, we incubated purified 
protein samples with fluorogenic substrates 4MU-Ac, 4MU-
Bu and 4MU-PhAc. Kinetic screens were either performed in 
40 μL reaction volumes in 96-well half area plates or 60 μL 
reaction volume in 96-well full-area plates. Protein and sub-
strate were prepared fresh in 20 mM HEPES, 50 mM NaCl, 
pH 7.4, 5% DMSO. Either 4 or 6 μL of enzyme was added to 
microtiter plates and the reactions were initiated by addition 
of substrate (36 or 54 μL). Generation of the fluorogenic prod-
uct 4MU was monitored continuously (excitation 365 nm, 
emission 445 nm) on a Neo2 plate reader with incubation at 
30°C. Analysis of the resulting data was carried out using cus-
tom scripts (see computational methods). In cases where sin-
gle-turnover activity was observed, initial velocities were 
used to determine k2/Km. For those designs that displayed a 
clear burst phase followed by a slower steady-state rate, 
straight-line fits of the steady-state velocities were used to 

determine Michaelis-Menten catalytic parameters. To deter-
mine the uncatalyzed reaction rate in assay buffer (20 mM 
HEPES, 50 mM NaCl, pH 7.4, 5% DMSO), substrate was di-
luted in buffer alone and rates determined at multiple sub-
strate concentrations, after which the rate was determined 
from fitting [S] versus rate with an equation of the form rate 
= kbuffer[S]. 

 
Crystallography 
Proteins for crystallography were prepared as described 
above, but SEC was done with SNAC tag cleavage buffer (69). 
After SEC, protein eluate was incubated with 500 mM guani-
dinium hydrochloride and 2 mM NiCl2 overnight at room 
temperature to remove the C-terminal His tag. The SNAC 
cleavage reaction was applied to a nickel column equilibrated 
with wash buffer to remove any uncleaved product and re-
sulting eluate applied to a Superdex 75 Increase 10/300 GL 
column with 20 mM HEPES, 50 mM NaCl, pH 7.4 as the run-
ning buffer. Samples were concentrated and stored at -80°C 
or immediately used for crystallization. Crystallization 
screening was performed using a Mosquito LCP by STP Lab-
tech and resulting crystals were harvested directly from the 
screening plate. Crystallization conditions for each design 
were as follows: n8 (15 mg/mL) in 0.1 M Bis-Tris pH 5.5, 25% 
(w/v) PEG 3350, super (50 mg/mL) in 0.2 M Potassium fluo-
ride, 20% (w/v) PEG 3350, win (42 mg/mL) in 0.1 M Sodium 
acetate pH 4.6, 8% (w/v) PEG 4000, win1 (54 mg/mL) in 60% 
v/v Tacsimate pH 7.0, win31 (60 mg/mL) in 0.2 M diammo-
nium tartrate and 20% (w/v) PEG 3350, and dadt1 (27 
mg/mL) in 0.1 M Potassium chloride, 0.02 M Tris pH 7.0, and 
20% PEG4000. Data were processed with XDS (70), phased 
and refined with Phenix (71), and model building performed 
with COOT (72). Percent Ramachandran favored, allowed, 
and outliers for each structure are as follows: n8 (98.21, 1.79, 
0.00), super (99.37, 0.63, 0.00), win (97.99, 2.01, 0.00), win1 
(99.68, 0.32, 0.00), win31 (99.36, 0.64, 0.00), and dadt1 (100, 
0, 0). Coordinates are deposited in the PDB with PDB IDs of 
9DED (n8), 9DEE (super), 9DEF (win), 9DEG (win1), 9DEH 
(win31), and 9MRB (dadt1). 

 
Mass spectrometry 
Intact mass spectra of protein samples were obtained by re-
verse-phase LC/MS on an Agilent G6230B TOF after desalting 
using an AdvanceBio RP-Desalting column. Deconvolution 
using a total entropy algorithm was performed using Biocon-
firm. In some cases, protein samples (1 mg/mL) were incu-
bated overnight with substrate (300 μM) in SEC running 
buffer at room temperature prior to mass spectrometry anal-
ysis. 
 
Structural similarity search of the PDB and AFDB 
To assess the structural novelty of our designed enzymes, we 
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used FoldSeek (73) to compare our crystal structures and se-
lect design models against all available databases. Searches 
were performed in TM-align mode and the highest TM-score 
hit was used for structural comparison. 
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Fig. 1. Design methods. (A) Active site-specific backbone generation with RFdiffusion. Given the geometry of a 
possible active site configuration, RFdiffusion denoising trajectories generate backbone coordinates which 
scaffold the site. (B) Generation of active site ensembles with PLACER. The coordinates of the sidechains around 
the active site and any bound small molecule for the step in the reaction being considered are randomized, and n 
samples are carried out to generate an ensemble of predictions. (C) Mechanism of ester hydrolysis by serine 
hydrolases. (D) PLACER ensembles for distinct states along the reaction coordinate for hydrolysis of 4MU-Ac for 
a native serine hydrolase (top, PDB: 1IVY) and an inactive designed serine hydrolase from round 3 (bottom, josie). 
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Fig. 2. Functional characterization of designed serine hydrolases. (A) Chemical schematic of a serine hydrolase 
active site. (B) Summary of design method and experimental success rate for probe labeling, single turnover 
acylation, and catalytic turnover for each design round. (C) Chemical schematic depicting probe labeling, 
acylation, and catalytic turnover. (D) Fold (left) and active site (right) of serine hydrolase design models. (E) 
Reaction progress curves for the parent design and catalytic residue knockouts. Dashed line represents the 
enzyme concentration and shaded areas represent standard deviation of three technical replicates. (F) Michaelis-
Menten plots derived from initial (shh25, rem6507) or steady state velocities (win,super). Error bars represent 
standard deviation of three technical replicates. 
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Fig. 3. Structural characterization of designed serine hydrolases. (A and D) Structural superposition of design 
models (gray) and crystal structures (rainbow) for super (A) and win (D). (B and E) Active site overlays of design 
models (gray) and crystal structures (rainbow) of super (B) and win (E) with 2Fo-Fc map shown at 1σ (blue mesh). 
(C and F) Superposition of substrate binding sites of the design models (gray) and crystal structures (rainbow) of 
super (C) and win (F) with 2Fo-Fc map shown at 1 σ (blue mesh). Distances shown in Å. 
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Fig. 4. Computational redesign and more complex folds improve catalysis. (A) Computational pipeline for 
redesign of win. (B to D) kcat (B), Km (C), and kcat/Km (D) of parent win compared to computational redesigns. (E to 
G) Structural superposition of design model and crystal structure of win1 (E), win31 (F), and (G) dadt1 with 2Fo-
Fc map shown at 1σ. (H to K) Design models (H and J) and Michaelis-Menten plots (I and K) for active designs with 
distinct folds. (L) Chemical and structural comparison of n and n+1 oxyanion hole motifs. (M) Chai-1 prediction of 
momi120_103 in complex with 4MU-PhAc. (N) Michaelis-Menten plot for momi120_103 with 4MU-PhAc. Error 
bars represent standard deviation of three technical replicates. 
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Fig. 5. PLACER ensembles reveal geometric determinants of catalysis. (A) Frequencies of catalytic Ser-His H-
bond formation in PLACER ensembles for each reaction step, grouped by experimental outcome. (B) Apo PLACER 
ensembles of representative inactive (top) and acylating (bottom) designs. (C) Median angle (α) between serine 
Oγ, histidine Nϵ and Cϵ across PLACER ensembles of inactive and acylating designs. (D) Apo PLACER ensembles 
of representative inactive (top) and acylating (bottom) designs, angle indicates median α. (E) AEI PLACER 
ensemble H-bond frequencies for designs that undergo acylation or full turnover. (F) PLACER ensembles of the 
apo state for an acylating (top) and multiple turnover design (bottom). (G) PLACER ensembles of the AEI state 
for a representative design that undergoes acylation (top) and a design that catalyzes turnover (bottom). 
Measurements shown represent median distances (Å) of key H-bonds indicated for each ensemble and 
percentages represent frequency of H-bond formation across all PLACER trajectories. (H) Newman projections 
of serine g+ and g- rotameric states (left). (I) PLACER ensembles of an acylating design (top) and a design that 
catalyzes turnover (bottom). (J) Median serine χ1 angle across TI1 and AEI state PLACER ensembles for designs 
that catalyze acylation or turnover (left) and for the same designs grouped by number of oxyanion hole H-bonds. 
(K) AEI state PLACER ensembles for win, win1, win31, and dadt1, with percent of frames with correct oxyanion 
hole rotamer, Ser χ1 angle, and catalytic Ser-His H-bond distance shown. Boxplots represent median, upper and 
lower quartiles; whiskers extend 1.5×IQR above and below the upper and lower quartiles (respectively). 
Observations falling outside these ranges plotted as outliers. 
 

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of W

ashington on February 13, 2025

https://science.org/

