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ABSTRACT: Mapping the ensemble of protein conformations that
contribute to function and can be targeted by small molecule drugs
remains an outstanding challenge. Here, we explore the use of variational
autoencoders for reducing the challenge of dimensionality in the protein
structure ensemble generation problem. We convert high-dimensional
protein structural data into a continuous, low-dimensional representation,
carry out a search in this space guided by a structure quality metric, and
then use RoseTTAFold guided by the sampled structural information to
generate 3D structures. We use this approach to generate ensembles for the
cancer relevant protein K-Ras, train the VAE on a subset of the available K-
Ras crystal structures and MD simulation snapshots, and assess the extent
of sampling close to crystal structures withheld from training. We find that
our latent space sampling procedure rapidly generates ensembles with high
structural quality and is able to sample within 1 Å of held-out crystal structures, with a consistency higher than that of MD
simulation or AlphaFold2 prediction. The sampled structures sufficiently recapitulate the cryptic pockets in the held-out K-Ras
structures to allow for small molecule docking.

A major challenge in drug discovery is identifying cryptic
binding pockets that can be targeted by small molecule
drugs.1−3 Despite considerable advances in single-state native
protein structure prediction with AlphaFold4 and RoseTTA-
Fold5 in the past several years, generating plausible ensembles
of structures that can be populated upon binding a small
molecule or during protein function remains an outstanding
problem − AlphaFold and RoseTTAFold generate single
structures rather than ensembles. Molecular dynamics (MD)
trajectories generate protein ensembles by simulating protein
motion around the native structure and are often used to
generate ensembles prior to small molecule docking calcu-
lations but often fail to identify cryptic ligand binding pockets
not present in the unbound structure1−3,6 or require very long
and hence highly compute-intensive simulations (typically
subto-several microsecond level).7−9 Rosetta fragment assem-
bly and minimization10 and kinematic closure11 methods have
been used to model protein and loop conformational diversity,
but these methods have typically not sampled the types of
conformational changes involved in cryptic pocket formation.
On the deep learning side, variational autoencoders, which
project complex data into a smaller dimension latent space,
have been used to generate alternative backbones for general
protein design tasks such as de novo design of 64 residue
backbones,12 graph-based protein design,13 and Ig-fold
modeling.14 VAEs have been used previously to sample the
conformational space of proteins but have required visual
inspection of the trained latent space to sample15 or have

focused on mapping correlative fluctuations in extensive MD
simulations of both the apo and holo states of a target
protein.16

We reasoned that sampling within the latent space of
variational autoencoders could provide a solution to the
ensemble generation problem for a specific protein sequence.
Unlike most previous VAE approaches, which have been
trained on many different proteins, the challenge of a protein
specific VAE is that there is limited training data. We reasoned
that this limitation could be overcome by supplementing
available crystal structures of the protein of interest in
alternative conformations with snapshots from short MD
trajectories started from each of these structures. For exploring
this approach, we chose the critical cancer target K-Ras as a
model system due to its considerable therapeutic importance
and the many available structures.17

We began by exploring different VAE architectures, training
on ensembles of MD simulations from alternate crystal forms
of K-Ras (full details in the Methods section), and evaluating
the quality of 3D reconstruction following encoding and
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decoding. For encoding 3D structural information, we chose to
use the 2D RoseTTAFold template features; the VAE training
seeks to minimize the difference between input and output
features for each training set structure. The reconstructed

template features are then used as input template features for
3D structure generation with RoseTTAFold, along with the
amino acid sequence. We evaluate the accuracy of
reconstruction by computing the RMSD between the input

Figure 1. VAE structure reconstruction accuracy. C-alpha coordinate RMSD (angstrom) of the closest AF2 predicted model and the reconstructed
model from the VAE decoded template features generated using RoseTTAFold. Structural superimpositions for 3 targets are highlighted on the top
with the target crystal in gray, the AF2 prediction in blue, and the VAE reconstruction in orange.

Figure 2. Latent space PCA analysis. Each subplot displays a 2D PCA projection of the 256-dimensional latent space. The training and generated
samples have similar distributions and surround the crystal structure.
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and output atomic coordinates (computed over C-alpha atoms
here and throughout the manuscript). We generated new
samples by guided exploration in the latent space, followed by
3D coordinate generation with RF (RoseTTAFold).
The reconstruction accuracy of crystal structures not

included in the training set provides a rough lower bound on
the accuracy with which our approach can recapitulate
conformations of interest. For each available K-Ras structure,
we trained a VAE leaving out this structure and others within 1
Å coordinate RMSD and evaluated the accuracy of
reconstruction following RoseTTAFold5 3D coordinate
generation. We obtained the best results with the soft-
introspective VAE architecture (Figure S1), and the accuracy
of reconstruction plateaued at ∼256 latent space dimensions
(Figure S2). For most of the targets (13/20), the
reconstruction was within 1 Å coordinate RMSD of the
input structure; for comparison, only 2/20 AF2 models were of
subangstrom accuracy (Figure 1 and Table S1).
We next explored the possibility of generating plausible K-

Ras ensembles by sampling in the latent space of trained VAEs.
To help ensure that the sampled structures remained broadly
consistent with the sequence and were physically plausible, we
guided sampling by the consistency with the AF2 predicted
distance distribution for the amino acid sequence. Samples
were generated from a normal distribution with a mean of 0
and variance of 1, decoded into the corresponding C-beta
(Cb) distance map, the categorical cross-entropy (CCE) to the
AF2 predicted distogram for the sequence was computed, and
local optimization in the latent space was carried out through
gradient descent on the CCE value, limiting the total (latent
space) distance traversed from the starting point to prevent
convergence. Principal component analysis (PCA) on the
latent space (Figure 2) showed that the generated and training
samples have a similar distribution and surround the target
crystal structure as intended.

Using this VAE guided sampling approach, we generated K-
Ras structure ensembles for each target structure, again holding
out the target, MD simulations starting from the target, along
with all crystal structures within 1 Å coordinate RMSD of the
target, and MD snapshots derived from them. Following
decoding and RF structure generation, the coordinate RMSD
to the target crystal was computed over either the entire
structure or just the ligand binding pocket (residues with side
chain atoms within 5 Å of ligand atoms). An advantage of our
approach is that ensembles can be generated quite rapidly
(compared to MD simulations, for example), and as expected,
the closest RMSD to the held-out structures decreases with
increasing number of samples (Figure S3). For comparison, we
provided the template features of the training set MD
simulation snapshots as direct input to RoseTTAFold (MD
+ RoseTTAFold). We found that ensembles of 3000 generated
structures sampled more closely to the held-out crystal
structures than the closest training set crystal structure, the
closest training set MD simulation snapshot, the closest MD +
RoseTTAFold structure, and the closest AF2 model for most
targets (Figure 3 and Table S2; the variation in the input
training crystals impacts the closeness of the generated
structures to the target crystal; Figures S4 and S5A,B). The
comparison with AF2 is vital as it showcases the current state-
of-the-art in single-state structure prediction; AF2 generates
diverse structures for each target by incorporating variations in
input structural templates and input MSA features (Table S5,
″1.12.1 Training procedure,″ in the Supporting Information,
Jumper et al., 20214), thereby providing valuable insights into
protein conformational diversity.
For small molecule docking calculations, sampling of

alternative ligand binding pocket geometries is particularly
important. Comparison of the C-alpha RMSD over the ligand
binding pocket residues between the closest sampled
conformation in the generated ensembles and the held-out
structures showed that the ensembles sample closer than the

Figure 3. K-Ras overall structure reconstruction evaluation. The VAE enables sampling closer to held-out K-Ras crystal structures than MD, MD
template features passed into RoseTTAFold, or AlphaFold generated structures. For each test crystal structure (name below bars), a VAE model
was trained using MD simulation data from all crystal structures with greater than 1 Å C-alpha RMSD and used to generate a structure ensemble.
Bars indicate the coordinate error to the test crystal of the closest train crystal, the closest training sample, the closest AF2 model, the closest MD +
RoseTTAFold sample, and the closest VAE generated sample.
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closest training MD snapshot or crystal structure in most cases
(Figure 4). Structural superimpositions show that the
generated samples do not clash with the superimposed ligand
from the target structure, highlighted in orange, and therefore
can be docked without hindrance, whereas for the closest train
crystal and the closest AF2 model, there are significant clashes
(Figure 4 and Table S3).
We used the physically based Rosetta GA-ligand docking

method to dock ligands onto all the models generated from the
VAE, the training examples, and the AF2 models. Consistent
with the above observations, the RMSD over the ligand atoms
was consistently lower for the ensemble generated samples
than that for the AF2 predictions and lower in most cases than
the docks to the MD ensembles (Figure 5 and Tables S4 and

S5). While consistent, the improvements were relatively small;
an improved ligand docking method could benefit more from
better modeling of the binding pocket, particularly for larger
bound partners, such as 6H46 with a DARPIN peptide and
5E95 with the NS1 synthetic binding protein.

■ DISCUSSION
Our VAE-based sampling approach enables extrapolation from
combinations of MD simulation snapshots initiated from
multiple known crystal structures to generate ensembles of
conformers that more closely resemble held-out crystal
structures. These ensembles can be generated with low
computational cost (compared to the input trajectories) and
sample alternative ligand binding site geometries for small

Figure 4. K-Ras cryptic pocket reconstruction evaluation. As in Figure 3, but with the C-alpha coordinate error to the test crystal structure
computed over only the binding site residues (defined as the residues within 5 Å in C-alpha coordinate space of the ligand binding pocket). The
structural superimpositions (top) show the ligand inhibitor docked in the target crystal with the cryptic binding pocket and the ligand highlighted
in orange on the target crystal structure.

Figure 5. Small molecule docking into VAE generated ensembles. Ligands from held-out crystal structures were docked into protein conformers
using the GA-ligand dock. Left: the held-out crystal structure complex (column 1) and the closest docked complex (in terms of coordinate RMSD
over the ligand atoms) among the training set crystal structures (column 2), the MD snapshots (column 3), the AlphaFold models (column 4), and
the VAE ensembles (column 5). The closest C-alpha RMSDs of the cryptic pocket of docked structures and lowest RMSD over ligand atoms
(ligand RMSD) are indicated on the bar charts on the right.
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molecule ligand docking. We go beyond previous studies using
VAEs to model the space sampled by MD simulations by
taking advantage of the sophisticated understanding of protein
sequence−structure relationships implicit in the AF2 and RF
deep neural networks in two ways: first, we use the AF2
predicted distance distributions to focus the latent space
sampling on regions consistent with the amino acid sequence,
and second, we use RF to generate 3D coordinates from the
output distance maps, which ensures physical realism and local
sequence-structure compatibility.
There are clear paths forward for improving our approach.

First, the reconstruction error of ∼1 Å C-alpha coordinate
RMSD for the known crystal structures is reasonable, but the
challenge is that the differences between many of the different
conformations are also of this order, limiting the ability of our
approach to precisely sample alternative states. VAE
architectures with lower reconstruction errors could likely
improve the method as could training the VAE on the FAPE
loss following RoseTTAfold coordinate generation (we did not
observe this in preliminary tests, but this warrants further
exploration). Second, while the AF2 CCE metric provides a
reasonable guidepost, AF2 is trained to generate single
structures, and hence, the use of this measure to guide
sampling could limit diversity. Better results could perhaps be
obtained by minimizing toward a predicted ensemble of
structures for a given target or subsampling the target MSA
during RoseTTAFold structure generation18 to introduce more
diversity in output structures. Despite these limitations, our
results show the utility of generative models for modeling the
conformational ensembles that determine protein function and
drugability.

■ METHODS
Input Data Setup and Incremental Learning. For the

input data set, we began by selecting distinct K-Ras
conformations deposited in the PDB that are at least an
angstrom (calculated over C-alpha coordinates) away from
each other as our ‘training set crystal structures.’ In addition to
the RMSD cutoff filter, we also selected conformations that
had a deposited/known inhibitor. We selected 20 K-Ras
structures with these criteria. We ran MD simulations for 10 ns
starting with each K-Ras crystal structure in the ligand-free
conformation (apo) and selected every 50 ps snapshot from 5
independent trajectories, giving a total of 1000 MD snapshots
for each starting structure. AMBER19SB force field19 with
TIP3P water model20 was used in a periodic boundary box.
Langevin dynamics was run at a constant temperature of 300 K
and pressure of 1 atm. For each target crystal, the training data
consisted of MD snapshots of the training set crystal structures
that were at least an angstrom (calculated over C-alpha
coordinates) away from it. The final 20 K-Ras conformations
that we chose were 4DSO, 5XCO, 5YXZ, 6PGP, 7EWB,
8AFD, 8DNI, 4LV6, 4L9W, 5V9O, 6B0V, 6N2K, 6P8W,
7RT1, 7U8H, 4Q21, 5V71, 5E95, 6H46, and 7C40. All 3D
structures were converted to 2D template features from
RoseTTAFold.5 The, 2D template features take the form of a
tensor capturing 6D transformations between every pair of
residues within a 20 Å range, specifically focusing on Cβ−Cβ
distances. These features are extracted from the Cartesian
coordinates of the N, Ca, C, and Cb atoms. The 6D
coordinates encompass pairwise distances and angles (omega,
theta, and phi). We chose to use the raw distance and

orientation values for training the model for a more
interpretable latent space.
After the first round of training using only MD snapshots as

the training data, we then generated 3000 samples from the
latent space that were optimized for the score metric and
passed the diversity filter (following the protocol laid out in the
Sampling in Latent Space Through Gradient Optimization of
Score Metric (CCE) section). These 3000 generated structures
were then concatenated on the initial MD snapshot training set
to form an ‘incremental learning’ training set of structures for
the model. Using this new set, for each target, the training runs
were set up again from scratch. Incremental learning in this
case benefits the VAE by providing a larger and more diverse
set of structures for exploration, improving the representation
of structural diversity, refining metric optimization, and
ultimately increasing the accuracy of the generated samples
to the target crystal.
Soft Introspective VAE Objective and Training. We

found best results using a Soft-Introspective VAE architec-
ture,21 which has been shown to have higher output resolution
than the vanilla VAE.22 The objective function of this model,
along with the traditional VAE objective function of
reconstruction loss and KL divergence, has adversarial losses
incorporated like GANs23 but is trained introspectively. In the
case of SI-VAEs, the encoder is the implicit ‘discriminator’
where it is induced to distinguish, through the ELBO
(evidence lower bound)20 values that it assigns to the real
and generated samples. The decoder is the ‘generator’ where it
is induced to generate samples to ‘fool’ the encoder
(discriminator). However, unlike GANs, the SI-VAE model
does not converge to the data distribution, but to an entropy-
regularized version of it.21

Using default parameters from Daniel et al. (2020),21

encoder was trained with the following objective (eq 1):

= · + +

·

+

L x z s L x x

s L z

z

( , ) ( ( ) KL( ))
1
2

exp( 2 ( (Dec( ))

KL(Dec( ))))

encoder rec r kl

rec r

neg (1)

where Lr(x) = reconstruction loss, s = 2, βrec = 10, βkl = 1 ×
10−3, βneg = latent dimension = 256, and Dec = trained decoder
of soft-introspective VAE.
The decoder was optimized using the following objective

(eq 2):

= · + ·

+ ·

L x z s L x s z

L z

( , ) ( ) ( KL(Dec( ))

(Dec( )))

r

r r

decoder rec kl

rec (2)

where Lr(x) = reconstruction loss, s = 2, βrec = 10, βkl = 1 ×
10−3, and γr = 1.0
The reconstruction loss was the mean-squared error loss

over all distances and orientations on the decoded template
features from the model.
The VAE architecture comprises 3 ResNet blocks in both

the encoder and decoder, with each block having 64 features.
The encoder incorporates convolutional layers with batch
normalization and leaky ReLU activation, followed by linear
layers, leading to a latent space of 256 dimensions. The
decoder consists of linear layers to reconstruct the input
features followed by transposed convolutions and ResNet
blocks. Leaky ReLU activation is applied throughout the
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network. Skip connections are implemented by using residual
connections in the ResNet blocks. Batch normalization is used
in both the encoder and decoder, with weight decay applied to
prevent overfitting. Transposed convolutions handle upsam-
pling in the decoder, and downsampling is achieved through
convolutional layers with a stride of 2 in the encoder. This
comprehensive architecture ensures effective encoding and
decoding for VAE, contributing to its overall performance and
reproducibility. The model was optimized using individual
optimizers for the encoder and decoder, both of which were
initialized with Adam (β1 = 0.9, β2 = 0.999) with learning rate
1 × 10−3, with an effective batch size of 64.
Sampling in Latent Space Through Gradient Opti-

mization of Score Metric (CCE). To obtain the optimized
structures using the trained decoder, we used gradient
optimization in the latent space. We first randomly sample n
numbers from the standard Gaussian distribution (mean = 0,
standard deviation = 1) with dimensions equal to that of the
latent space. The initialized latent space coordinates are set to
be trainable. Each sample is then decoded into its respective
template features, and Cb distances are discretized through
radial basis function to ensure back-propagation. The score
metric we chose to optimize is the minimum categorical cross-
entropy (CCE) among all 5 AF2 predicted Cb distograms of
the target structure and the generated Cb distances (eq 3). The
Adam optimizer modifies the latent space sample to minimize
this score metric. This process is repeated until convergence.
To ensure that diversity is maintained, the latent space
coordinates are restricted to explore only d (=10) euclidean
distance in the latent space from their initial starting
coordinates. The overall goal of this exploration technique is
to search the latent space to find a better solution near the
initial randomly generated coordinates. The final, converged
latent space coordinates are decoded into their respective
template features and passed into RoseTTAFold, along with
the target MSA for structural modeling.

= ·y y y yCCE to AF2 models ( , ) log( )
i

N

i i
(3)

where N is the number of categories in the predicted Cb
distograms, yi is the true distribution of Cb distances for target,
yi is the generated Cb distances.
Docking Protocol. For each docking case, the inhibitor

ligand was docked to the receptor model using the protein−
ligand docking method Rosetta GALigandDock.23 The ligand
atomic coordinates found in complex crystal structures were
extracted and used to prepare the complex for ligand docking.
The ligands were protonated and the AM1-BCC partial
charges were calculated using the tools provided by openbabel,
Antechamber in the AMBER suite, and UCSF Chimera.25 The
ligand information was converted to the parameter format that
is compatible with the Rosetta generic potential (GenFF.24).
The initial position of the ligand to initiate docking was
determined by superimposing the complex crystal structure on
the sampled protein backbone. Protein−ligand docking was
performed by allowing the side chains that are within 6A of the
ligand to be flexible. The receptor models were optimized in
advance using Rosetta FastRelax with high constraints on each
backbone. We ran 20 parallel docking runs for each receptor
model and ligand pair, and the combined results were
analyzed, where the best scoring generated sample was

compared to best scoring models of the training set, training
crystals, and AlphaFold models.
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