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Small macrocycles with four or fewer amino acids are among the most potent natural products
known, but there is currently no way to systematically generate such compounds. We describe a
computational method for identifying ordered macrocycles composed of alpha, beta, gamma, and
17 other amino acid backbone chemistries, which we used to predict 14.9 million closed cycles composed
of >42,000 monomer combinations. We chemically synthesized 18 macrocycles predicted to adopt
single low-energy states and determined their x-ray or nuclear magnetic resonance structures; 15 of
these were very close to the design models. We illustrate the therapeutic potential of these macrocycle
designs by developing selective inhibitors of three protein targets of current interest. By opening up
a vast space of readily synthesizable drug-like macrocycles, our results should considerably enhance
structure-based drug design.

M
acrocycles composed of combinations
of alpha, beta, gamma, delta, epsilon,
aminobenzoic, aminophenylacetic,
aminomethylbenzoic, and aminome-
thylpicolinic acids along with oxa-

zoles, thiazoles, oxazolidines, thiazolidines,
triazoles, and thioethers have bioactivities
ranging from antifungal or antibiotic proper-
ties to cancer cytotoxicity to pain relief (1–4).
Despite the diversity of bioactivities observed
in natural products of this class, exploration
of this space has been largely limited to var-
iants of those present in nature—indeed, most
macrocyclic drugs currently approved for use
in humans are derived from natural products
(5–7). The exploration of macrocycle chem-
ical space in large-scale display techniques
is largely constrained to those composed of
primarily a–amino acids (8, 9). Although cur-
rent diversity-oriented synthesis techniques
in principle enable the combinatorial synthe-
sis of 10s to 1000s of macrocycles from more-
exotic building blocks, these approaches are
challenged by limitations in available chem-
istries (10–13).
Computational methods that enable the

rapid and comprehensive exploration of the
space of possible macrocycles could greatly
facilitate the discovery of natural product–like
compounds with distinctive bioactivities, but
existing methods are similarly constrained
by the diversity of chemistries accessible to
them. Generative models derived from Alpha-
Fold andRoseTTAFold enable designing small
peptides composed of only the 20 canonical
a–amino acids (14, 15). Enumerative methods

that rely on random sampling of backbone
torsion angles to identify closed conforma-
tions of macrocycles become intractable when
attempting to enumerate macrocycles built
from more than a single backbone building
block (16, 17). There are nearly 60,000 two-,
three-, and four-residue combinations of the
22 backbone building blocks depicted in Fig. 1A,
and each of the 60,000 can be further diversified
with millions of combinations of different side
chains. This chemical space is far too large to
employ explicit conformational sampling to
identify the small fraction of linear sequences
that can be closed to form a cycle.
We set out to develop a computationally

tractable method for sampling the very large
chemical space of possible small macrocycles
(Fig. 1; see methods in the supplementary
materials). We devised a three-step approach
for carrying out this search given an input set
of monomers with widely varying chemical
structures. In the first step, we use an adaptive
grid-based search over the AIMNet (18, 19) po-
tential energy landscape for each monomer to
identify low-energy conformers. In the second
step, the rigid body transformations associ-
ated with these monomer conformations, and
all dipeptide conformations constructed from
pairwise combinations of these monomers,
are computed and stored in hash tables. In
the third step, macrocycles are rapidly and
systematically generated by identifying pairs
of entries in the hash tables for which the
combination of the rigid body transforms is
close to zero (so that, together, the fragments
form a cycle). This transform-based approach
allows rapid identification of two-, three-, or
four-residue macrocycles from every combina-
tion of the monomers depicted in fig. S1 in far
less compute time than would be required to
explicitly build backbone coordinates and eval-
uate closure for each of the different monomer
combinations. The approach is agnostic to the

number, identity, and connectivity of atoms
between the terminal amides, as only their
relative orientations in space are considered
for determining closure.

Enumeration of closed macrocycles

We used our approach to explore the very
large space of three- and four-residuemacro-
cycles constructed from 130 monomers and,
where appropriate, their enantiomers. These
monomers fall into 22 classes, hereafter refer-
red to as chemotypes, which are distinguished
by the atomic number and hybridization of
the atoms in the backbone of each monomer
(Fig. 1A); we refer to each chemotype by a
letter ( “a” for a–amino acids, “b” for b–amino
acids, “d” for d–amino acids, etc.; see Fig. 1A
caption). We constructed hash tables for all
low-energy conformers identified from the
potential energy surfaces for each of the 130
monomers (fig. S1) and from dimers con-
structed from these low-energy conformers,
and then we systematically searched through
all combinations of monomer-dimer, dimer-
monomer, and dimer-dimer hash tables, gen-
erating ensembles for each chemical for which
matching hash values could be found. These
hash tables contain nearly 9 billion conformers,
and generating all combinations explicitly to
check for closure would require building ∼1019

macrocycles; our hashing approach reduces the
complexity required to evaluate all of these
combinations from O(n2) to O(n).
Systematically searching through the hash

tables yielded 14.9 million closed macrocycles
containing 9- to 32-membered rings belonging
to 3494 three-residue and 38,544 four-residue
chemotypes (accounting for all circular permu-
tations of the cyclic chemotypes). The chemical
space spanned by the three- and four-residue
chemotypes greatly expands upon what has
been previously explored (Fig. 2A and fig. S3):
206 chemicals belonging to 23 chemotypes
have high-resolution structures deposited in
the Cambridge Structural Database (CSD), and
13,932 chemicals belonging to 397 chemotypes
are described in the PubChem database. Pre-
vious computationally designed macrocycles
have been built from just one chemotype
(a–amino acids).
Each chemotype samples distinct 3D shapes

(Fig. 2, B and C, and fig. S5). To characterize
the structural diversity for each chemotype,
we binned backbone torsion angles into 60°
bins and represented each macrocycle con-
former by a string of these bins. The many
thousands of conformers generated for the
macrocycles belonging to each chemotype for
the most part have only a handful of bin
strings, which likely reflect the torsional pref-
erences of the constituent amino acids. Prin-
cipal moment of inertia (PMI) analysis of
conformers spanning all the bin strings sam-
pled for each sequence revealed that different
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macrocycle chemotypes sample distinct regions
of shape space (20). In some cases—for ex-
ample, aaaa and aaac—the specific 3D shapes
sampled are quite restricted by the closure
constraint, regardless of sequence or torsional
diversity.
For eachmonomer sequence, the hash-based

closure generates an ensemble of macrocycle
structuremodels built from low-energymono-
mer conformers. Given sufficient compute
power, for each of these ensembles, we could
carry out minimization in AIMNet (to in-
corporate monomer–monomer interactions,
closure strain, etc.) and evaluate the degree
to which the sequence of monomers encodes

a single low-energy conformer by consider-
ing the energy landscape mapped by the set
of all low-energy conformers for the sequence
[using, for example, the Pnear approximation
to the Boltzmann weight (21)]. Indeed, we
found that the hash sampling procedure
coupled with AIMNet calculations can pre-
dict the structures of small macrocycles from
their sequence of monomers with backbone
root mean square deviations (RMSDs) be-
tween the predicted and experimental struc-
tures of <0.3Å (fig. S6). Carrying out the full
energy calculations on all 14 million gener-
ated ensembles is, however, not computa-
tionally tractable: ∼108 CPU-hours would be

needed to minimize the ∼23 billion conform-
ers sampled across the 14 million ensem-
bles. Instead, we focused on two subclasses
of closed macrocycles that we hypothesized
would be particularly likely to have single
ground states: (i) those with local interactions
strongly favoring one or a small number of
closed states and (ii) those containing non-
local hydrogen bonds between backbone
amides.

Locally encoded macrocycles

To identify the first locally encoded subclass,
we generated conformational ensembles from
hash tables containing only monomers within
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Fig. 1. Overview of macrocycle discovery approach. (A) Chemical structures
of monomeric chemotypes used to construct small drug-like macrocycles: amino
acids (a, b, g, d, and e), aminobenzoic acids (c, f, and j), aminomethylbenzoic
acids (h, k, and n), aminophenylacetic acids (i, l, and o), aminomethylphenyl-
acetic acids (m, p, and q), oxazolidines or thiazolidines (r), oxazoles or thiazoles
(t), thioethers (s), aminomethylpicolinic acids (u), and triazoles (v). The
backbone atoms are colored to highlight the differences between chemotypes.
The elaborated monomers used throughout this work that belong to these

chemotypes are presented in fig. S1. (B) Assembly and identification of low-
energy conformers of cyclo-(bpro-ben2-bpro-ben2) beginning from calculated
potential energy surfaces of Ac-bpro-NHMe and Ac-ben2-NMe2. Combining these
low-energy conformers yields thousands of Ac-bpro-ben2-NMe2 dimers. The
6D transform between the planes defined by the terminal amides is calculated for
each dimer and then binned. All pairs of dimers that close one another (indicated
by green in this example) are identified in a quick lookup, and the resulting
ensemble of macrocycle conformers is minimized.
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1 kcal/mol of their lowest energy state; such
macrocycles are torsionally optimized from
the perspective of the composite building
blocks. As the resulting macrocycle space is
still very large, for computational tractability,
we explored the use of the number of different
torsion bin strings sampled in these ensem-
bles as an indicator of the extent to which the
torsional biases together with the closure con-
straint are sufficient to specify a single low-
energy minimum. We found, after AIMNet
minimizations of a subset of the ensembles,
that in cases where five or fewer torsion bin
strings were sampled there were generally deep
energyminima in theAIMNet landscapes around

a single state with Pnear > 0.9 (fig. S7). We iden-
tified∼380,000 three- and four-residue sequen-
ces for which the hash-generated ensembles
contained >50 closed conformers that span-
ned five or fewer torsion bins and carried out
AIMNet minimization on ∼4800; roughly 85%
of these had single low-energy structures with
Pnear > 0.9.
We synthesized 13 such macrocycles and

were able to determine structures of 10 using
x-ray crystallography and nuclear magnetic
resonance (NMR) spectroscopy (Fig. 3 and
fig. S8). Six macrocycles grew crystals in vapor
diffusion experiments of sufficient quality for
structure determination using direct meth-

ods; seven macrocycles had NMR spectra in
deuterated dimethyl sulfoxide (DMSO-d6)
with sufficient dispersion to enable the un-
ambiguous assignment of key rotating frame
Overhauser effects (ROEs) in ROESY spectra—
for these, we generated 3D models by relax-
ing conformers generated from integrated
ROE-based distance constraints in uncon-
strained molecular dynamics (MD) simulations
and selecting the lowest-energy conformers
(see methods). Eight of the 11 experimentally
determined structures superimpose on their
respective designmodels with RMSDs of 0.8 Å
or less, with small differences in ring pucker-
ing of five- and six-membered rings, in single
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Fig. 2. Chemical and structural diversity of small de novo macrocycles.
(A) Distribution of sequences sampled across all four-residue macrocyclic chemo-
types. The 15 most populated chemotypes are labeled. (B) Torsional diversity of
sampled four-residue macrocycle chemotypes. Heatmap pixels represent four-residue
macrocycle chemotypes generated from the two residue fragments on the x and y
axes and are colored by the number of backbone torsion bins sampled across all

sequences belonging to that chemotype. The inset at top right shows the full map over
all 224 monomer chemotype combinations; a 10-by-10 subset of this is blown up in
the main panel for clarity. Examples of two representative torsion bins are shown in
the boxes at left for two chemotypes. (C) Principal moment of inertia distributions
(second row) and representative conformers (bottom) sampled by macrocycles
constructed from different chemotypes (top row).
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Fig. 3. X-ray and NMR structures of locally encoded macrocycles are very
close to the design models. (A to E) Crystal structures. Column 1, chemical
structure colored by chemotype; column 2, design model; column 3, surface
representation of design models; column 4, superposition of the design model
(green) and experimentally determined coordinates (gray); column 5, chemical
properties and apparent permeabilities; the number of hydrogen bond donors
(HBDonor) and hydrogen bond acceptors (HBAcceptor) was determined using

RDKit. ahah 2 was modeled with phenylalanines and chemically synthesized with
pyridylalanines (E). mw, molecular weight. (F to H) NMR structures. In column 2, in
place of the design model, we show ROEs used for distance-constrained
ensemble generation. Blue arrows, distances < 2.5 Å; green arrows, distances
between 2.5 and 3.5 Å; black arrows, distances > 3.5 Å. Experimental structure to
design model RMSDs are reported over all backbone atoms for x-ray structures
and over ensemble average backbone coordinates for NMR structures.
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side-chain torsion angles, and in pairs of back-
bone torsion angles [larger differences were ob-
served for the other three macrocycles (fig. S8)].
We were able to determine both x-ray crystal-
lographic structures and NMR structures for
twoof the 11macrocycles. In these two cases, both
theNMRstructureand thex-ray crystallographic
structures are very similar to their respective
design models and to each other (fig. S9).
The 10 structures (Fig. 3) are built from a

total of eight different monomer chemotypes
arranged into six macrocycle chemotypes. De-
sign aas 1 contains two hydrogen bond inter-
actions: one between backbone amides and
the second involving the primary amide of the
s monomer. Both aaammacrocycles andmacro-
cycle akak 1 contain proline-like monomers
sampling cis-amides. In the NMR structures
of both aaam macrocycles, these motifs lead
to strong ROEs between the Ca proton of the
proline-like monomer and the Ca proton of
the monomer immediately N-terminal to it;
these macrocycles contain a–amino acids in
very extended b sheet–like conformations, and
the cis-amides rapidly turn the backbone to
enable closure (fig. S10).Macrocycle aaaq 1 con-
tains an extended pentafluorophenylalanine
residue that buries its amide NH against the
4-aminomethylphenylacetic acid, thereby shield-
ing it from solvent and causing the amide NH
to shift downfield with a temperature shift co-
efficient (Tcoeff) of 0.9 parts per billion (ppb)/K
(the backbone amides in the remainingmono-
mers of this design shift upfield with Tcoeff
values all less than −5.0 ppb/K; see supplemen-
tary data). The aaam 1, aaam 2, and aaaq 1 de-
signs provide three different ways to mimic
the extended conformations of poly-a–amino
acid peptides, such as those adopted by many
protease and kinase substrates (22, 23), and
could be useful for targeting these enzymes.

Hydrogen bond–stabilized macrocycles

To identify the second class of macrocycles con-
taining transannular hydrogen bonds, we con-
structed dimer hash tables with conformers for
which the terminal amides make a hydrogen
bond, increasing themonomer energy cutoff for
hash table inclusion to increase sampling of
these rare interactions. To reduce local strain,
after identification of macrocycle chemotypes
that contained long-range hydrogen bonding in-
teractions, we chose monomer identities and
side-chain rotamers with low energy given the
backbone torsionangles. After hash table–based
ensemble enumeration and AIMNet minimiza-
tion, we selected for experimental character-
ization designs with much lower energy than
predicted by a simple monomer composition–
based model (see methods).
We prepared 17macrocycles designed to con-

tain long-range hydrogen bonding interactions
andwere able to determine the high-resolution
structures of seven (Fig. 4). Four macrocycles

grew crystals in vapor diffusion experiments
of sufficient quality for structure determina-
tion using direct methods; three macrocycles
displayed NMR spectra with sufficient disper-
sion to facilitate the unambiguous assignment
of key ROEs in ROESY spectra. Eight of the
17macrocycles displayed 1D-NMR inDMSO-d6,
indicative of a mixture of states; six of these
collapse into a single major species in deuter-
ated chloroform (CDCl3). Although only three
macrocycles showed sufficient dispersion for
unambiguous assignment, 10 of the 17 had suf-
ficient dispersion to enable measuring amide
Tcoeff values that are consistent with the pres-
ence of the designed transannular hydrogen
bonds in all 10 cases (supplementary data). All
seven of the experimentally determined struc-
tures superimpose on their respective design
models with RMSDs of <0.8 Å. Like the mac-
rocycles described in Fig. 3, differences be-
tween the designedmodel and the experimental
structures of these hydrogen bond–containing
macrocycles involve differences in ring-puckering
and 180° rotation of backbone amides.
The macrocycles depicted in Fig. 4 are con-

structed from eight different monomer chemo-
types arranged into sixmacrocyclic chemotypes
and are stabilized by a transannular hydrogen
bond between backbone amides involving non-
a–amino acids. Macrocycle aalm 1 contains a
hydrogen-bonding fragment built frommono-
mers with predominantly sp2 hybridized atoms
in the backbone (lm), macrocycle aagb 1 con-
tains a hydrogen-bonding fragment whose
backbone containsmanymore sp3 hybridized
atoms than present in a–amino acid back-
bones (gb), and macrocycle aabi 2 contains a
hydrogen-bonding fragment that blends these
two features (bi). Six of the macrocycles con-
tain contiguous fragments of a–amino acids
that mimic b-turns common in protein–protein
interfaces (24–27): The designed macrocycles
belonging to the aagb, aabi, and aaam chemo-
types contain turns akin to type I b-turns, and
the aalm-based macrocycle contains a turn
akin to the type II b-turn. The N-methylated
amino acid residues present in both aaap-based
macrocycles adopt cis-amides, resulting in
type VI–like turns. Despite the presence of these
obvious b-turn–like features in the aaam 6
macrocycle, the spacing and orientation of the
two phenylalanine side chains mimic the spac-
ing and orientation of side chains positioned at i
and i+4 of an a helix (fig. S11; this spacing is not
present in either aaap 3 or aaap 4, which are
isomers of aaam 6 at the level of the backbone
atoms). This mimicry of b-turn and helical ar-
rangements should be useful in targeting pro-
teins recognizing these structural elements.
Wemeasured the passivemembrane diffusion

of all 29 macrocycles designed with the two
approaches using the parallel artificial mem-
brane permeability assay (PAMPA) [Figs. 3 and
4 and fig. S12; roughly half of the 14.9 mil-

lion closed macrocycles satisfy the rule-of-
five (Ro5) criteria for drug-like compounds;
fig. S4 (28)]. Almost all of the macrocycles
were quite membrane permeable: 16 of the
29 had log(Papp) values (Papp is the apparent
permeability) greater than −6, and only three
were not detected in the acceptor well. Under
the same conditions, the small-molecule drug
propranolol achieved log(Papp) of −5.36 (fig.
S12). As expected, designs with exposed polar
groups, particularly side-chain hydroxyls and
primary amides, had lower permeabilities.
Overall, the hydrogen bond–containing de-
signs were more permeable than the torsion-
ally optimized designs, likely owing to fewer
exposed backbone polar groups (29–31). The
vast majority of the macrocycles are stable to
serum proteases; the half-lives in reconstituted
serum of all but a single macrocycle were
>24 hours (fig. S19).

Designing macrocyclic inhibitors of
protein targets

We sought to use the above methodology to
identify chemically diverse macrocycles capa-
ble of inhibiting protein targets of interest
starting from known inhibitors with limited
potency and/or selectivity. We used a motif
scaffolding approach to identity inhibitors of
histone deacetylase 6 (HDAC6) and Mpro, the
main protease of severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2). We started
from dipeptide fragments derived from the
previously described crystal structure of cyclic
peptide des4.3.1 bound to HDAC6 and the
crystal structure of the linear C-terminal pro-
sequence bound toMpro (seemethods) (32, 33).
We identified candidate macrocyclic inhib-
itors by rapidly searching for closures across
all hydrogen bond–containing hash tables with
these dipeptides, building the resulting four-
residue macrocycles in their respective pock-
ets, and discarding candidates that clashed
with the surrounding protein residues. This
search embeds the starting dipeptide motif
in nearly 38,000 possible macrocycles whose
3D coordinates are constructed in the context
of the target protein binding site. We priori-
tized synthesizing candidate macrocycles on
the basis of three criteria: (i) the degree to
which the designed sequence preorganizes the
dipeptide fragment into the binding-competent
conformation assessed by Pnear analysis of
the generated ensembles, (ii) recovery of the
designed complex in ligand docking simu-
lations performed in GALigandDock (34), and
(iii) predicted binding free energy of the de-
signed sequence compared with that of the
initial dipeptide motif. After filtering the can-
didate macrocycles with the above criteria, we
synthesized 11 macrocycles belonging to six
chemotypes designed to inhibit HDAC6 and
six macrocycles belonging to five chemotypes
designed to inhibit Mpro.
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Ten of the 11 chemically synthesized macro-
cycles displayed median inhibitory concentra-
tion (IC50) values against HDAC6 ranging from
1.5 to 70 nM, a 10-fold to 400-fold improve-
ment in potency compared with theminimal
alkylthiol warhead present in each design (Fig. 5,
A to C; fig. S20; and table S11). The most
selective of these macrocycles belong to three
distinct chemotypes and are 100-fold to >1000-
fold more selective for HDAC6 over the other
HDACs tested. The observed selectivity of the

designed macrocycle is comparable to several
advancedHDAC6-selective inhibitors (table S11).
Of the six designed Mpro inhibitors, only one,
belonging to the aabi chemotype, displayed a
modest IC50 of ∼16 mM (Fig. 5D; fig. S21; and
table S12). We subsequently constructed and
redocked a focused in silico library of homo-
logs of this modest inhibitor using GALigand-
Dock keeping the backbone chemistry and its
predicted structure unchanged and varying the
side chains. From this in silico library, we se-

lected and chemically synthesized 27 homologs,
17 of which displayed IC50 values against Mpro
ranging from 4 to 0.88 mM (table S12). Linear
analogs of three active designs showed IC50
values of >200 mM, supporting the importance
of macrocyclization of the sequence.
We next sought to identify macrocycles that

inhibit the interaction of Bak (BCL2 homolo-
gous antagonist/killer) and MCL1 (myeloid
cell leukemia-1) using the large number of hash-
generated macrocycle ensembles as an in silico
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Fig. 4. X-ray crystallographic and NMR ensemble structures of hydrogen bond–containing macrocycles are very close to their design models. (A to G) Columns
1 to 5 are as in Fig. 3. Column 2 rows in (E) to (G): ROEs used for distance-constrained ensemble generation. Arrows are as in Fig. 3. Red amide NH indicates protons
with Tcoeff > −4.5 pbb/K.

RESEARCH | RESEARCH ARTICLE

Salveson et al., Science 384, 420–428 (2024) 26 April 2024 6 of 9

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of W

ashington on A
pril 25, 2024



virtual library. We generated MCL1-directed vir-
tual libraries by first modifying each macrocycle
to contain a side-chain dichlorobenzene moiety
[a functional group previously described to in-
teract with MCL1 at the MCL:Bak interface
(35)] and then mutated the remaining po-
sitions of the macrocycles to a host of other

noncanonical a–amino acids, peptoids, and
b3–amino acids beyond those for which we
explicitly generated energy landscapes (see
methods). From a virtual library of ∼2.7 million
compounds, we prioritized macrocycles for
synthesis on the basis of the calculated bind-
ing free energy resulting from GALigandDock

and visual inspection. Three of the initial 18 syn-
thesized macrocycles showed inhibitory activity
near or below 50 mM in the Förster resonance
energy transfer assay (table S13). We subse-
quently generated and docked a larger virtual
library of ∼27 million macrocycles and identi-
fied 12 active designs from the 30 synthesized
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Fig. 5. De novo design of macrocycles that inhibit enzymes and protein–
protein interactions. (A to C) Chemical structures (left), design models (middle),
and concentration dependence of inhibition (right) of HDAC6 (red) and HDACs
1 (closed square), 2 (closed triangle), 3 (closed inverted triangle), 4 (closed diamond),
5 (open circle), 7 (open square), 8 (open triangle), 9 (open inverted triangle), and
11 (open diamond) by designed macrocyclic HDAC inhibitors (HDACi). The macro-

cycles were designed to contain a nonselective alkylthiol moiety. The designed
macrocycles show 100-fold to >1000-fold greater selectivity for HDAC6 than for other
HDACs. (D) Chemical structures and design models of the initial hit versus Mpro
(left) and most potent (right) designed macrocycle identified from a focused
in silico library of mutants of the initial hit. (E) Chemical structures and design models
of two of the most potent designed MCL1: Bak PPI inhibitors.
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macrocycles (Fig. 5E; figs. S22 and S23; and
table S13). We suspect that the higher in silico
and experimental success of the larger library
is due to a greater diversity of shapes repre-
sented (36); the small library contained macro-
cycles belonging to only 22 chemotypes,whereas
the larger library contained macrocycles de-
rived from 3991 different chemotypes. The
identified hits spanned IC50 values from tens
ofmicromolar to hundreds of nanomolar, with
the most potent being 220 nM.

Discussion

Small macrocycles found in nature generally
populate a mixture of conformers in solution.
Our approach enables the rapid exploration
of the large and chemically diversemacrocycle
space to identify those that populate primarily
a single conformer. The two strategies used
here—using conformationally restricted build-
ing blocks to favor specific geometries or in-
corporating longer-range hydrogen bonding
interactions—both resulted inmacrocycles with
well-defined structures [another strategy is
to introduce large barriers to backbone bond
rotation (37)]. Our observation that the chemo-
type of a macrocycle, regardless of its side-
chain identity, largely defines its globular shape
suggests that diversity-oriented synthesismeth-
odology seeking to span awide range of shapes
should focus on expanding the number of che-
motypes that can be synthesized combinato-
rially as opposed to the diversity of side chains
arrayed on a single or small number of chemo-
types [the importance ofmacrocycle chemotype
diversity has been noted in DNA-encoded li-
braries (38)]. Encouragingly for future therapeu-
tic applications, nearly half of themacrocycles
we characterized are membrane permeable,
with log(Papp) > −6.0 in PAMPA, and this frac-
tion would likely have been considerably higher
had we explicitly designed for permeability,
for example, by disfavoring compounds with
exposed NH groups. The chemical space can
readily be expanded by including more-diverse
side chains or additional noncanonical back-
bones in the hashing step, and almost all com-
pounds in this class can be readily synthesized
using standard manual Fmoc-based solid-phase
peptide synthesis followed by solution-phase
cyclization (see methods). Our binder design
results show that diverse biochemical functions
can be introduced into de novo designed small
macrocycles with binding selectivities (as in the
HDAC6 case) rivaling those of advanced small-
molecule therapeutic candidates.
The very large and diverse set of drug-like

compounds described here opens up exciting
avenues in drug discovery. The rigidity of the
molecules could translate into higher on-target
affinity, owing to the lower entropy loss upon
target binding, and lower off-target binding,
as there are fewer alternative states (39–43);
Ro5 compliance during generation should lead

to membrane permeability and other desir-
able pharmacological properties. Libraries of
Ro5-compliant macrocycles populating single
states can be screened in silico and/or exper-
imentally to identify new lead compounds bind-
ing targets of interest. For targets for which
small-molecule fragments are already known
to bind, custom rigid macrocycle libraries in-
corporating this specific functionality can be
readily generated by searching the hash tables
for all closed macrocycles that incorporate
the fragments. These approaches should allow
systematic discovery of new macrocyclic ther-
apeutic candidates.
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