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Machine learning-guided engineering  
of genetically encoded fluorescent  
calcium indicators

Sarah J. Wait    1,2, Marc Expòsit1,3,13, Sophia Lin4,5,13, Michael Rappleye    2,6,7, 
Justin Daho Lee1,2, Samuel A. Colby1, Lily Torp2,6, Anthony Asencio2,6, 
Annette Smith2, Michael Regnier2,6, Farid Moussavi-Harami    2,8,9, 
David Baker3,10,11, Christina K. Kim4,5 & Andre Berndt    1,2,6,12 

Here we used machine learning to engineer genetically encoded fluorescent 
indicators, protein-based sensors critical for real-time monitoring of 
biological activity. We used machine learning to predict the outcomes 
of sensor mutagenesis by analyzing established libraries that link sensor 
sequences to functions. Using the GCaMP calcium indicator as a scaffold, 
we developed an ensemble of three regression models trained on 
experimentally derived GCaMP mutation libraries. The trained ensemble 
performed an in silico functional screen on 1,423 novel, uncharacterized 
GCaMP variants. As a result, we identified the ensemble-derived GCaMP 
(eGCaMP) variants, eGCaMP and eGCaMP+, which achieve both faster 
kinetics and larger ∆F/F0 responses upon stimulation than previously 
published fast variants. Furthermore, we identified a combinatorial 
mutation with extraordinary dynamic range, eGCaMP2+, which outperforms 
the tested sixth-, seventh- and eighth-generation GCaMPs. These findings 
demonstrate the value of machine learning as a tool to facilitate the efficient 
engineering of proteins for desired biophysical characteristics.

Genetically encoded fluorescent indicators (GEFIs) are protein-based 
sensors that allosterically fuse fluorescent reporters to ligand-binding 
domains. Ligand binding induces changes in fluorescence intensity, 
enabling the monitoring of biological compounds such as intracellular 
second messengers or neuromodulators in freely moving animals1. 
GEFIs have become essential tools in neuroscience, with sensors for 
calcium, dopamine, norepinephrine, endocannabinoids and opioids, 

among others2–11. To match each sensor’s characteristics, like dynamic 
range or kinetics, with experimental needs, GEFIs require extensive 
engineering. Current methods, such as trial-and-error mutagenesis, 
often require substantial time and resource commitments. Recently, 
machine learning (ML) algorithms have shown proficiency in engi-
neering enzymes, fluorescent proteins and optogenetic tools12–17. In 
this study, we developed an ML approach to predict the biophysical 
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generation GCaMP sensor, GCaMP6s4 (1AP ∆F/F0 and τ1/2 = 1.0), we can 
see a broad distribution of variant capabilities and mutation locations 
within the GCaMP structure (Fig. 1b,c and Supplementary Fig. 1a). We 
found the sequence similarity is not deterministic for ∆F/F0 or kinet-
ics, as seen by the variability in mutation impact regardless of GCaMP 
generation (Supplementary Fig. 1b,d).

Before training, the variants in the library were randomly assigned 
to training and testing sets at an 80/20 ratio for cross-validation, where 
the mean values between the training and test sets were not significantly 
different (Supplementary Fig. 1c,e). We tested three methods of encod-
ing the mutation dataset: one-hot encoding, label encoding and func-
tional encoding with amino acid property datasets found on AAindex21. 
AAindex comprises 554 complete matrices describing different amino 
acid properties, such as size, polarity and hydrophobicity. Encoding with 
AAindex property matrices improved the cross-validation R2 by an aver-
age of 20% over one-hot encoded or label-encoded libraries (Supplemen-
tary Fig. 2c). We tested the 554 AAindex property datasets to determine 
which properties led to the largest R2 values during cross-validation. The 
predictions from the top-five performing datasets were used to form 
the final ensemble’s predictions (Fig. 1d and Supplementary Fig. 2a). We 
found that amino acid property datasets that described hydrophobicity 
were commonly associated with higher-performing predictive capa-
bilities in the ∆F/F0 model (Supplementary Fig. 2b–d; Supplementary 

characteristics of previously untested mutations. We selected the cal-
cium indicator GCaMP as a protein sensor scaffold to develop this plat-
form. GCaMP is a chimeric protein that consists of circularly permuted 
GFP (cpGFP) fused to calmodulin (CaM) and calmodulin-binding pep-
tide (CBP). GCaMP sensors have been widely adopted in neuroscience 
research and have undergone several generations of improvements to 
optimize their capabilities2–6,18,19. Thus, datasets from the functional 
characterization of more than a thousand mutants are publicly avail-
able4,5. Using these data, we developed a stacked ML ensemble that 
predicted the functional characteristics of untested GCaMP variants. 
Using mutations proposed by the ensemble, we identified variants that 
accelerate the off-rate kinetics and increase the change in fluorescence 
over baseline (∆F/F0) upon activation. We demonstrated that ML ensem-
bles can effectively learn from complex mutational datasets and that we 
can harness their predictive power to guide protein engineering efforts.

Results
Description of ensemble development
Our training data consisted of 1,078 characterized mutants derived 
from cultured neuron screening4,5,20. Within the library, we focused 
on the change in fluorescence over baseline (∆F/F0) in response to one 
action potential (AP; 1AP ∆F/F0) and decay kinetics of the sensor signal 
(τ1/2, decay half-time after 10 APs; Fig. 1a). When normalized to the sixth 
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Fig. 1 | Description of variant library, computational approach and ensemble 
cross-validation. a, Description of the biophysical attributes of the GCaMP 
sensor targeted for engineering: fluorescence change (∆F/F0) and kinetics (τ1/2). 
b, Scatter plot depicts the 1AP ∆F/F0 by the τ1/2 for each of the 1,078 variants in the 
variant library4,5. Each value was normalized to GCaMP6s as 1.0 for 1AP ∆F/F0 and 
τ1/2. Published variants are indicated with colored dots and text labels.  
c, Crystal structure of GCaMP3–D380Y (Protein Data Bank (PDB): 3SG3, gray) 
with 75 residues (red) in which mutation information exists in the variant 
library4,5. These 75 residues indicate the positions used to form the novel library. 
Brackets indicate the GCaMP domains CaM, CBP and cpGFP. d, Overview of 
model training schema. The variant library4,5 was split randomly into an 80% 

training set and a 20% testing set. The data were encoded using the AAindex 
property datasets. The train set underwent feature selection before being 
optimized using a grid search of key hyperparameters for each model. The 
optimized model was used to form predictions on the 20% test set and the 
novel library. The final test set and novel library predictions were cached for 
downstream analysis. e, The scatter contains the true ∆F/F0 value by the predicted 
∆F/F0 value made by the ensemble for each variant in the test set. The dotted 
line depicts R2 = 1.0. The R2 value denotes the coefficient of determination of the 
scatter data. f, The scatter contains the true τ1/2 value by the predicted τ1/2 value 
made by the ensemble for each variant in the test set. The dotted line depicts 
R2 = 1.0. The R2 value denotes the coefficient of determination of the scatter data.
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Table 1). In comparison, amino acid property datasets associated with 
protein folding and energetics were common amongst the higher per-
forming predictive capabilities in the kinetics model (Supplementary 
Fig. 2b–d and Supplementary Table 2).

To improve prediction capabilities, we performed a stacked 
ensemble comprising a random forest regressor (RFR), K-neighbors 
regressor (KNR) and multi-layer perceptron network regressor 
(MPNR)22,23. The ensemble’s predictions for each mutation are the 
average response from the 15 models (5 amino acid properties × 3 
regressor types). During cross-validation, the ensembles for ∆F/F0 and 
kinetics achieved R2 values greater than 0.80 for predictions made on 
the test dataset (Fig. 1e,f). The ∆F/F0 ensemble achieved a higher R2 
value than any models contributing to the prediction, demonstrating 
the beneficial collaborative effect of ensembling (Supplementary  
Fig. 2c).

Analysis of ensemble predictions
We utilized the trained ensembles to predict a novel library’s ∆F/F0 
and kinetics. This library substituted each of the 75 positions previ-
ously mutated in the dataset with the remaining 19 amino acids in the 
seventh-generation GECI jGCaMP7s (Fig. 1c). After removing redundan-
cies, the library contained 1,423 untested variants. We calculated the 
‘predicted change from jGCaMP7s’ and performed an unpaired t-test 
between the 15 predictions made for each mutant (1 from each con-
tributor model) and the 15 predictions made for jGCaMP7s. Using this 
method, we identified mutations that were predicted to substantially 
affect the ∆F/F0 and the kinetics of jGCaMP7s (Fig. 2a–c). In our model 
training, the jGCaMP7s sequence was purposely withheld. Neverthe-
less, the prediction ranked jGCaMP7s within the top 15% of variants for 
a large ∆F/F0 response. Consequently, the ensemble predicted most 
variants, such as L317E, L317K, L317N, L317D and L317H (<−2.2 a.u.), 
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Fig. 2 | In vitro verification of ensemble predictions. a, Brief description of 
prediction analysis. The stacked ensemble predictions were formed by averaging 
the predictions from the 15 contributor models for each variant (Predn) in the 
novel library. The raw output is the prediction (Predn) for each mutant, with a 
prediction for jGCaMP7s as a benchmark. (1) The volcano plots were formed by 
subtracting the benchmark jGCaMP7s prediction from the variant prediction 
(x axis) and P values were derived by performing an unpaired t-test between the 
15 predictions for variantn and the 15 predictions for jGCaMP7s. (2) The bubble 
plot indicates the number of times a given residue appears in the top 2.5% and 
bottom 2.5% of predictions. b, Volcano plots depicting the ensemble’s prediction 
for a given mutation change in fluorescent response from jGCaMP7s (x axis) and 
the log10P of the given prediction. P values were calculated using a two-sided 

unpaired t-test on ensemble predictions (15 models) for jGCaMP7s and the given 
mutation. Right: Kernel density estimation depicts the spread of log10P obtained. 
Dotted lines are included at indicated σ values. c, Volcano plots depicting the 
ensemble’s prediction for given mutations change kinetic capability from 
jGCaMP7s (x axis) and the log10P of the given prediction. P values were derived 
using a two-sided unpaired t-test on ensemble prediction (15 models) for 
jGCaMP7s and given mutation. Right: Kernel density estimation depicts the 
spread of log10P obtained. Dotted lines are included at indicated standard 
deviations (σ). d, Bubble plot depicting the number of times each residue (x axis) 
appeared in the top 2.5% and bottom 2.5% of predicted values for each regressor 
that constitute the ∆F/F0 ensemble and the kinetics (τ1/2) ensemble.
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to have a decreased ∆F/F0, while variants such as G392F, G392I and 
G392W were all predicted to have an increased (>0.25 a.u.) response 
(Fig. 2b). L317E, L317D, L317N and L317K were all predicted to decay 
faster (<−0.6 a.u.) than jGCaMP7s, while variants such as A390Y, L302D 
and L302C were predicted to decay slower (>0.3 a.u.; Fig. 2c). All these 
variants fell outside 99.7% (±3 standard deviations (σ)) of –log10P, except 
for large ∆F/F0 predictions, indicating that the 15 contributing models 
displayed confidence in the effect of the mutation (±3σ, ∆F/F0: 0.612; 
kinetics: 0.242; Fig. 2b,c).

Next, we identified the residues whose mutations had the strong-
est positive or negative impact on ∆F/F0 and kinetics. We isolated the 

top and bottom 2.5% of the ranked predictions and counted the times 
each residue appeared (Fig. 2a(ii)). We designated these as ‘impactful 
residues,’ as these residue positions were predicted to alter protein 
function substantially. We found that 22% and 18% of the impactful 
mutations in the ∆F/F0 and kinetics libraries were at L317 (Fig. 2d), 
despite only 1.3% of variants in the novel library harboring an L317 
mutation. Similarly, L302 predictions accounted for 14% and 16% of 
the impactful mutations of the ∆F/F0 and kinetics libraries (Fig. 2d). 
L317 is located on the interface between CaM and CBP, and L302 is 
on the linker between CaM and cpGFP (Supplementary Fig. 3a–c). By 
contrast, residue A390 was 4.5 times more impactful in the kinetics 
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predictions than in the ∆F/F0 predictions. Like L317, A390 is located 
on the interface between CaM and CBP but on the opposing side (Sup-
plementary Fig. 3d). Impactful residues also tended to cluster. For 
instance, the kinetics library displays 38% prediction prevalence sur-
rounding residue clusters Y380, R381, R383 and L302, P303, Q305. The 
prevalence of these residues is 2.38-fold higher in kinetics than the 
∆F/F0 predictions. These residues are located close to each other in 
the residue linker and CaM (Supplementary Fig. 3e). Within the ∆F/F0 
predictions, residue clusters N44, K45, H48, V52 and M374, M378, K379 
displayed 31% prediction prevalence, 3.9-fold higher than the kinetics 
library. Interestingly, we observed that all these residues face inward 
toward one another, suggesting they may be involved in interactions 
essential for ∆F/F0 (Supplementary Fig. 3f).

In vitro performance of ensemble predictions
We benchmarked 17 predicted mutations in vitro by stimulating human 
embryonic kidney cells (HEK293) cells with acetylcholine2,3,24–26 (Fig. 3a). 
The ideal configuration would be to evaluate them in the same man-
ner as the training data. However, owing to the lower throughput of 
cultured neuron screens, we first performed an intermediate acetyl-
choline assay step in HEK293 cells. We found the acetylcholine assay 

approximated variant performances accurately before cultured neuron 
assays (Supplementary Fig. 4a–f).

We identified four mutations (P303W, P303F, G392F and G392W) 
that displayed their predicted increase in ∆F/F0 as well as five muta-
tions (A390Y, L302C, L302H, L302G and L302R) that displayed the pre-
dicted decrease compared with jGCaMP7s (Fig. 3b and Supplementary 
Table 3). The overall accuracy (equation (6)) of the ∆F/F0 model is 0.56 
(Supplementary Fig. 5c and Supplementary Table 4). The score is largely 
affected by L317 mutations, which are predicted to decrease ∆F/F0 
but display the opposite in vitro. Within the training data, the GCaMP 
variants that contained a 317E/H/K/N mutation had decreased ∆F/F0 
compared with jGCaMP7s, an association in which the ensemble learned 
(Supplementary Fig. 6a). However, each previously characterized vari-
ant that contained a mutation at residue 317 also contained an alanine at 
residue 52 (Supplementary Table 6). When we tested the L317H variant 
in jGCaMP7f, which contains A52, we observed the loss of ∆F/F0 capabili-
ties that the model predicted (Supplementary Fig. 6b). The mutations 
that changed kinetics largely aligned with the ensemble predictions, 
with an accuracy score of 0.75 (Fig. 3c, Supplementary Fig. 5).

Variants P303D, L317E, L317H, L317K, L317N, G392F and G392W 
were predicted to accelerate decay kinetics. Of these variants, 85% 
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Fig. 4 | Identification of eGCaMP+ and eGCaMP2+ in HEK293 cells.  
a, Fluorescent responses (∆F/F0) upon 10 µM acetylcholine stimulation. WT 
indicates jGCaMP7s (7s) or jGCaMP8f (8f). Mut indicates L317H in jGCaMP7s or 
A289H in jGCaMP8f. Data are normalized to WT (n, number of cells; error bars 
are mean ± s.e.m.; ****P < 0.0001 (unpaired t-test, two-tailed)). b, Decay kinetics 
(τ) upon 10 µM acetylcholine. Mutation values (Mut) are normalized to WT 
(n = number of cells; error bars are mean ± s.e.m.; *P = 0.0161, ****P = <0.0001 
(unpaired t-test, two-tailed)). c, Crystal structure of GCaMP3–D380Y (PDB: 
3SG3, gray) with Q305 and linker residues P303 and L302 colored in dark 
blue, CaM and fluorescent reporter cpGFP. d, A390 and G392 are colored dark 
blue. Bound Ca2+ (green spheres) in the EF-Hand motifs and the CBP (orange) 
are included. e, ∆F/F0 of combinatorial mutations of jGCaMP7s upon 10 µM 
acetylcholine, sorted in order of performance and identified on the x axis of f. 

(n, number of cells; bars depict mean; error bars show bootstrapped 95% CI; 
****P < 0.0001 (unpaired t-test, two-tailed)). f, Performance score (ratio of SNR/τ) 
for combinatorial jGCaMP7s mutations upon 10 µM acetylcholine. Mutations are 
sorted by ∆F/F0 performance. (n, number of cells; bars depict mean; error bars 
show bootstrapped 95% CI49). g, ∆F/F0 of GCaMP variants stimulated by different 
acetylcholine concentrations (x axis). eGCaMP is jGCaMP7s L317H, eGCaMP2+ 
is jGCaMP7s L317H/Q305D, and eGCaMP+ is jGCaMP8f A289H. Error bars are 
mean ± s.e.m. Solid line depicts nonlinear data fits. (*P < 0.05; **P = 0.0010; 
***P = 0.0007; ****P < 0.0001, unpaired t-test between variants and jGCaMP7f, 
two-tailed). h, Kinetic decay (τ; equation (4)) of the indicated variants stimulated 
with 5 µM acetylcholine. Plotted points indicate the mean τ for each variant to the 
indicated stimuli, and error bars are mean ± s.e.m. Four independent biological 
replicates per concentration + construct (g,h).
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showed shorter decay times than jGCaMP7s, with L317K displaying 
a decay time that was fivefold faster than jGCaMP7s (Supplementary 
Table 5). Additionally, 71% of the variants predicted to decrease decay 
(L302C, L302D, L302G, L302H, L302R, A390R and A390Y) demon-
strated the predicted behavior, with L302G exhibiting a decay time 
2.18-fold longer than jGCaMP7s. Residue L317 is known to be involved 
in extensive hydrophobic interactions between CaM and CBP27. Thus, 
each mutation at L317 may destabilize the CaM and CBP interactions, 
accelerate kinetics and alter ∆F/F0 responses.

Several variants with large ∆F/F0 maintained a signal-to-noise 
ratio (SNR, equation (2)) 1.5-fold larger than jGCaMP7s (Fig. 3d and 
Supplementary Table 7). We created a performance score by divid-
ing the SNR by the tau value of the decay (equations (2) and (4)) to 
highlight variants that combine both characteristics (Fig. 3e). L317H 
had the highest performance score, 14.23-fold greater than jGCaMP7s 
(Supplementary Table 8). Hence, we selected the jGCaMP7s L317H 
variant for in-depth characterization and named it ‘ensemble-GCaMP’ 
(eGCaMP). These results demonstrate that the ensemble could effec-
tively predict enhanced sensor function while substantially reducing 
the experimental burden to identify variants with desirable biophysical 
characteristics.

Identification of eGCaMP+ and eGCaMP2+

We introduced the equivalent 317H mutation into the eighth-generation 
GCaMP, jGCaMP8f6, testing if the beneficial effects alter divergent 
GCaMP iterations (Supplementary Fig. 7a). jGCaMP8f A289H improved 

the ∆F/F0 response fourfold over jGCaMP8f (Fig. 4a) with 36% faster 
decay (Fig. 4b). The fast decay kinetics and large ∆F/F0 responses pro-
vide a promising variant we named ‘ensemble-GCaMP+’ (eGCaMP+).

Next, we tested a select combination of additional mutations on 
eGCaMP. We chose variants L302D, P303D, A390R and G392W for their 
increased ∆F/F0 in vitro (Fig. 3b). Other mutants were selected based on 
their locations. L302 and P303 are key residues in the linker between 
cpGFP and CaM3,28 (Fig. 4c). Residue G392 forms a hydrogen bond with 
residue G398, which lies in one of the EF-hand domains and has been 
previously observed to influence the Ca2+ affinity3,27 (Supplementary 
Fig. 3d), and A390 lies on the interaction face between CaM and CBP 
(Fig. 4d). We tested Q305 due to its proximity to the linker residues 
(Fig. 4c), hydrogen bonding interactions with Y380 (Supplementary 
Fig. 3e), and prevalence in the impactful residues for kinetics (Fig. 2d). 
All combinations, except for L317H/G392W, led to functional proteins 
(Fig. 4e,f and Supplementary Fig. 7b). On average, all variants exhibited 
decay times fivefold faster than jGCaMP7s and 50% displayed equal 
or improved ∆F/F0 responses to those of eGCaMP (Supplementary 
Fig. 7b and Supplementary Table 9). We observed the largest ∆F/F0 in 
the L317H/Q305D, named eGCaMP2+, with an almost 2.5-fold increase 
in ∆F/F0 over eGCaMP and a fivefold increase over jGCaMP7s (Fig. 4e 
and Supplementary Table 10). The variant also achieved the highest 
performance score, a 1.36-fold increase over eGCaMP (Fig. 4f and 
Supplementary Fig. 7b and Supplementary Tables 11 and 12). The good 
dynamic range may result from intraprotein interactions within CaM. 
One possible explanation is that the decreased R-group length in the 
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Fig. 5 | eGCaMP, eGCaMP+ and eGCaMP2+ ∆F/F0 and kinetics characteristics 
in primary neurons. a, ∆F/F0 (%) recordings of each variant to one AP stimuli 
applied at 0.5 Hz over 6 seconds (lines depict mean, shading depicts s.e.m.). 
The applied stimuli are shown in gray. b, ∆F/F0 (%) recordings of each variant to 
10 AP stimuli applied at 10 Hz over 1 second (lines depict mean, shading depicts 
s.e.m.). The applied stimuli are shown in gray. c, ∆F/F0 (%) recordings of each 
variant to 80 AP stimuli applied at 10 Hz over 8 seconds (lines depict mean, 
shading depicts s.e.m.). The applied stimulus is shown in gray. d, Half decay time 
values after 10 AP stimuli, scatter depicts neurons quantified. (bars depict mean; 

error bars show s.e.m.; *P = 0.045 (unpaired t-test, two-tailed), four biologically 
independent samples per construct per concentration examined over four 
independent experiments)). e, Maximum ∆F/F0 (%) achieved after stimulation 
with 40 mM KCl. Error bars are mean ± s.e.m.; ****P < 0.0001 (unpaired t-test, two-
tailed), 6 biologically independent replicates per construct over >2 independent 
experiments). f, Representative images of maximal fluorescence response to the 
40 mM KCl stimulation variant indicated in e. Heat mapping displays ∆F/F0 (%) 
achieved by each pixel. Scale bar, 50 µm.
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Q305D mutation requires a more substantial conformational change 
to form the hydrogen bond with residue Y380 (Supplementary Fig. 3e). 
The resulting conformational change may have downstream effects 
on both the cpGFP/CaM linker (Fig. 4a) and R381, which faces inward 
toward the chromophore (Supplementary Fig. 3e). The dramatic effects 
of this mutation suggest a collaborative role between the cpGFP/CaM 
linker and the inward loop of CaM in stabilizing the phenol/phenolate 
transition of the chromophore29–31.

We benchmarked the biophysical and photophysical properties of 
eGCaMP, eGCaMP2+, and eGCaMP+ against published variants, includ-
ing widely used constructs such as GCaMP6s, GCaMP6f, jGCaMP7s, 
jGCaMP7f, jGCaMP8s, jGCaMP8m and jGCaMP8f4–6. The excitation and 
emission spectra of the eGCaMP variants remained unchanged from 
the previously published GCaMPs, with excitation peaks at ~495 nm and 
emission peaks at ~515 nmv (ref. 5 and Extended Data Fig. 1a–d). We found 
that eGCaMP, eGCaMP+ and eGCaMP2+ had lower baseline fluorescence 
than GCaMP6s, jGCaMP7s and jGCaMP8f (Fig. 4f and Supplementary  
Fig. 8a–d). The three ensemble variants demonstrated good ∆F/F0 
responses and SNRs in the acetylcholine assays (Fig. 4g and Supple-
mentary Fig. 7c). At every tested concentration, they maintained a larger 
∆F/F0 than all previous variants (Fig. 4g and Supplementary Tables 13–19).  
For example, eGCaMP2+ achieved 2.5-fold greater ∆F/F0 values at 0.1 µM 
acetylcholine than the highest-performing previous variant, with decay 
times comparable to jGCaMP7f (Fig. 4g,h and Supplementary Table 18). 
Additionally, the decay time of eGCaMP+ was the fastest of all tested vari-
ants (46% faster than jGCaMP8f), while the maximum ∆F/F0, was second 
only to eGCaMP2+ (Fig. 4g,h and Supplementary Table 20). eGCaMP 
achieved a ∆F/F0 close to jGCaMP7f but with a 26% faster decay (Fig. 4g,h 
and Supplementary Tables 13 and 20). Using purified proteins, we found 
that the eGCaMP and eGCaMP2+ variants achieved similar dissociation 
constants (Kd) to those published for jGCaMP8f6 (Supplementary 
Table 21). eGCaMP+ displayed a Kd shift to the micromolar range, con-
sistent with previously published studies finding a tradeoff between 
sensitivity and kinetics4–6 (Supplementary Table 21). The eGCaMPs had 
slightly diminished extinction coefficients compared with GCaMP6f but 
displayed larger quantum yields (Supplementary Table 21).

eGCaMP, eGCaMP+ and eGCaMP2+ performance in primary 
neurons
We benchmarked the eGCaMPs against previous variants in cultured 
primary neurons stimulated by extracellular electrical fields to evoke 
APs4,5,32. eGCaMP2+ displayed a ∆F/F0 of 10.1% in response to 1 AP, similar 
to jGCaMP8f (Fig. 5a and Supplementary Table 22). At 10 AP, jGCaMP8f 
saturated quickly, while eGCaMP2+ achieved a 2.34-fold larger response 
than jGCaMP7s. At 80 AP, eGCaMP2+ achieved a 1.82-fold larger ∆F/F0 
than GCaMP6s (Fig. 5b,c and Supplementary Tables 23 and 24). The 
average ∆F/F0 of eGCaMP2+ full saturation by 40 mM KCl was 1938%, 
which is twofold larger than GCaMP6s (Fig. 5e and Supplementary 
Table 25). While the KCl saturation responses were quantified in the cell 
body, the proximal projections in eGCaMP2+ still maintained >1,000% 
∆F/F0 increases (Fig. 5f). At 80 AP trains, both eGCaMP and eGCaMP+ 
achieved higher ∆F/F0 response amplitudes than the previously pub-
lished fast variants GCaMP6f and jGCaMP8f (Fig. 5c and Supplemen-
tary Table 24). These results are compounded by both eGCaMP and 
eGCaMP+ achieving 10 AP half decay times (τ1/2) of 1.17 s and 0.74 s for 
each variant, respectively, which is faster than jGCaMP8f’s, whose 10 
AP half decay time was 1.49 s (Fig. 5d and Supplementary Table 26). 
Furthermore, eGCaMP decayed eightfold faster than jGCaMP7s, as well 
as a diminished response to 1AP stimulus, highlighting the ability of the 
ensemble to correctly predict the single point mutation’s functional 
effect (Fig. 5a,d and Supplementary Tables 22 and 26).

eGCaMP+ and eGCaMP2+ performance in vivo
Next, we benchmarked eGCaMP2+ and eGCaMP+ in vivo, against 
GCaMP6f. We injected each variant of Cre-dependent GCaMP virus in 

the medial prefrontal cortex (mPFC), and a retrograde Cre virus in the 
nucleus accumbens (NAc; Extended Data Fig. 2a). This labeled a rela-
tively sparse population of mPFC to NAc projections neurons with the 
GCaMP sensor. An optical fiber was implanted above the mPFC to meas-
ure the GCaMP fluorescence signal in response to brief foot shocks, 
which has been previously shown to elicit responses in these neurons33. 
Histology images showed qualitatively similar GCaMP expression in 
mPFC cell bodies and axons in NAc across all groups of mice (Extended 
Data Fig. 2b). All three GCaMP variants exhibited a time-locked increase 
in fluorescence during the foot shock, followed by a slow decay in the 
sensor fluorescence (Extended Data Fig. 2c). We calculated the mean 
response to the foot shock for each sensor and found that eGCaMP2+ 
exhibited a larger change in response compared with GCaMP6f and 
eGCaMP+ (Extended Data Fig. 2d), similar to our results in culture. We 
also calculated the mean sensor decay response 3 to 4 s after the foot 
shock (which is dependent on the off kinetics of the sensor; a faster sen-
sor will return to baseline after the shock, while a slower sensor will still 
maintain a higher signal after the shock). We found that the eGCaMP+ 
decay response was smaller than that of eGCaMP2+, supporting our 
previous findings the eGCaMP+ has the fastest off kinetics among our 
sensors (Extended Data Fig. 2e).

Discussion
Incorporating ML into our engineering pipeline enabled us to effi-
ciently identify new GCaMP variants with enhanced ∆F/F0 responses 
and faster decay kinetics. We achieved good predictive performance 
in the cross-validation phase by using an ensemble of three regressor 
models, encoding our dataset with amino acid characteristics, and 
focusing solely on sequence inputs for learning. These predictive capa-
bilities translated to the in vitro space, where many in silico predicted 
characteristics accurately reflected the mutant’s true performance. As 
a result of these engineering efforts, we identified three new GcaMP 
constructs: eGCaMP, eGCaMP+ and eGCaMP2+.

We made several critical design decisions when developing our 
approaches, such as our encoding method, chosen models, ensemble 
and exploring only single-point mutations. We chose to encode the 
sequence with biophysical properties underlying amino acids in each 
position to facilitate the formation of meaningful learning patterns. 
The selection of five amino acid datasets was made semi-arbitrarily, as 
it provided better learning capabilities over other common encoding 
methods without dramatically impacting computational demands, 
processing time and storage requirements.

Ensembling ML models (considering the input from multiple 
models) is preferable over single-model predictions, as no singular 
model is perfectly optimized to perform all tasks34. The three selected 
models have diverse learning strategies and make different assump-
tions about the data, which is important when ensembling. Decision 
tree learning methods, such as RFRs, are computationally efficient 
models well suited for small training libraries, making them a strong 
foundation within our ensemble’s learning35. The KNR36 similarity 
metric can capture the variability between the performances of nearly 
identical sequences and highlights residues whose mutation led to 
large differences in the targeted sensor characteristics. MPNRs are 
deep-learning models capable of extracting high-level features from 
the data, making them useful for identifying key residues or properties 
that lead to the observed biophysical response35. Adding more models 
improved our predictive capability, as demonstrated by the increased 
R2 of the ensemble compared with the sole contributor’s performance.

One of the major hurdles of protein engineering is the suscep-
tibility of proteins to experience epistasis, in which combinations 
of mutations non-additively influence the phenotypic characteris-
tics37. Though the mutation library we worked with had more than a 
thousand well-characterized variants, the large number of mutated 
residues renders the dimensionality incredibly large. As such, we felt 
that the risk of epistasis upon combinatorial mutation was too great 
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and that the relatively limited size of the library in comparison to its 
dimensionality rendered this application better suited to single-point 
mutation testing.

While the incorporation of ML substantially improved our 
engineering capabilities, there were several limitations within our 
study. Within our analysis of model results, we opted to perform a 
high-throughput acetylcholine assay step within HEK293 cells to 
approximate sensor performance before transitioning promising 
variants to neuron culture screens. Ideally, the model predictions 
should be validated against data acquired in the same manner as the 
training data. The HEK293 assay approximates sensor capabilities but 
does not fully reflect the predictions made by the model. Importantly, 
these differences did not compromise the ensemble’s ability to guide 
our engineering efforts; however, validating the ML-ensemble predic-
tion using the same host system as the training data could offer a more 
complete understanding of the model’s predictive capabilities.

Although structural insights guided the engineering of previ-
ously published GCaMPs, we developed the ensemble pipeline to 
be structure-agnostic. This was crucial, as we aim to engineer GEFIs 
without relying on molecular structures. Owing to the exclusion of 
structure information, extrapolation outside of the observed sequence 
space may be difficult. Our approach is best suited for exploration 
within a sequence space with only minor variations from the training 
data. However, one could incorporate spatial information from crystal 
structures or structure predictions in the ensemble’s learning to aid 
extrapolation in future studies.

The approach we employ here allowed the majority of the screen-
ing to occur in silico, which reduced the experimental burden while 
achieving substantial improvements. We selected variants for in vitro 
testing based on their predicted performance for ∆F/F0 or off-kinetics. 
Thus, the selected variants displayed compensation within favorable 
characteristics, such as a lower baseline fluorescence, which was not a 
prediction criterion. The lower baseline did not impact the performance 
of eGCaMPs in neuron cultures or in vivo fiber photometry. Hence, it 
would be an acceptable tradeoff in many use scenarios. As a considera-
tion for future studies, metrics for favorable characteristics could be 
included in ensemble training to preserve them within the final variants.

Lastly, our training dataset was more biased toward influential 
residues, which were chosen through crystal structure analysis and 
previous trial and error. As a result, highly mutated positions came to 
the forefront of final predictions; however, this does not mean that they 
are not influential or that the mutations that the ensemble suggests 
cannot be exploited further. Likewise, it did not preclude less explored 
residues from being chosen as influential in sensor performance. As ML 
becomes more prevalent, several considerations for data acquisition 
may help generate better suited, unbiased datasets. First, sequence 
space and dimensionality must be well defined. Smaller dimensional-
ity offers more in-depth analysis and comprehension of combinato-
rial mutations. Larger numbers of residue positions will span a much 
greater sequence space but limit the study to small iterations from the 
starting sequence. The data should have equal numbers of mutations 
per residue in their characterization to avoid biases that may arise due 
to unbalanced prevalence. Furthermore, identifying ‘loss-of-function’ 
mutations is as vital to training as ‘gain-of-function’ mutations. The use 
case of iterative model training, in which the user is informed by ML and 
then retrains the model with additional information, is an ideal applica-
tion. However, testing only promising variants should be avoided, as 
this may introduce bias into the dataset during retraining.

The ML ensemble used in this study has demonstrated a good 
capacity to guide fluorescent biosensor engineering. The ensem-
ble’s predictions helped identify variants with large ∆F/F0 values and 
fast decay kinetics, while highlighting clusters of impactful residues 
for each biophysical property, which may be further exploited by 
mutation-library-based high-throughput screening. These findings 
illustrate the ensemble’s ability to guide engineering efforts and 

improve experimental efficiency. Moreover, since our model’s learning 
is based solely on the sequence–function relationship and all contribu-
tor model optimization is unbiased, the final ensemble platform can 
be broadly applied to any genotype-to-phenotype mutation library. 
Applying this ML platform to mutation studies of proteins with quan-
tifiable output characteristics, including other protein sensors, has the 
potential to accelerate the engineering of these proteins.

Methods
Data preprocessing
The Chen and Dana studies provide a functional characterization of 
more than 1,000 GCaMP variants that span the GCaMP6 and jGCaMP7 
iterations4,5,20. Each study normalized the results to base constructs for 
data such as ∆F/F0 response (equation (1)) to stimuli of 1 AP, 3 AP, 10 AP 
and 160 AP, and decay half-time after 10 AP. To cross-compare muta-
tion libraries, we re-normalized the Chen et al. 2013 dataset such that 
GCaMP6s was 1.0 for all metrics. Each variant was incorporated into a 
single dataframe that comprised 453 columns: one column containing 
the primary key variant identifier, 451 columns corresponding to the 
sequence of each GCaMP variant, and the final column containing each 
variant’s empirically derived performance.

ΔF/F0 =
(F − F0)

F0
× 100 (1)

Within the variant library used for model training, the independ-
ent variable consists of the sequence of each mutation. The dependent 
variable is the ∆F/F0 response (1AP ∆F/F0) or kinetics capability (τ1/2). To 
encode our independent variable data, we attempted several different 
methods: label encoding, one-hot encoding or by adding functional 
information. Within our label encoding, we randomly assigned an 
integer value to each amino acid and replaced each residue label in 
the GCaMP sequence with the dummy label. For one-hot encoding, 
the full extent of possible residues at each position is considered in a 
Boolean manner (20 amino acids × 450 residue positions). To perform 
encoding with functional data, we developed a dictionary of amino acid 
properties by web scraping the AAindex database21. AAindex consists 
of matrices that each describe a different amino acid property, such as 
size, polarity or hydrophobicity. The general shape and composition 
of each one of the property datasets is a list of 20 float type values, in 
which the order is linked to the amino acid, and the float type value is 
a quantitative value that is dependent on the property in question. We 
used the 554 complete property datasets to formulate an unbiased 
model training paradigm in two steps. To perform the encoding, we 
replace each amino acid in the sequence with the corresponding value 
from the property dataset. The final variant library used in model train-
ing consisted of the fully encoded GCaMP sequence and the variants’ 
empirically derived performance capability.

Generation of the novel variant library
To generate a library of unknown sequences, we performed a 
single-point saturation of the jGCaMP7s sequence at 75 residue loca-
tions. These 75 residues correspond to the 75 residues that contain 
mutagenesis information in the variant library. The outcome was a 
novel point-saturation-mutation library that contained 1,423 untested 
variants (77 redundant with previously tested variants).

Ensemble training
The models that we developed were from the pip installable package 
Scikit Learn in Python 3.8.5 to develop an RFR, KNR and an MPNR and 
developed in Jupyter Notebooks and Google Colab. The models were 
trained on the encoded sequence of each variant linked to their empiri-
cally derived performance capability. The performance capabilities 
correspond to their ∆F/F0 response to 1 AP or half decay time after 10 AP. 
The data were split into train/test sets at a ratio of 80:20 with a random 
seed of 42 for downstream optimization efforts. We performed the 
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‘SelectKBest’ feature selection function found in Scikit Learn. Optimi-
zation of the model was done by grid-search hyperparameter tuning, 
unique to each model type. We used the coefficient of determination 
(R2) and mean squared error to track the fit of each model. This process 
was repeated over each of the 554 datasets for the three models (~1,662 
times). Each model’s top five performing property datasets (that led 
to the highest R2 values) were advanced to generate predictions on the 
novel variant library. Each contributor model (5 amino acid properties 
× 3 regressor models) forms predictions independently, and the final 
predictions are the average response from each contributor model for 
each target attribute (∆F/F0 response 1AP ∆F/F0 or kinetics capability 
τ1/2). The predicted values returned by the ensemble are numeric values 
originating from a normalized library, making the predictions unitless.

PCA clustering
Each feature within the data was first scaled using Sklearn’s Standard-
Scaler. We passed the scaled data into Sklearn’s PCA function with no 
defined number of components. We chose the optimum number of 
components by finding where the explained variance of the PCA of the 
data passed 0.8. We reinitialized the PCA with the determined number 
of principal components and fit the function with the standardized 
data. We then used the principal component space coordinates to find 
the ideal number of clusters for K-means clustering. We determined 
the ideal number of clusters by using the ‘elbow method’ on the within 
cluster sum of square. After finding the clusters, we labeled each input 
to their K-means-defined cluster.

Molecular cloning
Predicted mutations were reflected into the cytomegalovirus-jGCaMP7s 
backbone (Addgene ID: 104463) using point-mutation primers 
(Integrated DNA Technologies) and PCR amplification with either 
Q5-polymerase (New England Biolabs; M0492L) or Superfi-II polymer-
ase (Invitrogen; 12368010). Amplification of the DNA fragment was 
verified with agarose gel electrophoresis. Blunt-end DNA circulariza-
tion was achieved with Kinase, Ligase, and DpnI enzyme treatment 
(New England Biolabs: E0554S). Circularized DNA was transformed 
into competent Escherichia coli cells (DH5ɑ or TOP10) and grown 
on agar plates that contain either ampicillin or kanamycin selection 
antibiotic (50 µg ml–1). Upon colony formation, single colonies were 
picked and grown in 5 ml cultures containing LB Broth (Fisher BioRea-
gents; BP9723-2) and selection antibiotic (ampicillin or kanamycin; 
50 µg ml–1) overnight (37 °C, 230 rpm). DNA was isolated using DNA 
prep kits (Machery Nagel; 740490.250). Sanger sequencing (Genewiz) 
of the isolated plasmid DNA was used to confirm the presence of the 
intended mutation.

Genes encoding the GCaMP variants were cloned into a CAG-driven 
backbone, pCAG-Archon1-KGC-EGFP-ER2-WPRE (Addgene; 108423), 
using Gibson assembly (New England Biolabs; E2621L). All subse-
quences were verified with Sanger sequencing (Genewiz).

Acetylcholine assays
Human embryonic kidney cells (HEK293; ATCC Ref: CRL-1573, pas-
sages 3 to 25) were cultured in Dulbecco’s Modified Eagle Medium + 
GlutaMAX (Gibco; 10569-010) supplemented with 10% fetal bovine 
serum (Biowest; S1620). When cultures reached 85% confluency, the 
cultures were seeded at 100,000 cells per well or 50,000 cells per well 
in 24-well or 48-well plates, respectively. At 24 hours after cell seed-
ing, the cells were transfected using Lipofectamine3000 (Invitrogen; 
L3000015) at 1,000 ng of DNA per well of a 24-well plate, according to 
the manufacturer’s instructions. HEK293 cells were authenticated by 
ATCC before shipping with short tandem repeat profiling following 
ISO 9001 standards. At 48 hours post-transfection, the plates were 
prepared for imaging by washing and then replacing culturing media 
volume with imaging solution (Tyrode’s pH = 7.33; 125 mM NaCl, 2 mM 
KCl, 2 mM CaCl2, 2 mM MgCl2, 30 mM dextrose, 25 mM HEPES (triple 

supplemented with 1% GlutaMAX (Gibco; 35050-1), 1% sodium pyruvate 
(Gibco; 11360-070) and 1% MEM non-essential amino acids (Gibco; 
11140-050)). Crystalline power acetylcholine chloride (Alfa Aesar; 
L02168.14) was resuspended into imaging solution (Tyrode’s pH = 7.33; 
125 mM NaCl, 2 mM KCl, 2 mM CaCl2, 2 mM MgCl2, 30 mM dextrose, 
25 mM HEPES) into 2× the desired final concentration. During imag-
ing, 1:1 volumes of the acetylcholine-tyrodes imaging solution were 
hand-pipetted into the bath volume to bring the final acetylcholine 
concentration to the desired concentration. Imaging was performed 
on an sCMOS camera (Photometrics Prime95B) on an epifluorescent 
microscope (Leica DMI8) using a ×20 objective (Leica HCX PL FLUOTAR 
L 20x/0.40 NA CORR) controlled by Metamorph software. A Lumencor 
Light Engine LED and Semrock Filters (Excitation: FF01-474-27; Emis-
sion: FF01-520/35) were used for fluorescence imaging.

Analysis of fluorescence assays
Analysis of HEK293 cell fluorescence imaging data was done by FUSE, 
a custom cloud-based semi-automated time series fluorescence data 
analysis platform written in Python. First, the cell segmentation quality 
of the selected Cellpose38 model was manually verified. For the segmen-
tation of cells expressing cytosolic fluorescent indicators, model ‘cyto’ 
was selected as our base model. If the selected Cellpose model was low 
performing, we further trained the Cellpose model using the Cellpose 
2.0 human-in-the-loop system39. Using an ‘optimized’ segmentation 
model, fluorescence time-series data are extracted for each region of 
interest. Using the raw fluorescence data, percentage fluorescence 
change from the baseline (∆F/F0) over time was calculated using equa-
tion (1). The SNR was calculated using equation (2).

SNR = (Fmax − F0)
standard deviation(F0)

(2)

The exponential decay constant (λ) was calculated using equation 
(3), where F(t) is the change in fluorescence at a time (t) after the maxi-
mum fluorescence (F0) was achieved. Importantly, F0 was normalized 
to 1.0, such that F(t) depicts the change in fluorescence over time, t.

F(t) = F0e−λt (3)

The exponential time constant (τ) was isolated by using the known 
reciprocal relationship of λ and τ.

τ = 1
λ

(4)

The dynamic range (DR) was defined as the ratio of the maximum 
fluorescence intensity to the baseline fluorescence intensity (equation 
(5)). All ∆F/F0, SNR, τ and DR values were quantified using a custom 
python script.

DR = Fmax
F0

(5)

To calculate the accuracy of our model, we classified kinetics pre-
dictions into variants that are either faster or slower than jGCaMP7s, 
and ∆F/F0 predictions into variants containing a larger or smaller ∆F/F0 
than jGCaMP7s. To evaluate our model’s performance, we computed 
an accuracy score (equation (6)) using the empirical data, which is the 
ratio of sum of the true positives (TP) and true negatives (TN) to the 
total number of predictions.

Accuracy score = TP + TN
npredictions

(6)

To calculate the precision of our model, we classified kinetics pre-
dictions into variants that are either faster or slower than jGCaMP7s, 
and ∆F/F predictions into variants containing a larger or smaller ∆F/F0 
than jGCaMP7s. To evaluate our model’s performance, we calculated 
the precision (equation (7)) of our models using the empirical data, 
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which is the ratio of number of TP over the number of TP and false 
positives (FP).

Precision = TP
TP + FP (7)

Optical properties of purified proteins
Proteins were purified by large-scale nickel column protein purifica-
tion and SEC purification40,41. Purified protein isolates were diluted 
to 10 µM in 30 mM 3-(N-morpholino)propanesulfonic acid (MOPS), 
100 mM KCl, pH 7.2 with either 10 mM ethylene glycol-bis(β-aminoethyl 
ether)-N,N,N′,N′-tetraacetic acid (EGTA) (low Ca2+) or 10 mM CaEGTA 
buffers (high Ca2+) (Invitrogen; C3008MP). Protein absorbance spectra 
were recorded for each condition using a UV-vis spectrophotometer 
(NanoDrop 2000/2000c Spectrophotometers; Thermo Scientific). 
Fluorescence emission and excitation spectra for each condition were 
measured with a spectrum-capable plate reader (SpectraMax M5; 
Molecular Devices).

For calcium titrations, GCaMP protein was first diluted (0.5 µM 
protein) in triplicate in high-Ca2+ or low-Ca2+ buffers. These two solu-
tions were mixed in various ratios to give 11 different free calcium 
concentrations (Invitrogen; C3008MP). GCaMP fluorescence (excita-
tion 485 nm; emission 535 nm) was measured using a SpectraMax M5 
(Molecular Devices). Calcium titration curves were fit (Prism; Graph-
Pad) to sigmoidal binding functions, and the Hill coefficient and Kd for 
Ca2+ binding for the GCaMP variants were extracted.

The absorbance under saturating conditions was measured using 
2 µM protein diluted into high-Ca2+ buffer at 500 nm (DU800 spectro-
photometer; Beckman Coulter). The chromophore concentration was 
measured from the absorbance (447 nM) of protein denatured by 1 M 
NaOH (extinction coefficient 44,000 M − 1 cm−1). The extinction coeffi-
cient was calculated using Beer’s law, where the absorbance was that of 
the saturated protein at 500 nm, and the concentration was extracted 
using the absorbance of the denatured protein.

Quantum yield measurements were measured at 460 nm light 
using an integrating-sphere spectrometer (Hamamatsu) for 0.3 µM 
protein diluted in high-Ca2+ buffer.

Isolation of cortical neurons
Tissue culture plates with 24 wells were coated with matrigel (mixed 
1:20 in cold-phosphate-buffered saline (PBS), Corning; 356231) solu-
tion and incubated at 4 °C overnight before use. Sterile dissection 
tools were used to isolate cortical brain tissue from P0 rat pups (male 
and female, Sprague Dawley, Envigo). Tissue was minced until 1 mm 
pieces remained, then lysed in equilibrated (37 °C, 5% CO2) enzyme 
(20 U ml–1 Papain (Worthington Biochemical; LK003176) in 5 ml of EBSS 
(Sigma; E3024)) solution for 30 minutes at 37 °C, 5% CO2 humidified 
incubator. Lysed cells were centrifuged at 200g for 5 minutes at room 
temperature, and the supernatant was removed before cells were 
resuspended in 3 ml of EBSS (Sigma; E3024). Cells were triturated 24× 
with a pulled Pasteur pipette in EBSS until homogenous. EBSS was 
added until the sample volume reached 10 ml before spinning at 0.7g 
for 5 minutes at room temperature. Supernatant was removed, and 
enzymatic dissociation was stopped by resuspending cells in 5 ml EBSS 
(Sigma; E3024) + final concentration of 10 mM HEPES buffer (Fisher; 
BP299-100) + trypsin inhibitor soybean (1 mg ml–1 in EBSS at a final 
concentration of 0.2%; Sigma, T9253) + 60 µl of fetal bovine serum (Bio-
west; S1620) + 30 µl 100 U ml–1 DNase1 (Sigma;11284932001). Cells were 
washed twice by spinning at 0.7g for 5 minutes at room temperature, 
removing supernatant and resuspending in 10 ml of Neuronal Basal 
Media (Invitrogen; 10888022) supplemented with B27 (Invitrogen; 
17504044) and glutamine (Invitrogen; 35050061) (NBA++). After final 
wash, spin and supernatant removal, cells were resuspended in 10 ml 
NBA++ before counting. Just before neurons were plated, matrigel was 
aspirated from the wells. Neurons were plated on the prepared culture 
plates at desired seeding density. At 24 hours after plating, 1 µM AraC 

(Sigma; C6645) was added to the NBA++ growth medium to prevent 
the growth of glial cells. Plates were incubated at 37 °C and 5% CO2 and 
maintained by exchanging half of the media volume for each well with 
fresh, warmed Neuronal Basal Media (Invitrogen; 10888022) supple-
mented with B27 (Invitrogen; 17504044) and glutamine (Invitrogen; 
35050061) every three days42,43.

Calcium phosphate transfection of primary cortical neurons
Isolated primary cortical neurons were transfected using the cal-
cium phosphate transfection kit from Sigma Aldrich (Sigma-Aldrich; 
CAPHOS-1KT). Half of the neuron media was changed 24 hours before 
transfection, saving the removed conditioned media to add to the 
neurons after transfection. Reagents were mixed in a ratio of 3 µl 
CaCl2:24.5 µl H2O:1,000 ng DNA before being added dropwise to bub-
bled 2× HEPES buffered saline (30 µl). The final solution was vortexed 
for 4 seconds and left undisturbed for 20 minutes. The solution was 
added dropwise to each well of neurons in a 24-well plate and shaken 
to distribute equally. Neurons were left to incubate for 1 hour at 37 °C 
with 5% CO2. The cells were rinsed twice with HBSS before adding the 
conditioned medium removed on the previous day and mixed with 
half-fresh medium.

Electrical field stimulation
On the day of imaging, ∼24–36 hours post-transfection, cells were 
washed once with imaging solution and then transferred to E-Stim 
Tyrode’s (pH = 7.33; 150 mM NaCl, 4 mM KCl, 3 mM CaCl2, 1 mM MgCl2, 
10 mM Dextrose, 10 mM HEPES)32. A custom wire holding piece was 
designed to fit into 48-well plates with silver wires 10 mm apart. 100 mA 
pulses, with a 3 ms pulse width, were administered at either 0.5 Hz 
or 10 Hz frequency using a pulse generator (Warner Instruments; 
SIU-102B), triggered with Sutter Instruments Integrated Patch Amplifier 
with Patch Panel, time-locked using Igor Pro 8. Imaging was performed 
with a digital camera (Hamamatsu ORCA-Flash4.0; C11440) at 100 ms 
exposure attached to an epifluorescent microscope (Leica DM IL). The 
light was generated using a SOLA Light Engine (Lumencor; SOLA SE 
5-LCR-SB) with a 488 nm wavelength filter lens. Bulk fluorescence traces 
were acquired using FIJI imaging software with background subtraction 
(rolling = 50 stack) and hand-drawn regions of interest. The baseline was 
defined as the first 50 measurements before the event trigger. Maximum 
∆F/F0 was determined by finding the maximum value within each ∆F/F0 
trace. The ∆F/F0 traces were then normalized to have a maximum value 
of 1.0 by dividing each value in the trace by the maximum ∆F/F0. The 
half-decay time was recorded as the time in which the normalized ∆F/F0 
passed 0.5. Final traces and plots were created using Prism9.

Potassium chloride assays
On the day of imaging, ~24–36 hours post-transfection, cells were 
washed once with imaging solution, then replaced with imaging solu-
tion (Tyrode’s pH = 7.33; 125 mM NaCl, 2 mM KCl, 2 mM CaCl2, 2 mM 
MgCl2, 30 mM dextrose, 25 mM HEPES (triple supplemented with 1% 
GlutaMAX (Gibco; 35050–1), 1% sodium pyruvate (Gibco; 11360-070), 
and 1% MEM non-essential amino acids (Gibco; 11140-050)). Powdered 
potassium chloride (Sigma; P9541-500G) was diluted in double dis-
tilled water to a concentration of 2 M. This solution was then diluted 
to 80 mM in imaging solution (Tyrode’s pH = 7.33; 125 mM NaCl, 2 mM 
KCl, 2 mM CaCl2, 2 mM MgCl2, 30 mM dextrose, 25 mM HEPES). During 
imaging, 1:1 volumes of KCl solution were hand-pipetted into the bath to 
bring the final KCl concentration to the desired concentration. Imaging 
was performed on an sCMOS camera (Photometrics Prime95B) on an 
epifluorescent microscope (Leica DMI8) using a ×20 objective (Leica 
HCX PL FLUOTAR L 20x/0.40 NA CORR). A Lumencor Light Engine LED, 
and Semrock filters (excitation: FF01-474-27; emission: FF01-620/35) 
were used for fluorescence imaging. Bulk fluorescence traces were 
acquired using FIJI imaging software with background subtraction 
(rolling = 50 stack) and hand-drawn regions of interest. The baseline was 
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defined as the first 30 measurements before KCl addition. Maximum 
∆F/F0 values were obtained using a custom Python script. Final traces 
were plotted in Prism9.

Animals
Male and female C57BL/6 J mice (6–7 weeks old) were obtained from the 
Jackson Laboratory and maintained on a 12 h reverse light–dark cycle 
(lights on at 21:00) at 22 °C, group-housed with same-sex cage mates and 
given ad libitum access to food and water. Mice were left undisturbed 
for 1 week following arrival before the start of testing. All experiments 
occurred in the dark cycle. All experiments were conducted in accord-
ance with the UC Davis Institutional Animal Care and Use Committee.

Stereotaxic surgery
Mice were anesthetized under 1.5–2% isoflurane and placed in a stere-
otaxic apparatus (RWD) on a heat pad. Three different adeno-associated 
virus (AAV) cre-dependent GCaMP variants were tested: 
AAV5-Syn-FLEX-GCaMP6f (Addgene 100834; final titer 1.1 × 1013 genomic 
copies per ml) AAV1-EF1a-DIO-eGCaMP+ (Fred Hutch Virus Core; final 
titer 1.25 × 1012 IU ml–1); or AAV1-EF1a-DIO-eGCaMP2+ (Fred Hutch Virus 
Core; final titer 6.80 × 1011 IU ml–1) (IU, units of infectious particles). 
AAV cre-dependent GCaMP variant (1 µl) was infused into the mPFC 
(M/L: −0.35, A/P: 1.98, D/V: −2.25 mm relative to bregma), and 500 nl 
of retroAAV-Syn-Cre (Addgene 105553; final titer 9.50 × 1012 GC ml–1) 
was infused into the nucleus accumbens (NAc; M/L: −0.35, A/P: +1.25, 
D/V: −4.6 mm). Injections were performed at a rate of 150 nl min–1 using 
a Hamilton syringe controlled by an injection pump (World Precision 
Instruments). The virus was allowed to diffuse for 5 min before with-
drawing the needle. Chronically implantable fibers (RWD; 400 µm 
core, 0.37NA, 1.25 mm ceramic ferrule) were implanted above the mPFC 
injection site (M/L: −0.35, A/P: 1.98, D/V: −1.5 mm) to allow for blue light 
delivery and fluorescence signal recording. Recordings began 4 weeks 
after surgery to allow sufficient time for viral expression.

Fiber photometry recording
Fiber photometry recordings were performed using RWD’s Tricolor 
Multi Channel Fiber Photometry System. Briefly, 470 nm and 410 nm 
light pulses were alternately delivered through a 400 µm patchcord 
(0.57NA; Doric Lenses) connected to an optical fiber implanted above 
the PFC. Fluorescence was recorded with a cMOS sensor using RWD 
software at a frequency of 20 Hz. The 410 nm wavelength excitation 
light represents the isosbestic wavelength of the sensor, which allows 
us to get a control signal that shows non-Ca2+ related signal changes 
that could contribute to the measured Ca2+-dependent signal. The 
410 nm signal was linearly scaled to best fit the 470 nm signal using 
least-squares regression. The motion-corrected 470 nm signal was 
obtained by subtracting the 410 nm signal from the 470 nm signal44. 
The corrected 470 nm trace was then z-scored for further analysis.

Shock delivery
During the fiber photometry recording, mice were given a 2 s, 1.0-mA 
foot shock twice, separated by at least 60 seconds. Shocks were deliv-
ered using a behavior box with a built-in shock floor (Med Associates). 
The time of shock delivery was synchronized to the fiber photometry 
recording using transistor-to-transistor logic time stamps.

Fiber photometry analysis
Data analysis was performed using MATLAB (MathWorks v2020b). The 
410 nm trace was linearly scaled to the 470 nm trace and subtracted 
for each recording. The corrected 470 nm trace was then z-scored 
for further analysis. To calculate the mean shock response, the mean 
trace from t = 1 to 2 s after the shock onset was calculated, and then the 
mean baseline trace from t = −2 to 0 s before the shock was subtracted 
from that. To calculate the mean decay after the shock, the mean trace 
from t = 3 to 4 s after the shock onset was calculated, and then the mean 

baseline trace from t = −2 to 0 s before the shock was subtracted from 
that. No animals were excluded from analysis.

Histology
Mice were anesthetized under 5% isofluorane and perfused with 20 ml 
cold PBS, followed by 20 ml of cold 4% paraformaldehyde. Brains were 
extracted and post-fixed overnight in paraformaldehyde before being 
transferred to PBS. Brains were sliced on a vibratome (Leica) to a thick-
ness of 60 µm. For immunostaining, brain slices were first washed 
in PBS with 0.3% Triton-X then blocked for 60 min in PBS with 0.3% 
Triton-X and 5% normal donkey serum. Slices were stained overnight 
with anti-GFP-AlexaFluor488 antibody (1:1,000 in blocking solution, 
Life Technologies A-21311) at 4 °C. Histology images were captured 
using a Keyence BZ-X180 fluorescence microscope, with an 80 W hal-
ide lamp and PlanApo 10 ×0.45 NA air objective. GFP fluorescence was 
visualized using the commercially provided GFP set excitation/emis-
sion filters. Images were processed using ImageJ (Fiji).

Material requests
Plasmids for eGCaMP+ and eGCaMP2+ can be obtained directly from 
Addgene for mammalian expression or subcloning encoded in pCAG 
backbones (201147, 201148) and virus production for CRE-dependent 
expression encoded in pAAV-EF1a-DIO backbones (201149, 201150).

Ethics statement
All animal procedures performed at the University of Washington 
were approved by the University of Washington’s Animal Use Com-
mittee (protocol 4422-01) and follow the National Institutes of Health 
and the Association for Assessment and Accreditation of Labora-
tory Animal Care International guidelines. All experiments at the 
University of California, Davis and University of Washington were 
conducted in accordance with the Institutional Animal Care and Use  
Committee.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All of the datasets generated within this study are available on figshare 
at https://doi.org/10.6084/M9.FIGSHARE.23750682.V1 (ref. 45). We 
included the Chen4 and Dana5 datasets used to run our model and an 
amino acid property matrix derived from AAindex30 in the Supple-
mentary Data. The GCaMP crystal structure used in this paper is acces-
sible online (https://www.rcsb.org/structure/3sg3), GCaMP3–D380Y  
(RCSB: 3SG3) and in the Supplementary Data. Source data are provided 
with this paper.

Code availability
The source code is available for download from GitHub at https://doi.org/ 
10.5281/ZENODO.8179256 (ref. 46) and CodeOcean at https://doi.org/ 
10.24433/CO.0624159.v1 (refs. 47,48). Custom Python scripts are avail-
able from figshare45.
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Extended Data Fig. 1 | Excitation and Emission Spectra of eGCaMP Sensors. 
A. Purified GCaMP6s protein diluted into buffer containing either 10 mM EGTA 
or 10 mM CaEGTA. Emission spectra were calculated using a fixed excitation at 
450 nm and excitation spectra were calculated using a fixed emission at 520 nm. 
B. Purified eGCaMP protein diluted into buffer containing either 10 mM EGTA 
or 10 mM CaEGTA. Emission spectra were calculated using a fixed excitation at 
450 nm and excitation spectra were calculated using a fixed emission at 520 nm. 

C. Purified eGCaMP+ protein diluted into buffer containing either 10 mM EGTA 
or 10 mM CaEGTA. Emission spectra were calculated using a fixed excitation at 
450 nm and excitation spectra were calculated using a fixed emission at 520 nm. 
D. Purified eGCaMP2+ protein diluted into buffer containing either 10 mM EGTA 
or 10 mM CaEGTA. Emission spectra were calculated using a fixed excitation at 
450 nm and excitation spectra were calculated using a fixed emission at 520 nm.
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Extended Data Fig. 2 | In Vivo Performance of eGCaMP+ and eGCaMP2+ 
expressed in mouse mPFC. A. Experimental timeline. Mice were injected with 
an AAV-Cre dependent-GCaMP variant in the mPFC and a retroAAV-Syn-Cre was 
injected in NAc. An optic fiber was implanted above the mPFC to allow for light 
delivery and fluorescence recording. B. Representative fluorescence images 
of GCaMP expression in mPFC and NAc (stained with anti-GFP-Alexafluor488). 
Scale bar, 130 µm. C. Mean Z-scored fluorescence changes in response to a foot 
shock (n = 4 total shock trials, collected from 2 mice for each GCaMP variant, Line 
depicts mean, shading depicts SEM). D. Comparison of the mean shock response 
between the three GCaMP variants. Top: schematic of how the shock response 

was calculated (see methods). Bottom: Mean change in Z-scored fluorescence 
response to shock (n = 4 total shock trials, collected from 2 mice for each GCaMP 
version). P-values were calculated using a One-way ANOVA followed by Tukey’s 
multiple comparisons in panels (D) and (E): *P < 0.05. All data show mean +/− 
SEM. E. Comparison of the mean decay to shock between the three GCaMP 
variants. Top: schematic of how the decay to shock was calculated (see methods). 
Bottom: Mean change in Z-scored fluorescence decay to shock (n = 4 total shock 
trials, collected from 2 mice for each GCaMP version). P-values were calculated 
using a One-way ANOVA followed by Tukey’s multiple comparisons in panels (D) 
and (E): *P < 0.05. All data show mean +/- SEM.
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