nature computational science

Article

https://doi.org/10.1038/s43588-024-00611-w

Machinelearning-guided engineering
of genetically encoded fluorescent

calciumindicators

Received: 6 July 2023

Accepted: 15 February 2024

Published online: 21 March 2024

W Check for updates

Sarah J. Wait®"?, Marc Exposit"*'®, Sophia Lin**'®, Michael Rappleye ® 2¢’,
Justin Daho Lee'?, Samuel A. Colby', Lily Torp?®, Anthony Asencio?®,
Annette Smith? Michael Regnier®®, Farid Moussavi-Harami® 2%,

David Baker®'°", Christina K. Kim*® & Andre Berndt ® ">

Here we used machine learning to engineer genetically encoded fluorescent
indicators, protein-based sensors critical for real-time monitoring of
biological activity. We used machine learning to predict the outcomes

of sensor mutagenesis by analyzing established libraries that link sensor
sequences to functions. Using the GCaMP calcium indicator as a scaffold,
we developed an ensemble of three regression models trained on
experimentally derived GCaMP mutation libraries. The trained ensemble
performed aninsilico functional screen on 1,423 novel, uncharacterized
GCaMP variants. As aresult, we identified the ensemble-derived GCaMP
(eGCaMP) variants, eGCaMP and eGCaMP*, which achieve both faster
kinetics and larger AF/F, responses upon stimulation than previously
published fast variants. Furthermore, we identified acombinatorial
mutation with extraordinary dynamic range, eGCaMP?**, which outperforms
the tested sixth-, seventh- and eighth-generation GCaMPs. These findings
demonstrate the value of machine learning as atool to facilitate the efficient
engineering of proteins for desired biophysical characteristics.

Genetically encoded fluorescentindicators (GEFIs) are protein-based
sensorsthat allosterically fuse fluorescent reporters to ligand-binding
domains. Ligand binding induces changes in fluorescence intensity,
enabling the monitoring of biological compounds such as intracellular
second messengers or neuromodulators in freely moving animals’.
GEFIs have become essential tools in neuroscience, with sensors for
calcium, dopamine, norepinephrine, endocannabinoids and opioids,

among others>". Tomatch each sensor’s characteristics, like dynamic
range or kinetics, with experimental needs, GEFIs require extensive
engineering. Current methods, such as trial-and-error mutagenesis,
often require substantial time and resource commitments. Recently,
machine learning (ML) algorithms have shown proficiency in engi-
neering enzymes, fluorescent proteins and optogenetic tools>". In
this study, we developed an ML approach to predict the biophysical
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Fig.1| Description of variant library, computational approach and ensemble
cross-validation. a, Description of the biophysical attributes of the GCaMP
sensor targeted for engineering: fluorescence change (AF/F,) and kinetics (z,,,).
b, Scatter plot depicts the 1AP AF/F, by the 7, for each of the 1,078 variants in the
variantlibrary*. Each value was normalized to GCaMPés as 1.0 for 1AP AF/F,and
7,,. Published variants are indicated with colored dots and text labels.

¢, Crystal structure of GCaMP3-D380Y (Protein Data Bank (PDB): 3SG3, gray)
with 75 residues (red) in which mutation information exists in the variant
library**. These 75 residues indicate the positions used to form the novel library.
Brackets indicate the GCaMP domains CaM, CBP and cpGFP.d, Overview of
model training schema. The variant library** was split randomly into an 80%

True AF/F, value

True 1y, value

training set and a 20% testing set. The data were encoded using the AAindex
property datasets. The train set underwent feature selection before being
optimized using a grid search of key hyperparameters for each model. The
optimized model was used to form predictions on the 20% test set and the

novel library. The final test set and novel library predictions were cached for
downstream analysis. e, The scatter contains the true AF/F, value by the predicted
AF/F,value made by the ensemble for each variant in the test set. The dotted

line depicts R*=1.0. The R?*value denotes the coefficient of determination of the
scatter data. f, The scatter contains the true 7, value by the predicted 7,,, value
made by the ensemble for each variant in the test set. The dotted line depicts
R?=1.0. The R*value denotes the coefficient of determination of the scatter data.

characteristics of previously untested mutations. We selected the cal-
ciumindicator GCaMP as a protein sensor scaffold to develop this plat-
form.GCaMPisachimeric protein that consists of circularly permuted
GFP (cpGFP) fused to calmodulin (CaM) and calmodulin-binding pep-
tide (CBP). GCaMP sensors have been widely adopted in neuroscience
research and have undergone several generations ofimprovements to
optimize their capabilities®*'®". Thus, datasets from the functional
characterization of more than a thousand mutants are publicly avail-
able*”. Using these data, we developed a stacked ML ensemble that
predicted the functional characteristics of untested GCaMP variants.
Using mutations proposed by the ensemble, we identified variants that
accelerate the off-rate kinetics and increase the change in fluorescence
over baseline (AF/F,) uponactivation. We demonstrated that ML ensem-
bles caneffectively learn from complex mutational datasets and that we
canharness their predictive power to guide protein engineering efforts.

Results

Description of ensemble development

Our training data consisted of 1,078 characterized mutants derived
from cultured neuron screening*>?°. Within the library, we focused
onthe changeinfluorescence over baseline (AF/F,) inresponse to one
action potential (AP; 1AP AF/F,) and decay kinetics of the sensor signal
(7y,, decay half-time after 10 APs; Fig. 1a). When normalized to the sixth

generation GCaMP sensor, GCaMPés* (1AP AF/Fyand 7,,,=1.0), we can
see abroaddistribution of variant capabilities and mutation locations
within the GCaMP structure (Fig. 1b,c and Supplementary Fig. 1a). We
found the sequence similarity is not deterministic for AF/F, or kinet-
ics, as seen by the variability in mutation impact regardless of GCaMP
generation (Supplementary Fig. 1b,d).

Before training, the variantsin the library were randomly assigned
totraining and testing sets atan 80/20 ratio for cross-validation, where
the mean values between the training and test sets were not significantly
different (Supplementary Fig. 1c,e). We tested three methods of encod-
ing the mutation dataset: one-hot encoding, label encoding and func-
tional encoding withaminoacid property datasets found on AAindex”.
AAindex comprises 554 complete matrices describing different amino
acid properties, such assize, polarity and hydrophobicity. Encoding with
AAindex property matricesimproved the cross-validation R*by anaver-
age of20% over one-hotencoded or label-encoded libraries (Supplemen-
tary Fig. 2c). We tested the 554 AAindex property datasets to determine
which propertiesled to the largest R*values during cross-validation. The
predictions from the top-five performing datasets were used to form
thefinal ensemble’s predictions (Fig. 1d and Supplementary Fig. 2a). We
found thatamino acid property datasets that described hydrophobicity
were commonly associated with higher-performing predictive capa-
bilities in the AF/F, model (Supplementary Fig. 2b-d; Supplementary
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Fig.2|Invitro verification of ensemble predictions. a, Brief description of
prediction analysis. The stacked ensemble predictions were formed by averaging
the predictions from the 15 contributor models for each variant (Pred,) in the
novel library. The raw output is the prediction (Pred,) for each mutant, witha
prediction for jGCaMP7s as abenchmark. (1) The volcano plots were formed by
subtracting the benchmark jGCaMP7s prediction from the variant prediction
(xaxis) and Pvalues were derived by performing an unpaired ¢-test between the
15 predictions for variant, and the 15 predictions for JGCaMP7s. (2) The bubble
plotindicates the number of times agiven residue appearsin the top 2.5% and
bottom 2.5% of predictions. b, Volcano plots depicting the ensemble’s prediction
for agiven mutation change in fluorescent response from jGCaMP7s (x axis) and
thelog,,Pof the given prediction. Pvalues were calculated using a two-sided

unpaired ¢-test on ensemble predictions (15 models) forjGCaMP7s and the given
mutation. Right: Kernel density estimation depicts the spread of log,,P obtained.
Dotted lines areincluded at indicated o values. ¢, Volcano plots depicting the
ensemble’s prediction for given mutations change kinetic capability from
jGCaMP7s (xaxis) and the log,,P of the given prediction. Pvalues were derived
using a two-sided unpaired ¢-test on ensemble prediction (15 models) for
jGCaMP7s and given mutation. Right: Kernel density estimation depicts the
spread of log,,P obtained. Dotted lines are included at indicated standard
deviations (o). d, Bubble plot depicting the number of times each residue (x axis)
appearedinthe top 2.5% and bottom 2.5% of predicted values for each regressor
that constitute the AF/F,ensemble and the kinetics (7,,,) ensemble.

Table 1). Incomparison, amino acid property datasets associated with
protein folding and energetics were common amongst the higher per-
forming predictive capabilities in the kinetics model (Supplementary
Fig.2b-d and Supplementary Table 2).

To improve prediction capabilities, we performed a stacked
ensemble comprising a random forest regressor (RFR), K-neighbors
regressor (KNR) and multi-layer perceptron network regressor
(MPNR)?%, The ensemble’s predictions for each mutation are the
average response from the 15 models (5 amino acid properties x 3
regressor types). During cross-validation, the ensembles for AF/F,and
kinetics achieved R?values greater than 0.80 for predictions made on
the test dataset (Fig. 1e,f). The AF/F, ensemble achieved a higher R?
value than any models contributing to the prediction, demonstrating
the beneficial collaborative effect of ensembling (Supplementary

Fig.2c).

Analysis of ensemble predictions
We utilized the trained ensembles to predict a novel library’s AF/F,
and kinetics. This library substituted each of the 75 positions previ-
ously mutated in the dataset with the remaining 19 amino acids in the
seventh-generation GECIjGCaMP7s (Fig. 1c). After removing redundan-
cies, the library contained 1,423 untested variants. We calculated the
‘predicted change from jGCaMP7s’ and performed an unpaired ¢-test
between the 15 predictions made for each mutant (1 from each con-
tributor model) and the 15 predictions made for jGCaMP7s. Using this
method, weidentified mutations that were predicted to substantially
affect the AF/F,and thekinetics of jGCaMP7s (Fig.2a-c).In our model
training, the jGCaMP7s sequence was purposely withheld. Neverthe-
less, the prediction ranked jGCaMP7s within the top 15% of variants for
alarge AF/F,response. Consequently, the ensemble predicted most
variants, such as L317E, L317K, L317N, L317D and L317H (<-2.2 a.u.),
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Fig. 3| Gq/IP;assay in HEK293 cells to validate ensemble predictions.

a, Mutation predictions isolated from the ensemble are used as the basis

for downstream variant analysis. Variants of interest are cloned into the
jGCaMP7s backbone, then transfected into HEK293 cells using lipofectamine
transfection. After 48 hours post-transfection, cells are time-course imaged
using an epifluorescent microscope. Panel a made using Biorender.

b, Maximum fluorescence responses (equation (1)) were obtained from each
variant of jGCaMP7s expressed in HEK293 cells and stimulated with10 uM
acetylcholine. Heat mapping indicates the ensemble’s prediction. Mutations
aresortedin order of the ensemble’s predicted performance. The dotted

line depicts mean performance of the base construct, jGCaMP7s. ¢, Decay
values (z; equation (4)) obtained from each variant of jGCaMP7s expressed in
HEK293 cells and stimulated with 10 pM acetylcholine. Heat mapping indicates
the ensemble’s prediction. Mutations are sorted in order of the ensemble’s
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predicted performance. The dotted line depicts mean performance of the base
construct, jGCaMP7s. Visual representations of the qualificationsinband ¢

are found on the representative response trace. d, SNR (equation (2)) of each
mutant of jGCaMP7s expressed in HEK293 cells and stimulated with10 uM
acetylcholine. Mutations are sorted in ascending order based on residue number
and final residue composition. The dotted line depicts mean performance of
the base construct, jGCaMP7s. e, Performance score, SNR/7 (equations (2) and
(4)), obtained from each mutant of jGCaMP7s expressed in HEK293 cells and
stimulated with 10 pM acetylcholine. Heat mapping highlights the highest-
scoring mutants or those with high AF/F, (%) responses and fast decay speeds.
Mutations are sorted in ascending order based on residue number and final
residue composition. (n, number of cells quantified; bars show mean; error bars
show 95% bootstrapped CI.)

to have a decreased AF/F,, while variants such as G392F, G392I and
G392W were all predicted to have anincreased (>0.25 a.u.) response
(Fig. 2b). L317E, L317D, L317N and L317K were all predicted to decay
faster (<-0.6 a.u.) thanjGCaMP7s, while variants such as A390Y, L302D
and L302C were predicted to decay slower (>0.3 a.u.; Fig. 2c). All these
variants fell outside 99.7% (+3 standard deviations (o)) of -log;,P, except
forlarge AF/F, predictions, indicating that the 15 contributing models
displayed confidence in the effect of the mutation (+30, AF/F,: 0.612;
kinetics: 0.242; Fig. 2b,c).

Next, we identified the residues whose mutations had the strong-
est positive or negative impact on AF/F, and kinetics. We isolated the

top and bottom 2.5% of the ranked predictions and counted the times
eachresidue appeared (Fig. 2a(ii)). We designated these as ‘impactful
residues, as these residue positions were predicted to alter protein
function substantially. We found that 22% and 18% of the impactful
mutations in the AF/F, and kinetics libraries were at L317 (Fig. 2d),
despite only 1.3% of variants in the novel library harboring an L317
mutation. Similarly, L302 predictions accounted for 14% and 16% of
the impactful mutations of the AF/F, and kinetics libraries (Fig. 2d).
L317 is located on the interface between CaM and CBP, and L302 is
on the linker between CaM and cpGFP (Supplementary Fig. 3a-c). By
contrast, residue A390 was 4.5 times more impactful in the kinetics

Nature Computational Science | Volume 4 | March 2024 | 224-236

227


http://www.nature.com/natcomputsci

Article

https://doi.org/10.1038/s43588-024-00611-w

o
o
T
P

*kkk
- H*kkk *
3
— O
A . o T 104
N =
=8 ] o
© O o]
£ u° © o N
o R g |° © =
Zz<g 27 o = KI? g 054 ol &
h £ -
c IRl < | o ST 1=y
|-—I S |--| Q z J| & |5(]8
0 0 i w
c < < < <
0 T T T T ] T II-\.I T T
WT Mut WT Mut WT Mut WT Mut
7s 8f 7s 8f
e 3,000 —" g h
*kkk ‘ .
. 1 & 1,500 100 1 % %
2,000 - N = |a
< § g 5 2 [z
© 5 g 28 R T8
w S 5 <= K P e 3 80 - 40
S 00] 8 3 8 1 = = = ° < e
g L 2 L 1,000 - =
ln I :
o n < ® 60 1
2 ]
oL g AL AL PP I I1e < < %0
[0} =
=
f SNR/T 500 1 40 -
75 20 4 >
8= 0 38 75 o
c 3 o) 20
T © 50 1 c < g <>
E ) K] " — T T T 10 T
S5 2 3 = 0.1 1 10 5 5
S5 o o - A
&3 » 259 & W 3 ) © ~ . .
P ° IR | log,olacetylcholine (uM)] Concentration (UM)
A PRI
0 T T T T T -@- GCaMP6s =& jGCaMP7s jGCaMP8s £ jcCaMPsf  F eGCaMP*
2
r§\ 0’1/0 3 0‘1‘/2\ 0)0‘2~ %@Q Q'bo 0“9 0‘00 GCaMP6f jGCaMP7f jGCaMP8m A~ eGCaMP -©- eGCaMP*
S S ETESLE PP
\\2\‘ \«Q\\ i '(\Q\\ '(\Q“ e '(\Q«(b@b‘ <\Q\\
KF TFE P

Fig. 4 |Identification of eGCaMP* and eGCaMP*' in HEK293 cells.

a, Fluorescent responses (AF/F,) upon 10 pM acetylcholine stimulation. WT
indicates jGCaMP7s (7s) or jGCaMP8f (8f). Mut indicates L317H in jGCaMP7s or
A289H injGCaMPS8f. Data are normalized to WT (n, number of cells; error bars
aremean £ s.e.m.; ***P < 0.0001 (unpaired t-test, two-tailed)). b, Decay kinetics
(1) upon 10 puM acetylcholine. Mutation values (Mut) are normalized to WT
(n=number of cells; error bars are mean + s.e.m.; *P=0.0161, ***P = <0.0001
(unpaired t-test, two-tailed)). ¢, Crystal structure of GCaMP3-D380Y (PDB:
3SG3, gray) with Q305 and linker residues P303 and L302 colored in dark

blue, CaM and fluorescent reporter cpGFP. d, A390 and G392 are colored dark
blue. Bound Ca* (green spheres) in the EF-Hand motifs and the CBP (orange)
areincluded. e, AF/F, of combinatorial mutations of jGCaMP7s upon 10 pM
acetylcholine, sorted in order of performance and identified on the x axis of f.

(n, number of cells; bars depict mean; error bars show bootstrapped 95% ClI;
****Pp < 0.0001 (unpaired t-test, two-tailed)). f, Performance score (ratio of SNR/7)
for combinatorial JGCaMP7s mutations upon 10 pM acetylcholine. Mutations are
sorted by AF/F, performance. (n, number of cells; bars depict mean; error bars
show bootstrapped 95% CI*°). g, AF/F, of GCaMP variants stimulated by different
acetylcholine concentrations (x axis). eGCaMP is jGCaMP7s L317H, eGCaMP*

is jGCaMP7s L317H/Q305D, and eGCaMP* is jGCaMP8f A289H. Error bars are
mean + s.e.m. Solid line depicts nonlinear datafits. (*P < 0.05; **P= 0.0010;
**P=0.0007; ***P<0.0001, unpaired ¢-test between variants and jGCaMP7f,
two-tailed). h, Kinetic decay (z; equation (4)) of the indicated variants stimulated
with5 pM acetylcholine. Plotted pointsindicate the mean 7 for each variant to the
indicated stimuli, and error bars are mean + s.e.m. Four independent biological
replicates per concentration + construct (g,h).

predictions than in the AF/F, predictions. Like L317, A390 is located
ontheinterface between CaM and CBP but onthe opposingside (Sup-
plementary Fig. 3d). Impactful residues also tended to cluster. For
instance, the kinetics library displays 38% prediction prevalence sur-
rounding residue clusters Y380, R381,R383 and L302, P303,Q305. The
prevalence of these residues is 2.38-fold higher in kinetics than the
AF/F, predictions. These residues are located close to each other in
the residue linker and CaM (Supplementary Fig. 3e). Within the AF/F,
predictions, residue clusters N44, K45, H48, V52 and M374,M378,K379
displayed 31% prediction prevalence, 3.9-fold higher than the kinetics
library. Interestingly, we observed that all these residues face inward
toward one another, suggesting they may be involved in interactions
essential for AF/F, (Supplementary Fig. 3f).

Invitro performance of ensemble predictions

Webenchmarked17 predicted mutationsin vitro by stimulating human
embryonickidney cells (HEK293) cells with acetylcholine®**** (Fig. 3a).
The ideal configuration would be to evaluate them in the same man-
ner as the training data. However, owing to the lower throughput of
cultured neuron screens, we first performed an intermediate acetyl-
choline assay step in HEK293 cells. We found the acetylcholine assay

approximated variant performances accurately before cultured neuron
assays (Supplementary Fig. 4a-f).

Weidentified four mutations (P303W, P303F, G392F and G392W)
that displayed their predicted increase in AF/F, as well as five muta-
tions (A390Y,L302C,L302H, L302G and L302R) that displayed the pre-
dicted decrease compared with jGCaMP7s (Fig. 3b and Supplementary
Table 3). The overall accuracy (equation (6)) of the AF/F,model is 0.56
(Supplementary Fig.5c and Supplementary Table 4). The scoreis largely
affected by L317 mutations, which are predicted to decrease AF/F,
but display the opposite in vitro. Within the training data, the GCaMP
variants that contained a 317E/H/K/N mutation had decreased AF/F,
compared withjGCaMP7s, anassociationin which the ensemble learned
(Supplementary Fig. 6a). However, each previously characterized vari-
antthatcontained amutationatresidue 317 also contained an alanine at
residue 52 (Supplementary Table 6). When we tested the L317H variant
injGCaMP7f, which contains A52, we observed the loss of AF/F, capabili-
ties thatthe model predicted (Supplementary Fig. 6b). The mutations
that changed kinetics largely aligned with the ensemble predictions,
with anaccuracy score of 0.75 (Fig. 3¢, Supplementary Fig. 5).

Variants P303D, L317E, L317H, L317K, L317N, G392F and G392W
were predicted to accelerate decay kinetics. Of these variants, 85%
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error bars show s.e.m.; *P = 0.045 (unpaired ¢-test, two-tailed), four biologically
independent samples per construct per concentration examined over four
independent experiments)). e, Maximum AF/F, (%) achieved after stimulation
with40 mMKCI. Error bars are mean * s.e.m.; ****P < 0.0001 (unpaired ¢-test, two-
tailed), 6 biologically independent replicates per construct over >2 independent
experiments). f, Representative images of maximal fluorescence response to the
40 mMKCl stimulation variant indicated in e. Heat mapping displays AF/F, (%)
achieved by each pixel. Scale bar, 50 pm.

showed shorter decay times than jGCaMP7s, with L317K displaying
adecay time that was fivefold faster than jGCaMP7s (Supplementary
Table 5). Additionally, 71% of the variants predicted to decrease decay
(L302C, L302D, L302G, L302H, L302R, A390R and A390Y) demon-
strated the predicted behavior, with L302G exhibiting a decay time
2.18-fold longer than jGCaMP7s. Residue L317 is known to beinvolved
in extensive hydrophobicinteractions between CaM and CBP?. Thus,
each mutation at L317 may destabilize the CaM and CBP interactions,
accelerate kinetics and alter AF/F,responses.

Several variants with large AF/F, maintained a signal-to-noise
ratio (SNR, equation (2)) 1.5-fold larger than jGCaMP7s (Fig. 3d and
Supplementary Table 7). We created a performance score by divid-
ing the SNR by the tau value of the decay (equations (2) and (4)) to
highlight variants that combine both characteristics (Fig. 3e). L317H
had the highest performance score, 14.23-fold greater than jGCaMP7s
(Supplementary Table 8). Hence, we selected the jGCaMP7s L317H
variant for in-depth characterization and named it ‘ensemble-GCaMP’
(eGCaMP). These results demonstrate that the ensemble could effec-
tively predict enhanced sensor function while substantially reducing
the experimental burden to identify variants with desirable biophysical
characteristics.

Identification of eGCaMP* and eGCaMP*

Weintroduced the equivalent 317H mutationinto the eighth-generation
GCaMP, jGCaMPS8f*, testing if the beneficial effects alter divergent
GCaMPiterations (Supplementary Fig. 7a). jGCaMP8f A289H improved

the AF/F, response fourfold over jGCaMPS8f (Fig. 4a) with 36% faster
decay (Fig. 4b). The fast decay kinetics and large AF/F, responses pro-
vide a promising variant we named ‘ensemble-GCaMP+ (eGCaMP").
Next, we tested a select combination of additional mutations on
eGCaMP. We chose variants L302D, P303D, A390R and G392W for their
increased AF/F,invitro (Fig. 3b). Other mutants were selected based on
their locations. L302 and P303 are key residues in the linker between
¢pGFP and CaM>* (Fig. 4c). Residue G392 forms a hydrogen bond with
residue G398, which lies in one of the EF-hand domains and has been
previously observed to influence the Ca*" affinity®”” (Supplementary
Fig.3d), and A390 lies on the interaction face between CaM and CBP
(Fig. 4d). We tested Q305 due to its proximity to the linker residues
(Fig. 4c), hydrogen bonding interactions with Y380 (Supplementary
Fig.3e), and prevalencein theimpactful residues for kinetics (Fig. 2d).
Allcombinations, except for L317H/G392W, led to functional proteins
(Fig.4e,fand Supplementary Fig. 7b). On average, all variants exhibited
decay times fivefold faster than jGCaMP7s and 50% displayed equal
or improved AF/F, responses to those of eGCaMP (Supplementary
Fig. 7b and Supplementary Table 9). We observed the largest AF/F,in
the L317H/Q305D, named eGCaMP*, with an almost 2.5-fold increase
in AF/F, over eGCaMP and a fivefold increase over jGCaMP7s (Fig. 4e
and Supplementary Table 10). The variant also achieved the highest
performance score, a 1.36-fold increase over eGCaMP (Fig. 4f and
SupplementaryFig. 7b and Supplementary Tables11and 12). The good
dynamicrange may result fromintraproteininteractions within CaM.
One possible explanation is that the decreased R-group length in the
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Q305D mutation requires a more substantial conformational change
toformthe hydrogenbond withresidue Y380 (Supplementary Fig. 3e).
The resulting conformational change may have downstream effects
on both the cpGFP/CaM linker (Fig. 4a) and R381, which faces inward
toward the chromophore (Supplementary Fig. 3e). The dramatic effects
ofthis mutation suggest a collaborative role between the cpGFP/CaM
linker and the inward loop of CaM in stabilizing the phenol/phenolate
transition of the chromophore® ',

Webenchmarked the biophysicaland photophysical properties of
eGCaMP, eGCaMP?*, and eGCaMP* against published variants, includ-
ing widely used constructs such as GCaMP6s, GCaMPé6f, jGCaMP7s,
jGCaMP7f,jGCaMP8s,jGCaMP8mand jGCaMPS8f* . The excitationand
emission spectra of the eGCaMP variants remained unchanged from
the previously published GCaMPs, with excitation peaks at~495 nmand
emission peaksat~515nmv (ref. 5and Extended DataFig.1a-d). Wefound
thateGCaMP, eGCaMP* and eGCaMP?** had lower baseline fluorescence
than GCaMPé6s, jGCaMP7s and jGCaMP8( (Fig. 4f and Supplementary
Fig. 8a-d). The three ensemble variants demonstrated good AF/F,
responses and SNRs in the acetylcholine assays (Fig. 4g and Supple-
mentary Fig. 7c). Atevery tested concentration, they maintained alarger
AF/F,thanall previous variants (Fig. 4g and Supplementary Tables 13-19).
Forexample, eGCaMP?* achieved 2.5-fold greater AF/F,valuesat 0.1 pM
acetylcholine than the highest-performing previous variant, with decay
times comparable tojGCaMP7f (Fig.4g,h and Supplementary Table18).
Additionally, the decay time of eGCaMP* was the fastest of all tested vari-
ants (46% faster than jGCaMP8f), while the maximum AF/F,, was second
only to eGCaMP?* (Fig. 4g,h and Supplementary Table 20). eGCaMP
achieved a AF/F,closetojGCaMP7fbut witha26%faster decay (Fig.4g,h
and Supplementary Tables 13 and 20). Using purified proteins, we found
that the eGCaMP and eGCaMP*" variants achieved similar dissociation
constants (K;) to those published for jGCaMP8f® (Supplementary
Table 21). eGCaMP* displayed a K; shift to the micromolar range, con-
sistent with previously published studies finding a tradeoff between
sensitivity and kinetics* ™ (Supplementary Table 21). The eGCaMPs had
slightly diminished extinction coefficients compared with GCaMP6fbut
displayed larger quantum yields (Supplementary Table 21).

eGCaMP, eGCaMP' and eGCaMP?* performance in primary
neurons

We benchmarked the eGCaMPs against previous variants in cultured
primary neurons stimulated by extracellular electrical fields to evoke
APs***2 eGCaMP* displayed a AF/F,0f10.1% in response to 1 AP, similar
tojGCaMPS8f (Fig. 5a and Supplementary Table 22). At10 AP, jGCaMP8f
saturated quickly, while eGCaMP** achieved a2.34-fold larger response
than jGCaMP7s. At 80 AP, eGCaMP?* achieved a 1.82-fold larger AF/F,
than GCaMPé6s (Fig. 5b,c and Supplementary Tables 23 and 24). The
average AF/F, of eGCaMP?* full saturation by 40 mM KCl was 1938%,
which is twofold larger than GCaMPé6s (Fig. 5e and Supplementary
Table 25). While the KCl saturation responses were quantified in the cell
body, the proximal projections in eGCaMP?* still maintained >1,000%
AF/F,increases (Fig. 5f). At 80 AP trains, both eGCaMP and eGCaMP”*
achieved higher AF/F, response amplitudes than the previously pub-
lished fast variants GCaMP6f and jGCaMPS8f (Fig. 5c and Supplemen-
tary Table 24). These results are compounded by both eGCaMP and
eGCaMP* achieving 10 AP half decay times (7,,,) of 1.17 s and 0.74 s for
each variant, respectively, which is faster than jGCaMP8f’s, whose 10
AP half decay time was 1.49 s (Fig. 5d and Supplementary Table 26).
Furthermore, eGCaMP decayed eightfold faster thanjGCaMP7s, as well
asadiminished response to 1AP stimulus, highlighting the ability of the
ensemble to correctly predict the single point mutation’s functional
effect (Fig. 5a,d and Supplementary Tables 22 and 26).

eGCaMP* and eGCaMP?*' performanceinvivo
Next, we benchmarked eGCaMP?" and eGCaMP" in vivo, against
GCaMPé6f. We injected each variant of Cre-dependent GCaMP virus in

the medial prefrontal cortex (mPFC), and aretrograde Cre virusin the
nucleus accumbens (NAc; Extended Data Fig. 2a). This labeled a rela-
tively sparse population of mPFC to NAc projections neurons with the
GCaMP sensor. An optical fiber was implanted above the mPFC to meas-
ure the GCaMP fluorescence signal in response to brief foot shocks,
which hasbeen previously shown to elicit responsesin these neurons™®.
Histology images showed qualitatively similar GCaMP expression in
mPFC cell bodies and axons inNAc across all groups of mice (Extended
DataFig.2b). Allthree GCaMP variants exhibited atime-locked increase
influorescence during the foot shock, followed by aslow decay in the
sensor fluorescence (Extended Data Fig. 2c). We calculated the mean
response to the foot shock for each sensor and found that eGCaMP*'
exhibited a larger change in response compared with GCaMP6f and
eGCaMP* (Extended Data Fig. 2d), similar to our results in culture. We
also calculated the mean sensor decay response 3 to 4 s after the foot
shock (whichis dependent onthe offkinetics of the sensor; a faster sen-
sor will returnto baseline after the shock, while a slower sensor will still
maintain a higher signal after the shock). We found that the eGCaMP*
decay response was smaller than that of eGCaMP?, supporting our
previous findings the eGCaMP" has the fastest off kinetics among our
sensors (Extended Data Fig. 2e).

Discussion

Incorporating ML into our engineering pipeline enabled us to effi-
ciently identify new GCaMP variants with enhanced AF/F, responses
and faster decay kinetics. We achieved good predictive performance
inthe cross-validation phase by using an ensemble of three regressor
models, encoding our dataset with amino acid characteristics, and
focusing solely onsequenceinputs for learning. These predictive capa-
bilities translated to the in vitro space, where many in silico predicted
characteristics accurately reflected the mutant’s true performance. As
aresult of these engineering efforts, we identified three new GcaMP
constructs: eGCaMP, eGCaMP* and eGCaMP*",

We made several critical design decisions when developing our
approaches, such as our encoding method, chosen models, ensemble
and exploring only single-point mutations. We chose to encode the
sequence with biophysical properties underlying amino acidsineach
position to facilitate the formation of meaningful learning patterns.
Theselection of five amino acid datasets was made semi-arbitrarily, as
it provided better learning capabilities over other common encoding
methods without dramatically impacting computational demands,
processing time and storage requirements.

Ensembling ML models (considering the input from multiple
models) is preferable over single-model predictions, as no singular
modelis perfectly optimized to performall tasks*. The three selected
models have diverse learning strategies and make different assump-
tions about the data, which is important when ensembling. Decision
tree learning methods, such as RFRs, are computationally efficient
models well suited for small training libraries, making them a strong
foundation within our ensemble’s learning®. The KNR*® similarity
metric can capture the variability between the performances of nearly
identical sequences and highlights residues whose mutation led to
large differences in the targeted sensor characteristics. MPNRs are
deep-learning models capable of extracting high-level features from
the data, making them useful for identifying key residues or properties
thatlead to the observed biophysical response®. Adding more models
improved our predictive capability, as demonstrated by theincreased
R?of the ensemble compared with the sole contributor’s performance.

One of the major hurdles of protein engineering is the suscep-
tibility of proteins to experience epistasis, in which combinations
of mutations non-additively influence the phenotypic characteris-
tics”. Though the mutation library we worked with had more than a
thousand well-characterized variants, the large number of mutated
residues renders the dimensionality incredibly large. As such, we felt
that the risk of epistasis upon combinatorial mutation was too great
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and that the relatively limited size of the library in comparison to its
dimensionality rendered this application better suited to single-point
mutation testing.

While the incorporation of ML substantially improved our
engineering capabilities, there were several limitations within our
study. Within our analysis of model results, we opted to perform a
high-throughput acetylcholine assay step within HEK293 cells to
approximate sensor performance before transitioning promising
variants to neuron culture screens. Ideally, the model predictions
should be validated against data acquired in the same manner as the
training data. The HEK293 assay approximates sensor capabilities but
doesnot fully reflect the predictions made by the model. Importantly,
these differences did not compromise the ensemble’s ability to guide
our engineering efforts; however, validating the ML-ensemble predic-
tionusing the same host systemas the training data could offer amore
complete understanding of the model’s predictive capabilities.

Although structural insights guided the engineering of previ-
ously published GCaMPs, we developed the ensemble pipeline to
be structure-agnostic. This was crucial, as we aim to engineer GEFls
without relying on molecular structures. Owing to the exclusion of
structure information, extrapolation outside of the observed sequence
space may be difficult. Our approach is best suited for exploration
within a sequence space with only minor variations from the training
data. However, one could incorporate spatial information from crystal
structures or structure predictions in the ensemble’s learning to aid
extrapolationin future studies.

Theapproachwe employ here allowed the majority of the screen-
ing to occur in silico, which reduced the experimental burden while
achieving substantial improvements. We selected variants for in vitro
testing based on their predicted performance for AF/F, or off-kinetics.
Thus, the selected variants displayed compensation within favorable
characteristics, such asalower baseline fluorescence, whichwasnota
prediction criterion. Thelower baseline did notimpact the performance
of eGCaMPs in neuron cultures or in vivo fiber photometry. Hence, it
would be an acceptable tradeoffin many use scenarios. As a considera-
tion for future studies, metrics for favorable characteristics could be
includedin ensembletraining to preserve themwithin the final variants.

Lastly, our training dataset was more biased toward influential
residues, which were chosen through crystal structure analysis and
previous trial and error. As aresult, highly mutated positions came to
the forefront of final predictions; however, this does not meanthat they
are not influential or that the mutations that the ensemble suggests
cannotbeexploited further. Likewise, it did not preclude less explored
residues frombeing chosen asinfluential in sensor performance. As ML
becomes more prevalent, several considerations for data acquisition
may help generate better suited, unbiased datasets. First, sequence
space and dimensionality must be well defined. Smaller dimensional-
ity offers more in-depth analysis and comprehension of combinato-
rial mutations. Larger numbers of residue positions will span a much
greater sequence space but limit the study to smalliterations from the
starting sequence. The data should have equal numbers of mutations
perresidueintheir characterization to avoid biases that may arise due
to unbalanced prevalence. Furthermore, identifying ‘loss-of-function’
mutations is as vital to training as ‘gain-of-function’ mutations. The use
case of iterative model training, inwhich the user isinformed by ML and
thenretrainsthe model with additional information, isanideal applica-
tion. However, testing only promising variants should be avoided, as
this may introduce bias into the dataset during retraining.

The ML ensemble used in this study has demonstrated a good
capacity to guide fluorescent biosensor engineering. The ensem-
ble’s predictions helped identify variants with large AF/F, values and
fast decay kinetics, while highlighting clusters of impactful residues
for each biophysical property, which may be further exploited by
mutation-library-based high-throughput screening. These findings
illustrate the ensemble’s ability to guide engineering efforts and

improve experimental efficiency. Moreover, since our model’s learning
isbased solely on the sequence-function relationship and all contribu-
tor model optimization is unbiased, the final ensemble platform can
be broadly applied to any genotype-to-phenotype mutation library.
Applying this ML platform to mutation studies of proteins with quan-
tifiable output characteristics, including other protein sensors, has the
potential to accelerate the engineering of these proteins.

Methods

Data preprocessing

The Chen and Dana studies provide a functional characterization of
morethan1,000 GCaMP variants that spanthe GCaMP6 and jGCaMP7
iterations***°, Each study normalized the results to base constructs for
datasuchas AF/F,response (equation (1)) tostimuli of 1AP,3 AP,10 AP
and 160 AP, and decay half-time after 10 AP. To cross-compare muta-
tion libraries, we re-normalized the Chen et al. 2013 dataset such that
GCaMPé6s was 1.0 for all metrics. Each variant was incorporated into a
single dataframe that comprised 453 columns: one column containing
the primary key variant identifier, 451 columns corresponding to the
sequence of each GCaMP variant, and the final column containing each
variant’s empirically derived performance.

(F-Fop)
Fo

AF/Fy = x 100 (0)]

Within the variant library used for model training, the independ-
entvariable consists of the sequence of each mutation. The dependent
variableisthe AF/F,response (1AP AF/F,) or kinetics capability (z,,,). To
encode ourindependent variable data, we attempted several different
methods: label encoding, one-hot encoding or by adding functional
information. Within our label encoding, we randomly assigned an
integer value to each amino acid and replaced each residue label in
the GCaMP sequence with the dummy label. For one-hot encoding,
the full extent of possible residues at each position is considered in a
Boolean manner (20 amino acids x 450 residue positions). To perform
encoding with functional data, we developed adictionary of amino acid
properties by web scraping the AAindex database®. AAindex consists
of matrices that each describe a different amino acid property, such as
size, polarity or hydrophobicity. The general shape and composition
of each one of the property datasets is a list of 20 float type values, in
which the order is linked to the amino acid, and the float type value is
aquantitative value thatis dependent on the property in question. We
used the 554 complete property datasets to formulate an unbiased
model training paradigm in two steps. To perform the encoding, we
replace each aminoacidin the sequence with the corresponding value
fromthe property dataset. The final variantlibrary used in model train-
ing consisted of the fully encoded GCaMP sequence and the variants’
empirically derived performance capability.

Generation of the novel variant library

To generate a library of unknown sequences, we performed a
single-point saturation of the jGCaMP7s sequence at 75 residue loca-
tions. These 75 residues correspond to the 75 residues that contain
mutagenesis information in the variant library. The outcome was a
novel point-saturation-mutation library that contained 1,423 untested
variants (77 redundant with previously tested variants).

Ensemble training

The models that we developed were from the pip installable package
Scikit Learnin Python 3.8.5 to develop an RFR, KNR and an MPNR and
developed in Jupyter Notebooks and Google Colab. The models were
trained onthe encoded sequence of each variant linked to their empiri-
cally derived performance capability. The performance capabilities
correspond to their AF/F,response to1 AP or half decay time after 10 AP.
The dataweresplitinto train/testsets at aratio of 80:20 witharandom
seed of 42 for downstream optimization efforts. We performed the
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‘SelectKBest’ feature selection function found in Scikit Learn. Optimi-
zation of the model was done by grid-search hyperparameter tuning,
unique to each model type. We used the coefficient of determination
(R? and mean squared error to track the fit of each model. This process
wasrepeated over each of the 554 datasets for the three models (-1,662
times). Each model’s top five performing property datasets (that led
to the highest R? values) were advanced to generate predictions on the
novelvariantlibrary. Each contributor model (5amino acid properties
x 3 regressor models) forms predictions independently, and the final
predictions are the average response from each contributor model for
each target attribute (AF/F, response 1AP AF/F, or kinetics capability
7,). The predicted values returned by the ensemble are numeric values
originating fromanormalized library, making the predictions unitless.

PCA clustering

Eachfeature within the datawas first scaled using Sklearn’s Standard-
Scaler. We passed the scaled datainto Sklearn’s PCA function with no
defined number of components. We chose the optimum number of
components by finding where the explained variance of the PCA of the
data passed 0.8. Wereinitialized the PCAwith the determined number
of principal components and fit the function with the standardized
data. We then used the principal component space coordinates to find
the ideal number of clusters for K-means clustering. We determined
theideal number of clusters by using the ‘elbow method’ on the within
cluster sum of square. After finding the clusters, we labeled each input
to their K-means-defined cluster.

Molecular cloning

Predicted mutations werereflected into the cytomegalovirus-jGCaMP7s
backbone (Addgene ID: 104463) using point-mutation primers
(Integrated DNA Technologies) and PCR amplification with either
Q5-polymerase (New England Biolabs; M0492L) or Superfi-ll polymer-
ase (Invitrogen; 12368010). Amplification of the DNA fragment was
verified with agarose gel electrophoresis. Blunt-end DNA circulariza-
tion was achieved with Kinase, Ligase, and Dpnl enzyme treatment
(New England Biolabs: E0554S). Circularized DNA was transformed
into competent Escherichia coli cells (DH5a or TOP10) and grown
on agar plates that contain either ampicillin or kanamycin selection
antibiotic (50 pg ml™). Upon colony formation, single colonies were
picked and grownin 5 ml cultures containing LB Broth (Fisher BioRea-
gents; BP9723-2) and selection antibiotic (ampicillin or kanamycin;
50 ug ml™) overnight (37 °C, 230 rpm). DNA was isolated using DNA
prepkits (Machery Nagel; 740490.250). Sanger sequencing (Genewiz)
of the isolated plasmid DNA was used to confirm the presence of the
intended mutation.

Genesencoding the GCaMP variants were clonedinto a CAG-driven
backbone, pCAG-Archonl-KGC-EGFP-ER2-WPRE (Addgene; 108423),
using Gibson assembly (New England Biolabs; E2621L). All subse-
quences were verified with Sanger sequencing (Genewiz).

Acetylcholine assays

Human embryonic kidney cells (HEK293; ATCC Ref: CRL-1573, pas-
sages 3 to 25) were cultured in Dulbecco’s Modified Eagle Medium +
GlutaMAX (Gibco; 10569-010) supplemented with 10% fetal bovine
serum (Biowest; S1620). When cultures reached 85% confluency, the
cultures were seeded at 100,000 cells per well or 50,000 cells per well
in 24-well or 48-well plates, respectively. At 24 hours after cell seed-
ing, the cells were transfected using Lipofectamine3000 (Invitrogen;
L3000015) at1,000 ng of DNA per well of a24-well plate, according to
the manufacturer’s instructions. HEK293 cells were authenticated by
ATCC before shipping with short tandem repeat profiling following
ISO 9001 standards. At 48 hours post-transfection, the plates were
prepared for imaging by washing and then replacing culturing media
volume withimaging solution (Tyrode’s pH = 7.33;125 mM NaCl,2 mM
KCI, 2 mM CacCl,, 2 mM MgCl,, 30 mM dextrose, 25 mM HEPES (triple

supplemented with1% GlutaMAX (Gibco; 35050-1),1% sodium pyruvate
(Gibco; 11360-070) and 1% MEM non-essential amino acids (Gibco;
11140-050)). Crystalline power acetylcholine chloride (Alfa Aesar;
L02168.14) wasresuspended into imaging solution (Tyrode’s pH = 7.33;
125 mM NaCl, 2 mM KCl, 2 mM CacCl,, 2 mM MgCl,, 30 mM dextrose,
25 mM HEPES) into 2x the desired final concentration. During imag-
ing, 1:1 volumes of the acetylcholine-tyrodes imaging solution were
hand-pipetted into the bath volume to bring the final acetylcholine
concentration to the desired concentration. Imaging was performed
on an sCMOS camera (Photometrics Prime95B) on an epifluorescent
microscope (LeicaDMI8) usinga x20 objective (LeicaHCX PLFLUOTAR
L20x/0.40 NA CORR) controlled by Metamorph software. A Lumencor
Light Engine LED and Semrock Filters (Excitation: FFO1-474-27; Emis-
sion: FF01-520/35) were used for fluorescence imaging.

Analysis of fluorescence assays

Analysis of HEK293 cell fluorescence imaging data was done by FUSE,
acustom cloud-based semi-automated time series fluorescence data
analysis platformwrittenin Python. First, the cell segmentation quality
of the selected Cellpose® model was manually verified. For the segmen-
tation of cells expressing cytosolic fluorescentindicators, model ‘cyto’
was selected as our base model. If the selected Cellpose model was low
performing, we further trained the Cellpose model using the Cellpose
2.0 human-in-the-loop system®. Using an ‘optimized’ segmentation
model, fluorescence time-series data are extracted for each region of
interest. Using the raw fluorescence data, percentage fluorescence
change fromthe baseline (AF/F,) over time was calculated using equa-
tion (1). The SNR was calculated using equation (2).

_ (Fmax — FO)
SNR = standard deviation(F,)

2

The exponential decay constant (1) was calculated using equation
(3), where F(¢) isthe change in fluorescence at a time (¢) after the maxi-
mum fluorescence (F,) was achieved. Importantly, F, was normalized
to 1.0, such that F(¢) depicts the change in fluorescence over time, ¢.

F(t) = Foe™ ©))

The exponential time constant (7) wasisolated by using the known
reciprocalrelationship of Aand 7.
1
== 4
=3 4)
The dynamicrange (DR) was defined as the ratio of the maximum
fluorescence intensity to the baseline fluorescence intensity (equation
(5)). All AF/F,, SNR, 7 and DR values were quantified using a custom
pythonscript.

Fmax

DR = ﬁ 5
To calculatethe accuracy of our model, we classified kinetics pre-
dictions into variants that are either faster or slower than jGCaMP7s,
and AF/F,predictionsinto variants containing alarger or smaller AF/F,
than jGCaMP7s. To evaluate our model’s performance, we computed
anaccuracy score (equation (6)) using the empirical data, whichis the
ratio of sum of the true positives (TP) and true negatives (TN) to the

total number of predictions.

Accuracy score = M 6)

Npredictions

To calculate the precision of our model, we classified kinetics pre-
dictions into variants that are either faster or slower than jGCaMP7s,
and AF/Fpredictionsinto variants containing alarger or smaller AF/F,
than jGCaMP7s. To evaluate our model’s performance, we calculated
the precision (equation (7)) of our models using the empirical data,
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which is the ratio of number of TP over the number of TP and false
positives (FP).
TP

Precision = TPLFP

@)

Optical properties of purified proteins

Proteins were purified by large-scale nickel column protein purifica-
tion and SEC purification*®*. Purified protein isolates were diluted
to 10 uM in 30 mM 3-(N-morpholino)propanesulfonic acid (MOPS),
100 mMKCI, pH 7.2 witheither 10 mM ethylene glycol-bis(3-aminoethyl
ether)-N,N,N’,N'-tetraacetic acid (EGTA) (low Ca*") or 10 mM CaEGTA
buffers (high Ca*") (Invitrogen; C3008MP). Protein absorbance spectra
were recorded for each condition using a UV-vis spectrophotometer
(NanoDrop 2000/2000c¢ Spectrophotometers; Thermo Scientific).
Fluorescence emission and excitation spectrafor each condition were
measured with a spectrum-capable plate reader (SpectraMax MS5;
Molecular Devices).

For calcium titrations, GCaMP protein was first diluted (0.5 pM
protein) in triplicate in high-Ca®* or low-Ca* buffers. These two solu-
tions were mixed in various ratios to give 11 different free calcium
concentrations (Invitrogen; C3008MP). GCaMP fluorescence (excita-
tion 485 nm; emission 535 nm) was measured using a SpectraMax M5
(Molecular Devices). Calcium titration curves were fit (Prism; Graph-
Pad) to sigmoidal binding functions, and the Hill coefficient and K for
Ca® binding for the GCaMP variants were extracted.

The absorbance under saturating conditions was measured using
2 uM protein diluted into high-Ca* buffer at 500 nm (DUSOO spectro-
photometer; Beckman Coulter). The chromophore concentration was
measured from the absorbance (447 nM) of protein denatured by 1M
NaOH (extinction coefficient 44,000 M - 1 cm™). The extinction coeffi-
cient was calculated using Beer’s law, where the absorbance was that of
the saturated protein at 500 nm, and the concentration was extracted
using the absorbance of the denatured protein.

Quantum yield measurements were measured at 460 nm light
using an integrating-sphere spectrometer (Hamamatsu) for 0.3 pM
proteindiluted in high-Ca* buffer.

Isolation of cortical neurons

Tissue culture plates with 24 wells were coated with matrigel (mixed
1:20 in cold-phosphate-buffered saline (PBS), Corning; 356231) solu-
tion and incubated at 4 °C overnight before use. Sterile dissection
tools were used toisolate cortical brain tissue from PO rat pups (male
and female, Sprague Dawley, Envigo). Tissue was minced until 1 mm
pieces remained, then lysed in equilibrated (37 °C, 5% CO,) enzyme
(20 U ml™Papain (Worthington Biochemical; LK003176) in 5 ml of EBSS
(Sigma; E3024)) solution for 30 minutes at 37 °C, 5% CO, humidified
incubator. Lysed cells were centrifuged at 200g for 5 minutes at room
temperature, and the supernatant was removed before cells were
resuspendedin 3 ml of EBSS (Sigma; E3024). Cells were triturated 24 x
with a pulled Pasteur pipette in EBSS until homogenous. EBSS was
added until the sample volume reached 10 ml before spinning at 0.7g
for 5 minutes at room temperature. Supernatant was removed, and
enzymatic dissociation was stopped by resuspending cellsin 5 ml EBSS
(Sigma; E3024) + final concentration of 10 mM HEPES buffer (Fisher;
BP299-100) + trypsin inhibitor soybean (1 mg ml™ in EBSS at a final
concentration of 0.2%; Sigma, T9253) + 60 pl of fetal bovine serum (Bio-
west; S1620) + 30 ul 100 U mlI* DNasel (Sigma;11284932001). Cells were
washed twice by spinning at 0.7g for 5 minutes at room temperature,
removing supernatant and resuspending in 10 ml of Neuronal Basal
Media (Invitrogen; 10888022) supplemented with B27 (Invitrogen;
17504044) and glutamine (Invitrogen; 35050061) (NBA++). After final
wash, spin and supernatant removal, cells were resuspended in 10 ml
NBA++before counting. Just before neurons were plated, matrigel was
aspirated from the wells. Neurons were plated on the prepared culture
plates at desired seeding density. At 24 hours after plating, 1 uM AraC

(Sigma; C6645) was added to the NBA++ growth medium to prevent
the growth of glial cells. Plates were incubated at 37 °C and 5% CO, and
maintained by exchanging half of the media volume for each well with
fresh, warmed Neuronal Basal Media (Invitrogen; 10888022) supple-
mented with B27 (Invitrogen; 17504044) and glutamine (Invitrogen;
35050061) every three days*>**.

Calcium phosphate transfection of primary cortical neurons
Isolated primary cortical neurons were transfected using the cal-
cium phosphate transfection kit from Sigma Aldrich (Sigma-Aldrich;
CAPHOS-IKT). Half of the neuron media was changed 24 hours before
transfection, saving the removed conditioned media to add to the
neurons after transfection. Reagents were mixed in a ratio of 3 pl
CaCl,:24.5 pl H,0:1,000 ng DNA before being added dropwise to bub-
bled 2x HEPES buffered saline (30 pl). The final solution was vortexed
for 4 seconds and left undisturbed for 20 minutes. The solution was
added dropwise to each well of neurons in a 24-well plate and shaken
to distribute equally. Neurons were left to incubate for 1 hour at 37 °C
with 5% CO,. The cells were rinsed twice with HBSS before adding the
conditioned medium removed on the previous day and mixed with
half-fresh medium.

Electrical field stimulation

On the day of imaging, ~24-36 hours post-transfection, cells were
washed once with imaging solution and then transferred to E-Stim
Tyrode’s (pH =7.33;150 mM NaCl, 4 mM KCI, 3 mM CaCl,, 1 mM MgCl,,
10 mM Dextrose, 10 mM HEPES)*?. A custom wire holding piece was
designedtofitinto48-well plates withsilver wires10 mmapart.100 mA
pulses, with a 3 ms pulse width, were administered at either 0.5 Hz
or 10 Hz frequency using a pulse generator (Warner Instruments;
SIU-102B), triggered with Sutter Instruments Integrated Patch Amplifier
with Patch Panel, time-locked using Igor Pro 8. Imaging was performed
with a digital camera (Hamamatsu ORCA-Flash4.0; C11440) at 100 ms
exposure attached to an epifluorescent microscope (LeicaDMIL). The
light was generated using a SOLA Light Engine (Lumencor; SOLA SE
5-LCR-SB) witha488 nmwavelength filter lens. Bulk fluorescence traces
were acquired using FlJlimaging software with background subtraction
(rolling =50 stack) and hand-drawn regions of interest. The baseline was
defined as the first 50 measurements before the event trigger. Maximum
AF/F,was determined by finding the maximum value withineach AF/F,
trace. The AF/F,traces were then normalized to have amaximum value
of 1.0 by dividing each value in the trace by the maximum AF/F,. The
half-decay time wasrecorded as the time in which the normalized AF/F,
passed 0.5. Final traces and plots were created using Prism9.

Potassium chloride assays

On the day of imaging, ~24-36 hours post-transfection, cells were
washed once withimaging solution, then replaced withimaging solu-
tion (Tyrode’s pH = 7.33; 125 mM NaCl, 2 mM KCl, 2 mM CacCl,, 2 mM
MgCl,, 30 mM dextrose, 25 mM HEPES (triple supplemented with 1%
GlutaMAX (Gibco; 35050-1),1% sodium pyruvate (Gibco; 11360-070),
and 1% MEM non-essential amino acids (Gibco; 11140-050)). Powdered
potassium chloride (Sigma; P9541-500G) was diluted in double dis-
tilled water to a concentration of 2 M. This solution was then diluted
to 80 mMinimaging solution (Tyrode’s pH=7.33;125 mM NaCl,2 mM
KCI, 2 mM CacCl,,2 mM MgCl,, 30 mM dextrose, 25 mM HEPES). During
imaging, 1:1volumes of KCl solution were hand-pipetted into the bath to
bring the final KCl concentration to the desired concentration. Imaging
was performed on an sCMOS camera (Photometrics Prime95B) on an
epifluorescent microscope (Leica DMI8) using a x20 objective (Leica
HCXPLFLUOTARL20x/0.40 NA CORR). ALumencor Light Engine LED,
and Semrock filters (excitation: FF01-474-27; emission: FF01-620/35)
were used for fluorescence imaging. Bulk fluorescence traces were
acquired using FIJl imaging software with background subtraction
(rolling =50 stack) and hand-drawn regions of interest. The baseline was
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defined as the first 30 measurements before KCl addition. Maximum
AF/F,values were obtained using a custom Python script. Final traces
were plotted in Prism9.

Animals

Male and female C57BL/6 ) mice (6-7 weeks old) were obtained from the
Jackson Laboratory and maintained on a12 h reverse light-dark cycle
(lightson at21:00) at 22 °C, group-housed with same-sex cage mates and
given ad libitum access to food and water. Mice were left undisturbed
for1week following arrival before the start of testing. All experiments
occurredinthe dark cycle. All experiments were conducted inaccord-
ance with the UC Davis Institutional Animal Care and Use Committee.

Stereotaxicsurgery

Mice were anesthetized under 1.5-2% isoflurane and placed in a stere-
otaxicapparatus (RWD) onaheat pad. Three different adeno-associated
virus (AAV) cre-dependent GCaMP variants were tested:
AAV5-Syn-FLEX-GCaMP6f (Addgene100834; final titer 1.1 x 10™ genomic
copies per ml) AAVI-EF1a-DIO-eGCaMP"* (Fred Hutch Virus Core; final
titer1.25 x 102 1U mI™Y); or AAV1-EF1a-DIO-eGCaMP* (Fred Hutch Virus
Core; final titer 6.80 x 10" IU mI™) (IU, units of infectious particles).
AAV cre-dependent GCaMP variant (1 pl) was infused into the mPFC
(M/L: -0.35, A/P:1.98, D/V: -2.25 mm relative to bregma), and 500 nl
of retroAAV-Syn-Cre (Addgene 105553; final titer 9.50 x 10 GC ml™)
was infused into the nucleus accumbens (NAc; M/L: -0.35, A/P: +1.25,
D/V:—4.6 mm).Injections were performed atarate of 150 nl min™using
a Hamilton syringe controlled by an injection pump (World Precision
Instruments). The virus was allowed to diffuse for 5 min before with-
drawing the needle. Chronically implantable fibers (RWD; 400 pm
core, 0.37NA,1.25 mm ceramic ferrule) were implanted above the mPFC
injectionsite (M/L:—0.35,A/P:1.98,D/V:-1.5 mm) to allow for blue light
delivery and fluorescence signal recording. Recordings began 4 weeks
after surgery to allow sufficient time for viral expression.

Fiber photometry recording

Fiber photometry recordings were performed using RWD’s Tricolor
Multi Channel Fiber Photometry System. Briefly, 470 nm and 410 nm
light pulses were alternately delivered through a 400 pm patchcord
(0.57NA; Doric Lenses) connected to an optical fiberimplanted above
the PFC. Fluorescence was recorded with a cMOS sensor using RWD
software at a frequency of 20 Hz. The 410 nm wavelength excitation
light represents the isosbestic wavelength of the sensor, which allows
us to get a control signal that shows non-Ca? related signal changes
that could contribute to the measured Ca**-dependent signal. The
410 nm signal was linearly scaled to best fit the 470 nm signal using
least-squares regression. The motion-corrected 470 nm signal was
obtained by subtracting the 410 nm signal from the 470 nm signal*’.
The corrected 470 nm trace was then z-scored for further analysis.

Shock delivery

During the fiber photometry recording, mice weregivena2s,1.0-mA
footshock twice, separated by atleast 60 seconds. Shocks were deliv-
ered usingabehavior box with abuilt-inshock floor (Med Associates).
The time of shock delivery was synchronized to the fiber photometry
recording using transistor-to-transistor logic time stamps.

Fiber photometry analysis

Dataanalysis was performed using MATLAB (MathWorks v2020b). The
410 nm trace was linearly scaled to the 470 nm trace and subtracted
for each recording. The corrected 470 nm trace was then z-scored
for further analysis. To calculate the mean shock response, the mean
tracefrom¢=1to2safter theshock onset was calculated, and thenthe
meanbaseline trace from¢=-2to O s before the shock was subtracted
fromthat. To calculate the mean decay after the shock, the mean trace
fromt=3to4 safterthe shock onset was calculated, and thenthe mean

baseline trace from t=-2to 0 s before the shock was subtracted from
that. No animals were excluded from analysis.

Histology

Mice were anesthetized under 5% isofluorane and perfused with20 ml
cold PBS, followed by 20 ml of cold 4% paraformaldehyde. Brains were
extracted and post-fixed overnight in paraformaldehyde before being
transferred to PBS. Brains were sliced on a vibratome (Leica) to a thick-
ness of 60 pm. For immunostaining, brain slices were first washed
in PBS with 0.3% Triton-X then blocked for 60 min in PBS with 0.3%
Triton-X and 5% normal donkey serum. Slices were stained overnight
with anti-GFP-AlexaFluor488 antibody (1:1,000 in blocking solution,
Life Technologies A-21311) at 4 °C. Histology images were captured
using a Keyence BZ-X180 fluorescence microscope, with an 80 W hal-
idelamp and PlanApo 10 x0.45 NA air objective. GFP fluorescence was
visualized using the commercially provided GFP set excitation/emis-
sion filters. Images were processed using ImageJ (Fiji).

Material requests

Plasmids for eGCaMP* and eGCaMP?* can be obtained directly from
Addgene for mammalian expression or subcloning encoded in pCAG
backbones (201147,201148) and virus production for CRE-dependent
expression encoded in pAAV-EF1a-DIO backbones (201149, 201150).

Ethics statement

All animal procedures performed at the University of Washington
were approved by the University of Washington’s Animal Use Com-
mittee (protocol 4422-01) and follow the National Institutes of Health
and the Association for Assessment and Accreditation of Labora-
tory Animal Care International guidelines. All experiments at the
University of California, Davis and University of Washington were
conducted in accordance with the Institutional Animal Care and Use
Committee.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Allof the datasets generated within this study are available on figshare
at https://doi.org/10.6084/M9.FIGSHARE.23750682.V1 (ref. 45). We
included the Chen* and Dana’ datasets used to run our model and an
amino acid property matrix derived from AAindex* in the Supple-
mentary Data. The GCaMP crystal structure used in this paperis acces-
sible online (https://www.rcsb.org/structure/3sg3), GCaMP3-D380Y
(RCSB:3SG3) andinthe Supplementary Data. Source dataare provided
with this paper.

Code availability

Thesource codeisavailable for download from GitHubat https://doi.org/
10.5281/ZENODO.8179256 (ref. 46) and CodeOcean at https://doi.org/
10.24433/C0.0624159.v1 (refs. 47,48). Custom Python scripts are avail-
able from figshare®.
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Extended DataFig. 2| In Vivo Performance of eGCaMP* and eGCaMP?**
expressed in mouse mPFC. A. Experimental timeline. Mice were injected with
an AAV-Cre dependent-GCaMP variantin the mPFC and a retroAAV-Syn-Cre was
injected in NAc. An optic fiber was implanted above the mPFC to allow for light
delivery and fluorescence recording. B. Representative fluorescence images

of GCaMP expression in mPFC and NAc (stained with anti-GFP-Alexafluor488).
Scale bar, 130 pm. C. Mean Z-scored fluorescence changesin response to a foot
shock (n =4 total shock trials, collected from 2 mice for each GCaMP variant, Line
depicts mean, shading depicts SEM). D. Comparison of the mean shock response
between the three GCaMP variants. Top: schematic of how the shock response

was calculated (see methods). Bottom: Mean change in Z-scored fluorescence
response to shock (n = 4 total shock trials, collected from 2 mice for each GCaMP
version). P-values were calculated using a One-way ANOVA followed by Tukey’s
multiple comparisons in panels (D) and (E): *P < 0.05. All data show mean +/-
SEM. E. Comparison of the mean decay to shock between the three GCaMP
variants. Top: schematic of how the decay to shock was calculated (see methods).
Bottom: Mean change in Z-scored fluorescence decay to shock (n = 4 total shock
trials, collected from 2 mice for each GCaMP version). P-values were calculated
using a One-way ANOVA followed by Tukey’s multiple comparisons in panels (D)
and (E): *P < 0.05. All data show mean +/- SEM.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] Adescription of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Gjve P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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|:| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Metamorph
Data analysis ImageJ, MATLAB, Google Colab, Jupyter Notebooks, CellPose, https://codeocean.com/capsule/9982751/tree, https://github.com/sarahwaity/
ProteiML, https://github.com/BerndtLab, https://doi.org/10.1101/2023.04.13.536801

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
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- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All of the datasets generated within this study are available on figshare(ref 48). The files include data used for main figures, supplemental figures, and
supplementary tables. We included the Chen (ref 4) and Dana (ref 5) datasets used to run our model and an amino acid property matrix derived from AAINDEX (ref




32) in the Supplementary Data. The GCaMP crystal structure used in this manuscript is accessible online (https://www.rcsb.org/structure/3sg3), GCaMP3 D380Y
(RCSB: 35G3) and in the Supplementary Data.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender N/A

Population characteristics N/A
Recruitment N/A
Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Samples were taken at least until we reached statistical significance, and typically beyond. Most data sets include hundreds of samples for
each average.

Data exclusions  Size exclusion for automated cell segmentation: For cell segmentation, average sizes for cells were calculated. Regions of interest that were
outside of one SD mean for the size of cells were excluded.

Replication Each in vitro data point contains samples from at least 3 biological replicates, that is cell cultures wells. No technical replicates were takes and
no outliers removed. The in vivo data contains data from 2 biological replicates (mice) under repeated time-locked stimulation, which is
standard in the field.

Randomization  The study was conducted with large numbers of samples and variants by individual researchers who required complete oversight from the
preparation of experiments, to conduct, and analysis. We minimized research bias by including large sample sizes and an unbiased,
automated image analysis algorithm. No outliers were removed and data was analyzed independently.

Blinding Test were not blinded because we had only one person taken measurments. However, data analysis was unbiased by an automated image

analysis pipeline including a cell segmentation process (CellPose) which automatically identified all sensor expressing cells and extracted
change in fluorescence from them.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChiIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
|:| Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
|:| Clinical data

Dual use research of concern
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Antibodies

Antibodies used anti-GFP-AlexaFluor488 (Life Technology cat #A-21311)

Validation Manufacturer validated AB using western blots against positive and negative controls.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) HEK293, ATCC: CRL-1573

Authentication HEK293 cell were authenticated by ATCC prior to shipping with STR profiling following ISO 9001 and ISO/IEC 17025 quality

standards. We discard cells after 25 passages and start new cultures from P2 or P3 frozen stocks.

Mycoplasma contamination HEK293 cells were tested negative for mycoplasma contamination
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Commonly misidentified lines

Commonly misidentified lines were not used
(See ICLAC register)

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals 6—7-week-old male and female C57BL/6J mice (JAX) were used for in vivo studies. Cultured neurons were dissected from PO rat pubs

(female and male, Sprague Dawley, Envigo).
Wild animals N/A
Reporting on sex Male and female mice were used.
Field-collected samples  N/A

Ethics oversight All experiments were conducted in accordance with UC Davis’s and University of Washington's Institutional Animal Care and Use

Committees.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
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Alter the host range of a pathogen
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Enable the weaponization of a biological agent or toxin

Any other potentially harmful combination of experiments and agents

>
)
(e
D
1®)
O
=
o
=
_
(D
1®)
O
=
(@]
wn
(e
=
3
Q
A




	Machine learning-guided engineering of genetically encoded fluorescent calcium indicators

	Results

	Description of ensemble development

	Analysis of ensemble predictions

	In vitro performance of ensemble predictions

	Identification of eGCaMP+ and eGCaMP2+

	eGCaMP, eGCaMP+ and eGCaMP2+ performance in primary neurons

	eGCaMP+ and eGCaMP2+ performance in vivo


	Discussion

	Methods

	Data preprocessing

	Generation of the novel variant library

	Ensemble training

	PCA clustering

	Molecular cloning

	Acetylcholine assays

	Analysis of fluorescence assays

	Optical properties of purified proteins

	Isolation of cortical neurons

	Calcium phosphate transfection of primary cortical neurons

	Electrical field stimulation

	Potassium chloride assays

	Animals

	Stereotaxic surgery

	Fiber photometry recording

	Shock delivery

	Fiber photometry analysis

	Histology

	Material requests

	Ethics statement

	Reporting summary


	Acknowledgements

	Fig. 1 Description of variant library, computational approach and ensemble cross-validation.
	Fig. 2 In vitro verification of ensemble predictions.
	Fig. 3 Gq/IP3 assay in HEK293 cells to validate ensemble predictions.
	Fig. 4 Identification of eGCaMP+ and eGCaMP2+ in HEK293 cells.
	Fig. 5 eGCaMP, eGCaMP+ and eGCaMP2+ ∆F/F0 and kinetics characteristics in primary neurons.
	Extended Data Fig. 1 Excitation and Emission Spectra of eGCaMP Sensors.
	Extended Data Fig. 2 In Vivo Performance of eGCaMP+ and eGCaMP2+ expressed in mouse mPFC.




