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4. Description of supplementary files: Supplementary material section contains 2 figures. 

Supplementary Figure 1 compares the effect of addition of RoseTTAFold-predicted structural 

templates as input for the task of single mutation effect prediction, arranged according to 

increasing MSA input depth. Supplementary Figure 2 shows the spearman rho correlations of all 

proteins evaluated, arranged according to increasing MSA input depth. 
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Abstract 
 

Predicting the effects of mutations on protein function and stability is an outstanding challenge. 

Here, we assess the performance of a variant of RoseTTAFold jointly trained for sequence and structure 

recovery, RFjoint, for mutation effect prediction. Without any further training, we achieve comparable 

accuracy in predicting mutation effects for a diverse set of protein families using RFjoint to both another 

zero-shot model (MSA Transformer) and a model which requires specific training on a particular protein 

family for mutation effect prediction (DeepSequence). Thus, although the architecture of RFjoint was 

developed to address the protein design problem of scaffolding functional motifs, RFjoint acquired an 

understanding of the mutational landscapes of proteins during model training that is equivalent to that of 

recently developed large protein language models. The ability to simultaneously reason over protein 

structure and sequence could enable even more precise mutation effect predictions following supervised 

training on the task.  These results suggest that  RFjoint has a quite broad understanding of protein 

sequence-structure landscapes, and can be viewed as a joint model for protein sequence and structure 

which could be broadly useful for protein modeling.  

 

Brief Statement: The RoseTTAFold deep neural network was trained to predict protein structures from 

amino acid sequences. RoseTTAFold was further modified to scaffold a given functional motif by 

training it for joint sequence and structure recovery of input proteins, resulting in RoseTTAFold Joint 

(RFjoint). Here we show that during the training, RFjoint acquired an understanding of protein sequence-

structure relationships that enable zero-shot prediction of the effects of mutations on protein stability and 

function. Thus, RFjoint could be useful for distinguishing deleterious and neutral alleles in genome-wide 

association studies and designing proteins with higher stability and activity. Inference code for predicting 

the effect of single mutations on protein function or stability through this pipeline is available here: 

https://github.com/RosettaCommons/RFDesign/tree/main/inpainting. All input 
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data (target MSAs, structural templates), experimental and predicted values of all methods compared are 

available on Zenodo at link: https://doi.org/10.5281/zenodo.8106250 
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Introduction  

Accurate prediction of single point mutation effects using sequence information alone would help 

relate observed sequence polymorphisms to human disease [1, 2] and contribute to the design of proteins 

with higher functional activities. Deep learning methods have recently shown considerable promise for 

mutation effect prediction. DeepSequence [3], a probabilistic model for sequence families, obtained high 

accuracy in mutation effect prediction using latent variables for capturing higher-order interactions 

between residues in proteins through training on multiple sequence alignments (MSAs) for the target 

protein of interest. Large protein language models trained on MSAs (MSA Transformer) [4] or single 

sequences [5] also perform well at mutation effect prediction using an unsupervised or zero-shot 

approach. These language models have the advantage over DeepSequence of not requiring specific 

training on the protein family of interest.  

RoseTTAFold was originally developed for protein structure prediction [6] and more recently 

RoseTTAFold Joint (RFjoint ) was further trained to solve protein ‘inpainting’ problems [7]. During the 

inpainting process using the specifically trained RoseTTAFold network, a pass through the network starts 

from the functional site and fills in missing sequence and structure, resulting in the creation of a complete 

and viable protein scaffold. Included in RFjoint training was a masked MSA token recovery task for 

sequence prediction: predicting  the correct amino acid sequence at specific masked positions within the 

alignment.  

To assess RFjoint’s understanding of protein mutational landscapes, we set out to investigate 

whether it could predict experimental mutational data from published deep mutational scanning (DMS) 

sets [8] with no further training (i.e., using a “zero-shot” approach). We compared the performance of 

RoseTTAFold Joint on this task to that of MSA Transformer and DeepSequence.  All three are MSA 

based methods, RFJoint  and MSA Transformer require no further training, while DeepSequence is trained 

on data from the family of interest. While not developed specifically for this task, we found that the  
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performance in  predicting the effects of single mutations on a set of diverse proteins was slightly better 

for  RFjoint than MSA Transformer and comparable to the specifically trained DeepSequence.  

Results 

RFjoint was evaluated on a set of 38 deep mutational scans curated by Riesselman et al. [3] (The 

original dataset consisted of 42, we excluded the tRNA (TRNA_YEAST), the toxin-antitoxin complex 

(PARE_PARD), HIS7_YEAST_Kondrashov2017 and the PABP-doubles datasets to focus on single 

mutations made to monomeric proteins). Each of the mutational scans recorded a different protein 

function with varying measurements. Given that only 2 out of the 38 DMS datasets pertain specifically to 

stability, the evidence for the stability change prediction is weaker compared to that for the functional 

effect prediction. Each dataset was treated as a separate prediction task, and each variant was scored 

individually. For each target protein, we generated MSAs using iterative sequence search against the 

UniClust30 database as described in Baek et al. [6] and used it for both RFjoint and MSA Transformer 

predictions. For RFjoint, the variants were scored by masking out the mutation site in the query sequence in 

the MSA, and the MSA token recovery head was used to predict the distribution over the masked 

position. The predicted effect of the mutation was calculated as the log odds ratio of the mutant amino 

acid and the wild-type amino acid (Figure 1). The performance on each dataset was assessed based on the 

spearman correlation of the predictions to the observed experimental values. For DeepSequence, we 

compared the results of MSA Transformer and RFjoint to the published spearman rho values [3], which are 

from an ensemble of models trained on a different set of MSAs than those used for MSA Transformer or 

RFjoint for each target protein.   
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Figure 1.  Overall pipeline for zero-shot prediction of mutation effect using RFjoint. A MSA is generated 

and masked at the mutation position in the query sequence, and structural templates are fed into pre-

trained RFjoint. Using the masked token prediction head, the emitted probability distribution of the 20 

amino acids over the mutation site is used to calculate the effect of a mutation as the log odds ratio of the 

wild-type and mutation amino acid. 

 

We found that RFjoint predicts mutational effects considerably better than a baseline calculated as 

the log odds ratio of the frequency of the mutant amino acid and of the wild-type amino acid in the MSA 

(Figure 2).  RFjoint also slightly outperformed MSA Transformer and is comparable to the protein family-

specific DeepSequence (Figure 2). RFjoint has the advantage in principle over the purely sequence based 

models of also being able to utilize structural template information, but we did not observe a significant 

improvement with incorporation of template structure information (Supplementary Figure 1; this may be 

in part because RoseTTAFold generates 3D models from MSA with reasonable accuracy). We also found 

little dependency of prediction accuracy on MSA depth (Supplementary Figure 2). 
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Figure 2. Boxplots of spearman rho correlations on deep mutation scanning datasets. Baseline refers to 

the non-ML MSA baseline. RFjoint refers to the model trained on a joint sequence and structure recovery 

task [7]. Box plots show the median (center line), interquartile range (hinges), and 1.5 times the 

interquartile range (whiskers); outliers are plotted as individual points. An asterisk above bars indicates 

significant differences: Baseline-DeepSequence (p < 0.05) and Baseline-RFjoint (p < 0.05), signifying p-

values below the threshold. The average spearman rho correlation is 0.426 for the baseline, 0.502 for 

DeepSequence, 0.430 for MSA Transformer and 0.497 for RFjoint.  

Discussion 

We find that the RoseTTAFold network, developed originally for structure prediction and then 

extended to protein design, is also able to predict the effect of single mutations with quite high accuracy. 
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DeepSequence has a slightly higher average spearman rho correlation than RFjoint, but requires training for 

each protein family individually. Just as large protein language models, like MSA Transformer, provide 

general models of protein sequence, RoseTTAFold Joint may be viewed as a general joint model of 

protein sequence and structure. With further directed training, it should be possible to further improve 

mutation effect prediction performance by better utilizing protein structural information, which can be 

readily input into RoseTTAFold Joint but not into pure sequence based models, and by fine-tuning 

specifically on the mutant prediction task. As an additional future direction, exploring ensemble 

predictions using RFJoint could further improve prediction accuracy and robustness.  In conclusion, the 

predictive capabilities of RoseTTAFold Joint for protein structure and mutation effects, along with its 

potential for further enhancements through directed training and utilization of structural information, 

highlights its promising role as a general, joint model for protein sequence and structure.  

 

Materials and Methods 

1. Deep Mutational Scanning Datasets:  

RoseTTAFold was evaluated on a subset of 38 deep mutational scans collected by Riesselman et 

al. [3]. The proteins evaluated perform a wide range of functions and the experimental measures 

performed are different for each protein. We treat each deep mutational scanning dataset as a 

separate prediction task. Performance on each task is evaluated by spearman rho correlations of 

the calculated (baseline), published (DeepSequence) or predicted (RFjoint and MSA Transformer) 

scores to the experimental values.  

2. MSA Generation:  

The same MSA inputs are used for both RoseTTAFold Joint and MSA Transformer at inference 

time. The protocol for generating MSAs is adopted from RoseTTAFold [6], where for each 

protein, sequences are found by iterative search against UniRef30 [9] and BFD [10] using 

HHblits [11]. Sequences are then filtered at 90% sequence identity cutoff. The E-value cutoff for 
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sequence search is gradually relaxed (from 1e-10 to 1e-3) until the generated MSA has at least 

2000 sequences with 75% coverage or 5000 sequences with 50% coverage. For the proteins that 

failed to get 5000 sequences (with E-value of 1e-3 and 50% sequence coverage cutoff), as many 

sequences as the protocol can find are used as an input MSA.  

3. Non-ML Baseline Setup:  

For establishing the non-ML baseline, we used the input MSA for each protein and calculated the 

log odds ratio of the frequency of the wild-type amino acid and mutant amino acid for each 

position (Equation 1). All sequences of the input MSA were used in this calculation.  

���������,� = ��� (������ ,�) −  ���(������,�)          Equation 1 

4. RFjoint Inference Setup: 

We used the published RFjoint model [7] in inference mode for the task of single mutation effect 

prediction. All weights of the model were frozen and no further training was done. As described 

in the  RFjoint paper [7], we split the input MSA into two groups, a small seed MSA and an extra 

MSA, to reduce the memory cost for all sequence-to-all sequence attention map calculation in the 

original RoseTTAFold. Up to 256 sequences were considered as a seed MSA (the input for 

RFjoint’s main three-track blocks) from the input MSA of a target protein with an additional 1024 

extra sequences (the input for RFjoint’s ExtraMSAStack) passed into the model. All default 

parameters from RFjoint were used and the number of recycles was set to 1. RoseTTAFold [6] 

predicted structures for a target protein were used as structural templates for mutation effect 

prediction. The mutation site of interest was masked in the query sequence of the input MSA and 

the masked MSA token recovery head was used to predict the probability of all 20 amino acids 

over that masked position. The predicted effect of a mutation at position i was calculated as the 

log odds ratio of the probability of the wild-type amino acid to the mutant amino acid (Equation 

2). This scoring is zero-shot i.e. the model requires no further training.  

 ��������,� = ��� (��� ,�) −  ���(���,�)        Equation 2 
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5. MSA Transformer Inference Setup:  

We used the published MSA Transformer [4,5] loaded with pre-trained weights (annotated as 

esm_msa1b_t12_100M_UR50S on the public ESM github). The default arguments were 

used, where 400 sequences were randomly sampled from the MSA for inference. We used the 

masked marginals scoring strategy for scoring mutants from MSA Transformer, which is done by 

introducing masks at the mutated positions and computing the score for a mutation by considering 

its probability relative to the wildtype amino acid [5]. This is similar to the setup that we used for 

predicting the effect of a mutation through RFjoint (Equation 2).  
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Figure Legends:  

1. Figure 1.  Overall pipeline for zero-shot prediction of mutation effect using RFjoint. A MSA is 

generated and masked at the mutation position in the query sequence, and structural templates are 

fed into pre-trained RFjoint. Using the masked token prediction head, the emitted probability 

distribution of the 20 amino acids over the mutation site is used to calculate the effect of a 

mutation as the log odds ratio of the wild-type and mutation amino acid. 

2. Figure 2. Boxplots of spearman rho correlations on deep mutation scanning datasets. Baseline 

refers to the non-ML MSA baseline. RFjoint refers to the model trained on a joint sequence and 

structure recovery task [7]. Box plots show the median (center line), interquartile range (hinges), 

and 1.5 times the interquartile range (whiskers); outliers are plotted as individual points. The 

average spearman rho correlation is 0.426 for the baseline, 0.502 for DeepSequence, 0.430 for 

MSA Transformer and 0.497 for RFjoint.  
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