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There has been considerable recent progress in designing new proteins using deep 
learning methods1–9. Despite this progress, a general deep learning framework for protein 
design that enables solution of a wide range of design challenges, including de novo 
binder design and design of higher order symmetric architectures, has yet to be 
described. Diffusion models10,11 have had considerable success in image and language 
generative modeling but limited success when applied to protein modeling, likely due to 
the complexity of protein backbone geometry and sequence-structure relationships. Here 
we show that by fine tuning the RoseTTAFold structure prediction network on protein 
structure denoising tasks, we obtain a generative model of protein backbones that 
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achieves outstanding performance on unconditional and topology-constrained protein 
monomer design, protein binder design, symmetric oligomer design, enzyme active site 
scaffolding, and symmetric motif scaffolding for therapeutic and metal-binding protein 
design. We demonstrate the power and generality of the method, called RoseTTAFold 
Diffusion (RFdiffusion), by experimentally characterizing the structures and functions of 
hundreds of designed symmetric assemblies, metal binding proteins and protein 
binders. The accuracy of RFdiffusion is confirmed by the cryo-EM structure of a 
designed binder in complex with Influenza hemagglutinin which is nearly identical to the 
design model. In a manner analogous to networks which produce images from user-
specified inputs, RFdiffusion enables the design of diverse functional proteins from 
simple molecular specifications. 
 

Main  
De novo protein design seeks to generate proteins with specified structural and/or functional 
properties, for example making a binding interaction with a given target12, folding into a 
particular topology13, or stabilizing a desired functional “motif” (geometries and amino acid 
identities that produce a desired activity)4. Denoising diffusion probabilistic models (DDPMs), a 
powerful class of machine learning models recently demonstrated to generate novel 
photorealistic images in response to text prompts14,15, have several properties well-suited to 
protein design. First, DDPMs generate highly diverse outputs, as they are trained to denoise 
data (for instance images or text) that have been corrupted with Gaussian noise. By learning to 
stochastically reverse this corruption, diverse outputs closely resembling the training data are 
generated. Second, DDPMs can be guided at each step of the iterative generation process 
towards specific design objectives through provision of conditioning information. Third, for 
almost all protein design applications it is necessary to explicitly model 3D structure; 
rotationally-equivariant DDPMs are able to do this in a global representation frame independent 
manner. Recent work has adapted DDPMs for protein monomer design by conditioning on small 
protein “motifs”5,9 or on secondary structure and block-adjacency (“fold”) information8. While 
promising, these attempts have shown limited success in generating sequences that fold to the 
intended structures in silico5,16, likely due to the limited ability of the denoising networks to 
generate realistic protein backbones, and have not been tested experimentally. 
 
We reasoned that improved diffusion models for protein design could be developed by taking 
advantage of the deep understanding of protein structure implicit in powerful structure prediction 
methods like AlphaFold217 (AF2) and RoseTTAFold18 (RF). RF has properties well suited for 
use in a protein design DDPM (Fig. 1A): it generates protein structures with high precision, 
operates on rigid-frame representation of residues with rotational equivariance, and has an 
architecture enabling conditioning on design specifications at the individual residue, inter-
residue distance and orientations, and 3D coordinate levels. In previous work, we fine-tuned RF 
to complete protein backbones around input functional motifs in a single step (RFjoint Inpainting4). 
Experimental characterization showed that the method can scaffold a wide range of protein 
functional motifs with atomic accuracy19, but the approach fails on minimalist site descriptions 
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that do not sufficiently constrain the overall fold, and because it is deterministic, can produce 
only a limited diversity of designs for a given problem. We reasoned that by instead fine-tuning 
RoseTTAFold as the denoising network in a generative diffusion model, we could overcome 
both problems: because the starting point is random noise, each denoising trajectory yields a 
different solution, and because structure is built up progressively through many denoising 
iterations, little to no starting structural information should be required. In this study we used an 
updated version of RoseTTAFold18 as the basis for the denoising network architecture (see 
Methods section 1), but other equivariant structure prediction networks (AF217, OmegaFold20, 
ESMFold21) could in principle be substituted into an analogous DDPM.  
 
We construct a RoseTTAFold-based diffusion model, RFdiffusion, using the RF frame 
representation which comprises a Cα coordinate and N-Cα-C rigid orientation for each residue. 
We generate training inputs by noising structures sampled from the Protein Data Bank (PDB) for 
up to 200 steps22. For translations, we perturb Cα coordinates with 3D Gaussian noise. For 
residue orientations, we use Brownian motion on the manifold of rotation matrices (building on 
refs [23,24]). To enable RFdiffusion to learn to reverse each step of the noising process, we train 
the model by minimizing a mean squared error (MSE) loss between frame predictions and the 
true protein structure (without alignment), averaged across all residues (Methods 2.5). This loss 
drives denoising trajectories to match the data distribution at each timestep and hence to 
converge on structures of designable protein backbones (Extended Data Fig. 2A). MSE 
contrasts to the loss used in RF structure prediction training (“frame aligned point error”, FAPE) 
in that unlike FAPE, MSE loss is not invariant to the global reference frame and therefore 
promotes continuity of the global coordinate frame between timesteps (Methods 2.5).  
  
To generate a new protein backbone, we first initialize random residue frames and RFdiffusion 
makes a denoised prediction. Each residue frame is updated by taking a step in the direction of 
this prediction with some noise added to generate the input to the next step. The nature of the 
noise added and the size of this reverse step is chosen such that the denoising process 
matches the distribution of the noising process (Methods 2.2-2.3, Extended Data Fig. 2A). 
RFdiffusion initially seeks to match the full breadth of possible protein structures compatible with 
the purely random frames with which it is initialized, and hence the denoised structures do not 
initially appear protein-like (Fig. 1C left). However, through many such steps, the breadth of 
possible protein structures from which the input could have arisen narrows, and RFdiffusion 
predictions come to closely resemble protein structures (Fig. 1C right). We use the 
ProteinMPNN network1 to subsequently design sequences encoding these structures, typically 
sampling 8 sequences per design, in line with previous work5,16 (but see Supplementary 
Information Fig. 2A). We also considered simultaneously designing structure and sequence 
within RFdiffusion, but given the excellent performance of combining ProteinMPNN with the 
diffusion of structure alone, we did not extensively explore this possibility. 
 
Fig. 1A highlights the similarities between RoseTTAFold structure prediction and an RFdiffusion 
denoising step: in both cases, the networks transform coordinates into a predicted structure, 
conditioned on inputs to the model. In RoseTTAFold, sequence is the primary input, with 
additional structural information provided as templates and initial coordinates to the model. In 
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RFdiffusion, the primary input is the noised coordinates from the previous step. For design 
tasks, we optionally provide a range of auxiliary conditioning information, including partial 
sequence, fold information, or fixed functional motif coordinates (Fig. 1B, Methods 3 and 5.16). 
 
We explored two different strategies for training RFdiffusion: 1) in a manner akin to “canonical” 
diffusion models, with predictions at each timestep independent of predictions at previous 
timesteps (as in previous work5,8,9,16), and 2) with self-conditioning25, where the model can 
condition on previous predictions between timesteps (Fig. 1A bottom row, Methods 2.4). The 
latter strategy was inspired by the success of “recycling” in AF2, which is also central to the 
more recent RF model used here (Methods 1). Self-conditioning within RFdiffusion dramatically 
improved performance on in silico benchmarks encompassing both conditional and 
unconditional protein design tasks (Fig. 2E, Extended Data Fig. 1E). Increased coherence of 
predictions within self-conditioned trajectories may, at least in part, explain these performance 
increases (Extended Data Fig. 1H). Fine-tuning RFdiffusion from pre-trained RF weights was far 
more successful than training for an equivalent length of time from untrained weights (Extended 
Data Fig. 1F-G, see also Supplementary Information Fig. 1) and the MSE loss was also crucial 
for unconditional generation (Extended Data Fig. 1D). For all in silico benchmarks in this paper, 
we use the AF2 structure prediction network17 for validation and define an in silico “success” as 
an RFdiffusion output for which the AF2 structure predicted from a single sequence is (1) of high 
confidence (mean predicted aligned error, pAE, < 5), (2) globally within 2Å backbone-RMSD of 
the designed structure, and (3) within 1Å backbone-RMSD on any scaffolded functional-site 
(Methods 5.3). This measure of in silico success has been found to correlate with experimental 
success4,7,26 and is significantly more stringent than TM-score based metrics used elsewhere 
(refs [5,16,27–29], Supplementary Information Fig. 2C-D). 
 
Unconditional protein monomer generation 
As illustrated in Fig. 2A-C, Supplementary Information Fig. 3C-D, starting from random noise, 
RFdiffusion can readily generate elaborate protein structures with little overall structural 
similarity to structures seen during training, indicating considerable generalization beyond the 
PDB (see Supplementary Information Table 1 for comparison of all designs in the paper to the 
PDB). The designs are diverse (Supplementary Information Fig. 3A), spanning a wide range of 
alpha-, beta- and mixed alpha-beta- topologies, with AF2 and ESMFold (Fig. 2C, Extended Data 
Fig. 1B-C, Supplementary Information Fig. 2B) predictions very close to the design structure 
models for de novo designs with as many as 600 residues. RFdiffusion generates plausible 
structures for even very large proteins, but these are difficult to validate in silico as they are 
likely generally beyond the single sequence prediction capabilities of AF2 and ESMFold. The 
quality and diversity of designs that are sampled is inherent to the model, and does not depend 
on any auxiliary conditioning input (for example secondary structure information8). We 
experimentally characterized 6 of the 300 amino acid designs and 3 of the 200 amino acid 
designs, and found that they have circular dichroism (CD) spectra consistent with the mixed 
alpha-beta topologies of the designs and are extremely thermostable (Extended Data Fig. 3). 
Physics-based protein design methodologies have struggled in unconstrained generation of 
diverse protein monomers due to the difficulty of sampling on the very large and rugged 
conformational landscape30, and overcoming this limitation has been a primary test of deep 

ACCELE
RATED ARTIC

LE
 PREVIEW

https://www.zotero.org/google-docs/?4y5N06
https://www.zotero.org/google-docs/?uC30yh
https://www.zotero.org/google-docs/?DBrgrP
https://www.zotero.org/google-docs/?X4uPfd
https://www.zotero.org/google-docs/?qM6KEI
https://www.zotero.org/google-docs/?XFlntk
https://www.zotero.org/google-docs/?h78Bxw


 

 

learning based protein design approaches5,6,8,16,27,31. RFdiffusion strongly outperforms 
Hallucination with RoseTTAFold, an experimentally validated method using Monte Carlo search 
or gradient descent to identify sequences predicted to fold into stable structures (Fig. 2D). 
RFdiffusion generation is also more compute efficient than unconstrained Hallucination with 
RoseTTAFold, and efficiency can be dramatically improved by taking larger steps at inference 
time, and by truncating trajectories early, which is possible because RF predicts the final 
structure at each timestep (Extended Data Fig. 2B-C). For example, a 100 residue protein can 
be generated in as little as 11s on an NVIDIA RTX A4000 GPU, in contrast to RoseTTAFold 
Hallucination that takes around 8.5 minutes.  
 
It is often desirable to be able to specify a protein fold during design (such as TIM barrels or 
cavity-containing NTF2s for small molecule binder and enzyme design32,33), and thus we further 
fine-tuned RFdiffusion to condition on secondary structure and/or fold information, enabling 
rapid and accurate generation of diverse designs with the desired topologies (Fig. 2G, Extended 
Data Fig. 4). In silico success rates were 42.5% and 54.1% for TIM barrels and NTF2 folds 
respectively (Extended Data Fig. 4D), and experimental characterization of 11 TIM barrel 
designs indicated that at least 8 designs were soluble, thermostable, and had circular dichroism 
(CD) spectra consistent with the design model (Fig. 2G, Extended Data Fig. 4E-F).  
 
Design of higher order oligomers 
There is considerable interest in designing symmetric oligomers, which can serve as vaccine 
platforms34, delivery vehicles35, and catalysts36. Cyclic oligomers have been designed using 
structure prediction networks with an adaptation of Hallucination that searches for sequences 
predicted to fold to the desired cyclic symmetry, but this approach fails for higher order dihedral, 
tetrahedral, octahedral, and icosahedral symmetries, likely in part because of the much lower 
representation of such structures in the PDB7. 
 
We set out to generalize RFdiffusion to create symmetric oligomeric structures with any 
specified point group symmetry. Given a specification of a point group symmetry for an oligomer 
with N chains, and the monomer chain length, we generate random starting residue frames for a 
single monomer subunit as in the unconditional generation case, and then generate N-1 copies 
of this starting point arranged with the specified point group symmetry. Because RFdiffusion is 
equivariant (inherited from RF) with respect to rotation and relabelings of chains, symmetry is 
largely maintained in the denoising predictions; we explicitly re-symmetrize at each step but this 
changes the structures only slightly (compare gray and colored chains in Extended Data Fig. 
5A, Methods Proposition 2). For octahedral and icosahedral architectures, we explicitly model 
only the smallest subset of monomers required to generate the full assembly (e.g. for 
icosahedra, the subunits at the five-fold, three-fold, and two-fold symmetry axes) to reduce the 
computational cost and memory footprint.  
 
Despite not being trained on symmetric inputs, RFdiffusion is able to generate symmetric 
oligomers with high in silico success rates (Extended Data Fig. 5B), particularly when guided by 
an auxiliary inter- and intra-chain contact potential (Extended Data Fig. 5C). As illustrated in Fig. 
3 and Extended Data Fig. 5E, RFdiffusion designs are nearly indistinguishable from AF2 
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predictions of the structures adopted by the designed sequences, and many have little 
resemblance to previously solved protein structures (Extended Data Fig. 5D, Supplementary 
Information Table 1). A number of the oligomeric topologies are not seen in the PDB, including 
two-layer beta barrels (Fig. 3A, C10 symmetry) and complex mixed alpha/beta topologies (Fig. 
3A, C8 symmetry; closest TM align in PDB: 6BRP, 0.47; 6BRO, 0.43 respectively). 
 
We selected 608 designs for experimental characterization and found using size exclusion 
chromatography (SEC) that at least 87 had oligomerization states closely consistent with the 
design models (within the 95% confidence interval, 126 designs within the 99% CI, as 
determined by SEC calibration curves; Supplementary Information Fig. 4-5). We took advantage 
of the increased size of these oligomers (as compared to the smaller unconditional and fold-
conditioned monomers described above) and collected negative stain electron microscopy 
(nsEM) data on a subset of these designs across different symmetry groups. For most, distinct 
particles were evident with shapes resembling the design models in both the raw micrographs 
and subsequent 2D classifications (Fig. 3, and Extended Data Fig. 5F). nsEM characterization 
of a C3 design (HE0822) with 350 residue subunits (1050 residues in total) suggests that the 
actual structure is very close to the design, both over the 350 residue subunits and the overall 
C3 architecture. 2D class averages are clearly consistent with both top- and side-views of the 
design model, and a 3D reconstruction of the density has key features consistent with the 
design, including the distinctive pinwheel shape (Fig. 3B, top row). Electron microscopy 2D 
class averages of C5 and C6 designs with greater than 750 residues (HE0794, HE0789, 
HE0841) were also consistent with the respective design models (Extended Data Fig. 5F).  
 
RFdiffusion also generated cyclic oligomers with alpha/beta barrel structures that resemble 
expanded TIM barrels and provide an interesting comparison between innovation during natural 
evolution and innovation through deep learning. The TIM barrel fold, with 8 strands and 8 
helices, is one of the most abundant folds in nature37. nsEM confirmed the structure of two 
RFdiffusion designed cyclic oligomers which considerably extend beyond this fold (Fig. 3B, 
bottom rows). HE0626 is a C6 alpha/beta barrel composed of 18 strands and 18 helices, and 
HE0675 is a C8 octamer composed of an inner ring of 16 strands and an outer ring of 16 helices 
arranged locally in a very similar repeating pattern to the TIM barrel (1:1 helix:strand). For both 
HE0626 and HE0675 we obtained nsEM 3D reconstructions that are in agreement with the 
computational design models. The HE0600 design is also an alpha-beta barrel (Extended Data 
Fig. 5F), but has two strands for every helix (24 strands and 12 helices in total) and is hence 
locally quite different from a TIM barrel. Whereas natural evolution has extensively explored 
structural variations of the classic 8-strand/8-helix TIM barrel fold, RFdiffusion can more readily 
explore global changes in barrel curvature, enabling discovery of TIM barrel-like structures with 
many more helices and strands.  
 
RFdiffusion also readily generated structures with dihedral, tetrahedral and icosohedral 
symmetries (Fig. 3C-D, Fig. Extended Data Fig. 5E,F). SEC characterization indicated that 38 
D2, 7 D3, and 3 D4 designs had the expected molecular weights (these have 4, 6, and 8 chains, 
respectively) (Supplementary Information Fig. 5). While the D2 dihedrals are too small for nsEM, 
2D class averages–and for some, 3D reconstructions of D3 and D4 designs were congruent 
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with the overall topologies of the design models (Fig. 3C, Extended Data Fig. 5F). Similarly, 3D 
reconstruction (Fig. 3C) and cryogenic electron microscopy (cryo-EM) 2D class averages 
(Extended Data Fig. 5G, Supplementary Information Fig. 6) of the D4 HE0537 closely match the 
design model, recapitulating the approximate 45° offset between tetramic subunits. 2D nsEM 
class averages for a 12 chain tetrahedron (HE0964) were consistent with the design model 
(Extended Data Fig. 5F). 48 icosahedra were selected for experimental validation, and one, 
HE0902, a 15nm (diameter) highly-porous assembly (Fig. 3D, left) was observed in nsEM 
micrographs to form homogeneous particles. 2D class averages and a 3D reconstruction very 
closely match the design model (Fig. 3D), with triangular hubs arrayed around the empty C5 
axes. Designs such as HE0902 (and future similar large assemblies) should be useful as new 
nanomaterials and vaccine scaffolds, with robust assembly and (in the case of HE0902) the 
outward facing N- and C-termini offering multiple possibilities for antigen display. 
 
Functional motif scaffolding 
We next investigated the use of RFdiffusion for scaffolding protein structural motifs that carry 
out binding and catalytic functions, where the role of the scaffold is to hold the motif in precisely 
the 3D geometry needed for optimal function. In RFdiffusion, we input motifs as 3D coordinates 
(including sequence and sidechains) both during conditional training and inference, and build 
scaffolds that hold the motif atomic coordinates in place. A number of deep learning methods 
have been developed recently to address this problem, including RFjoint Inpainting4, constrained 
Hallucination4, and other DDPMs5,8,29. To rigorously evaluate the performance of these methods 
in comparison to RFdiffusion across a broad set of design challenges, we established an in 
silico benchmark test (Supplementary Methods Table 9) comprising 25 motif-scaffolding design 
problems addressed in six recent publications encompassing several design 
methodologies4,5,29,38–40. The challenges span a broad range of motifs, including simple 
“inpainting” problems, viral epitopes, receptor traps, small molecule binding sites, binding 
interfaces and enzyme active sites.  
 
RFdiffusion solves 23 of the 25 benchmark problems, compared to 15 for Hallucination and 19 
for RFjoint Inpainting (Fig. 4A-B). For 19/23 of the problems solved by RFdiffusion, the fraction of 
successful designs is higher than either Hallucination or RFjoint Inpainting. The excellent 
performance of RFdiffusion required no hyperparameter tuning or external potentials; this 
contrasts with Hallucination, for which problem-specific optimization can be required. In 17/23 of 
the problems, RFdiffusion generated successful solutions with higher in silico success rates 
when noise was not added during the reverse diffusion trajectories (see Extended Data Fig. 1I 
for further discussion of the effect of noise on design quality, and Supplementary Information 
Fig. 8 for analysis of design diversity). The ability of RFdiffusion to scaffold functional motifs is 
not related to their presence in the RFdiffusion training set (Supplementary Information Fig. 7). 
 
One of the benchmark problems is the scaffolding of the p53 helix that binds MDM2. Inhibiting 
this interaction through high-affinity competitive inhibition by scaffolding the p53 helix and 
making additional interactions with MDM2 is a promising therapeutic avenue41. In silico success 
has been described elsewhere4, but experimental success has not been reported. We used an 
RFdiffusion model fine-tuned on protein complexes (Methods 5.11) to generate 96 designs 
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scaffolding this helix. We scaffolded the p53 helix in the presence of MDM2, so additional 
interactions could be designed by RFdiffusion, and experimentally identified 0.5nM and 0.7nM 
binders (Fig. 4C-D), three orders of magnitude higher affinity than the reported 600nM affinity of 
the p53 peptide alone42. 55 of the 96 designs showed some detectable binding at 10μM (Fig. 
4E, Supplementary Information Fig. 10H).  
 
Scaffolding enzyme active sites 
A grand challenge in protein design is to scaffold minimal descriptions of enzyme active sites 
comprising a few single amino acids. While some in silico success has been reported 
previously4, a general solution that can readily produce high-quality, orthogonally-validated 
outputs remains elusive. Following fine-tuning on a task mimicking this problem (Methods 4.2), 
RFdiffusion was able to scaffold enzyme active sites comprising multiple sidechain and 
backbone functional groups with high accuracy and in silico success rates across a range of 
enzyme classes (Fig. 4F, Extended Data Fig. 6A-D; in silico successes were not present without 
fine-tuning). While RFdiffusion is currently unable to explicitly model bound small molecules 
(see conclusion), the substrate can be implicitly modeled using an external potential to guide the 
generation of “pockets” around the active site. As a demonstration, we scaffold a retroaldolase 
active site triad while implicitly modeling its substrate (Extended Data Fig. 6E-H). 
 
Symmetric functional-motif scaffolding 
A number of important design challenges involve the scaffolding of multiple copies of a 
functional motif in symmetric arrangements. For example, many viral glycoproteins are trimeric, 
and symmetry matched arrangements of inhibitory domains can be extremely potent43–46. 
Conversely, symmetric presentation of viral epitopes in an arrangement that mimics the virus 
could induce new classes of neutralizing antibodies47,48. To explore this general direction, we 
sought to design trimeric multivalent binders to the SARS-CoV-2 spike protein. In previous work, 
flexible linkage of a binder to the ACE2 binding site (on the spike protein receptor binding 
domain) to a trimerization domain yielded a high-affinity inhibitor that had potent and broadly 
neutralizing antiviral activity in animal models43. Ideally, however, symmetric fusions to binders 
would be rigid, so as to reduce the entropic cost of binding while maintaining the avidity benefits 
from multivalency. We used RFdiffusion to design C3 symmetric trimers which rigidly hold three 
binding domains (the functional motif in this case) such that they exactly match the ACE2 
binding sites on the SARS-CoV-2 spike protein trimer. Design models were confidently 
predicted by AF2 to both assemble as C3-symmetric oligomers, and to scaffold the AHB2 
SARS-CoV-2 binder interface with high accuracy (Fig. 5A).  
 
The ability to scaffold functional sites with any desired symmetry opens up new approaches to 
designing metal-coordinating protein assemblies49,50. Divalent transition metal ions exhibit 
distinct preferences for specific coordination geometries (e.g., square planar, tetrahedral, and 
octahedral) with ion-specific optimal sidechain–metal bond lengths. RFdiffusion provides a 
general route to building up symmetric protein assemblies around such sites, with the symmetry 
of the assembly matching the symmetry of the coordination geometry. As a first test, we sought 
to design square planar Ni2+ binding sites. We designed C4 protein assemblies with four central 
histidine imidazoles arranged in an ideal Ni2+-binding site with square planar coordination 
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geometry (Fig. 5B). Diverse designs starting from distinct C4-symmetric histidine square planar 
sites had good in silico success with the histidine residues in near ideal geometries for 
coordinating metal in the AF2 predicted structures (Supplementary Information Fig. 9).  

We expressed and purified 44 designs in E. coli., and found that 37 had SEC chromatograms 
consistent with the intended oligomeric state (Extended Data Fig. 7B). 36 were tested for Ni2+ 
coordination by isothermal titration calorimetry, and 18 were found to bind Ni2+ with dissociation 
constants ranging from low nanomolar to low micromolar (Fig. 5C,D and Extended Data Fig. 
7A). The inflection points in the wild-type isotherms indicate binding with the designed 
stoichiometry, a 1:4 ratio of ion:monomer. While most of the designed proteins displayed 
exothermic metal coordination, in a few cases binding was endothermic (Fig. 5D, left, Extended 
Data Fig. 7A: NiB2.9, NiB2.10, NiB2,15, NiB2.23), suggesting that Ni2+ coordination is 
entropically driven in these assemblies. To confirm that Ni2+ binding was indeed mediated by the 
scaffolded histidine 52, we mutated this residue to alanine, which abolished or dramatically 
reduced binding in 17/17 cases with successful expression (Extended Data Fig. 7A,C and Fig. 
5C,D; one mutant did not express). We structurally characterized by nsEM a subset of the 
designs – NiB1.12, NiB1.15, NiB1.17, and NiB1.20 – that displayed histidine-dependent binding. 
All four designs exhibited clear 4-fold symmetry both in the raw micrographs and in 2D class 
averages (Fig. 5C-D), with design NiB1.17 also clearly displaying 2-fold axis “side-views” with a 
measured diameter approximating the design model. A 3D reconstruction of NiB1.17 was in 
close agreement to the design model (Fig. 5C).  

Design of protein-binding proteins 
The design of high-affinity binders to target proteins is a grand challenge in protein design, with 
numerous therapeutic applications51. A general method to de novo binder design from target 
structure information alone using the physically-based Rosetta method was recently 
described12, and subsequently, utilizing ProteinMPNN for sequence design and AF2 for design 
filtering was found to improve design success rates26. However, experimental success rates 
were low, still requiring many thousands of designs to be screened for each design campaign12, 
and the approach relied on pre-specifying a particular set of protein scaffolds as the basis for 
the designs, inherently limiting the diversity and shape complementarity of possible solutions12. 
To our knowledge, no deep-learning method has yet demonstrated experimental general 
success in designing completely de novo binders. 
 
We reasoned that RFdiffusion might be able to address this challenge by directly generating 
binding proteins in the context of the target. For many therapeutic applications, for example 
blocking a protein-protein interaction, it is desirable to bind to a particular site on a target 
protein. To enable this, we fine-tuned RFdiffusion on protein complex structures, providing as 
input a subset of the residues on the target chain (called “interface hotspots”) to which the 
diffused chain binds (Fig. 6A, Extended Data Fig. 8A,B). For design cases where a particular 
binder fold might be especially compatible, we enabled coarse-grained control over binder 
scaffold topology by fine-tuning an additional model to condition binder diffusion on secondary 
structure and block-adjacency information, in addition to conditioning on interface hotspots (Fig. 
Extended Data Fig. 8C-D, Methods 4.3).  
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To compare RFdiffusion to previous binder design methods, we performed binder design 
campaigns against 5 targets: Influenza A H1 Hemagglutinin (HA)52, Interleukin-7 Receptor-ɑ (IL-
7Rɑ)12, Programmed Death-Ligand 1 (PD-L1)12, Insulin Receptor, and Tropomyosin Receptor 
Kinase A (TrkA)12. We designed putative binders to each target, both with and without 
conditioning on compatible fold information, with high in silico success rates (Extended Data 
Fig. 8E,F). Designs were filtered by AF2 confidence in the interface and monomer structure26, 
and 95 were selected for each target for experimental characterization. 
 
The designed binders were expressed in E. coli and purified, and binding was assessed through 
single point biolayer interferometry (BLI) screening at 10μM binder concentration (Extended 
Data Fig. 8G). The overall experimental success rate, defined as binding at or above 50% of the 
maximal response for the positive control, was 19% (this is a conservative estimate as some 
designs which showed binding had insufficient material to permit screening at 10μM (Extended 
Data Fig. 8G)); an increase of approximately 2 orders-of-magnitude over our previous Rosetta-
based method on the same targets (Fig. 6B). Binders were identified for all 5 targets, with fewer 
than 100 designs tested per target compared to thousands in previous studies. Full BLI titrations 
for a subset of the designs showed nanomolar affinities with no further experimental 
optimization, including HA and IL-7Rɑ binders with affinities of approximately 30nM (Fig. 6C). 
Binding interfaces were often highly distinct from interfaces to these targets in the PDB 
(Supplementary Information Figs. 11, 12). To assess binder specificity, 6 of the highest affinity 
IL-7Rɑ binders were assessed via competition BLI, and all 6 competed for binding with a 
structurally validated positive control binding to the same site (Supplementary Information Fig. 
10A; further work is required to fully characterize proteome-wide specificity). 
 
We solved the structure of the highest affinity Influenza binder, HA_20, in complex with Iowa43 
HA using cryo electron microscopy. Raw electron micrographs revealed a well-folded HA 
glycoprotein with clearly discernible side, top, and tilted view orientations suspended in a thin 
layer of vitreous ice (Extended Data Fig. 9A). 2D class averages further show clear secondary 
structure elements corresponding to both Iowa43 HA (Extended Data Fig. 9B), as well as the 
HA_20 binder bound to the stem (Fig 6E). 3D heterogenous refinement without symmetry 
revealed full occupancy of all three HA stem epitopes by the HA_20 binder. A final non-uniform 
3D refinement reconstruction with C3 symmetry yielded a 2.9 Å map of the HA/HA_20 protein-
protein complex (Fig 6F) and corresponding 3D structure which nearly perfectly matches the 
computational design model (0.63Å, Fig 6F,G; the sidechain interactions at the interface are 
very different from the closest structure in the PDB; Extended Data Fig. 9H). Over the binder 
alone, the experimental structure deviates from the RFdiffusion design by only 0.6Å (Fig 6H). 
These results demonstrate the ability of RFdiffusion to generate new proteins with atomic level 
accuracy, and to precisely target functionally relevant sites on therapeutically important proteins. 

Discussion 
RFdiffusion is a comprehensive improvement over current protein design methods. RFdiffusion 
readily generates diverse unconditional designs up to 600 residue structures that are accurately 
predicted by AF2, far exceeding the complexity and accuracy achieved by previous methods 
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(although during review of this manuscript, a hallucination-based approach also achieved high 
unconditional performance53). Half of our tested unconditional designs express solubly and 
exhibit CD spectra consistent with the design models and high thermostability. Despite their 
substantially increased complexity, the ideality and stability of RFdiffusion designs is akin to that 
of previous de novo design methods. RFdiffusion enables generation of higher order 
architectures with any desired symmetry - surpassing Hallucination methods, which have so far 
been limited to cyclic symmetries. Electron microscopy confirmed that structures of these 
oligomers are very similar to the design models, and in many cases show little global similarity 
to known protein oligomers.  
 
There has been recent progress in scaffolding protein functional motifs using deep learning 
methods (RF Hallucination, RFjoint Inpainting, and diffusion), but Hallucination is slow for large 
systems, inpainting fails when insufficient starting information is provided, and previous diffusion 
methods had quite low accuracy. RFdiffusion outperforms these previous methods in the 
complexity of the motifs that can be scaffolded, the precision with which sidechains are 
positioned (for catalysis and other functions), and the accuracy of motif recapitulation by AF2. 
The design of MDM2 binding proteins with three orders of magnitude higher affinities than the 
scaffolded P53 motif demonstrates the robustness of RFdiffusion motif-scaffolding. Combining 
accurate motif-scaffolding with the design of symmetric assemblies, enabled consistent and 
atomically precise positioning of sidechains to coordinate Ni2+ ions across diverse tetramers.  
 
For binder design from target structural information alone, previous work required screening 
testing tens of thousands of sequences12. RFdiffusion, when combined with improved filtering26 
raises experimental success rates by two orders of magnitude; high affinity binders can be 
identified from dozens of designs, in many cases eliminating the requirement for slow and 
expensive high-throughput screening (at least for the somewhat non-polar sites targeted here; 
further studies will be required to assess success rates on more polar target sites and sites 
without native binding partners). A high resolution cryo-EM structure of one of these designs in 
complex with influenza hemagglutinin further shows that RFdiffusion can design functional 
proteins with atomic accuracy. Vázquez Torres et al. demonstrate the ability of RFdiffusion to 
design picomolar affinity binders to flexible helical peptides54, further highlighting its utility for de 
novo binder design. Vázquez Torres et al. also show how RFdiffusion can be extended for 
protein model refinement by partial noising and denoising, which enables tunable sampling 
around a given input structure. For peptide binder design, this enabled increases in affinity of 
nearly three orders of magnitude without high-throughput screening. 
 
The breadth and complexity of problems solvable with RFdiffusion and the robustness and 
accuracy of the solutions far exceeds what has been achieved previously. In a manner 
reminiscent of the generation of images from text prompts, RFdiffusion makes possible, with 
minimal specialist knowledge, the generation of functional proteins from minimal molecular 
specifications (for example, high affinity binders to a user-specified target protein, and diverse 
protein assemblies from user-specified symmetries). 
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The power and scope of RFdiffusion can be extended in several directions. RF has recently 
been extended to nucleic acids and protein-nucleic acid complexes55, which should enable 
RFdiffusion to design nucleic acid binding proteins, and perhaps folded RNA structures. 
Extension of RF to incorporate ligands should similarly enable extension of RFdiffusion to 
explicitly model ligand atoms, and allow the design of protein-ligand interactions. The ability to 
customize RFdiffusion to specific design challenges by addition of external potentials and by 
fine-tuning (as illustrated here for catalytic site scaffolding, binder-targeting and fold-
specification), along with continued improvements to the underlying methodology, should enable 
de novo protein design to achieve still higher levels of complexity, to approach and – in some 
cases – surpass what natural evolution has achieved. 
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Figure Legends 
 
Figure 1: Protein design using RFdiffusion  
A) Top panel: Diffusion models for proteins are trained to recover corrupted (noised) protein 
structures and to generate new structures by reversing the corruption process through iterative 
denoising of initially random noise 𝑋𝑇 into a realistic structure 𝑋0. Middle panel: RoseTTAFold 
(RF, left) can be fine-tuned as the denoising network in a DDPM. RFdiffusion (right) is fine-
tuned from a pre-trained RF network with minimal architectural changes. In RF, the primary 
input to the model is sequence. In RFdiffusion, the primary input is diffused residue frames. In 
both cases, the model predicts final 3D coordinates (denoted 𝑋0 in RFdiffusion). Bottom panel: 
In RFdiffusion, the model receives its previous prediction as a template input (“self-
conditioning”, see Methods 2.4). At each timestep “t” of a trajectory (typically 200 steps), 
RFdiffusion takes 𝑋0

𝑡+1 from the previous step and 𝑋𝑡 and then predicts an updated 𝑋0 structure 
(𝑋0

𝑡). The next coordinate input to the model (𝑋𝑡−1) is generated by a noisy interpolation toward 
𝑋0

𝑡. B) RFdiffusion is broadly applicable for protein design. RFdiffusion generates protein 
structures either without additional input (top row), or by conditioning on (top to bottom): 
symmetry specifications; binding targets; protein functional motifs; symmetric functional motifs. 
In each case random noise, along with conditioning information, is input to RFdiffusion, which 
iteratively refines that noise until a final protein structure is designed. C) An example of an 
unconditional design trajectory for a 300-residue chain, depicting the input to the model (𝑋𝑡) and 
the corresponding 𝑋0 prediction. At early timesteps (high t), 𝑋0 bears little resemblance to a 
protein but is refined into a protein structure. 
 
Figure 2: Outstanding performance of RFdiffusion for monomer generation.  
A) RFdiffusion can generate new monomeric proteins of different lengths (left: 300, right: 600) 
with no conditioning information. Gray=design model; colors= AlphaFold2 (AF2) prediction. 
RMSD AF2 vs design (Å), left to right: 0.90, 0.98, 1.15, 1.67. B) Unconditional designs from 
RFdiffusion are novel and not present in the training set as quantified by highest TM score to 
the protein data bank (PDB). Designs are increasingly novel with increasing length. C) 
Unconditional samples are closely re-predicted by AF2. Beyond 400 amino acids, the 
recapitulation by AF2 deteriorates. D) RFdiffusion significantly outperforms Hallucination (with 
RoseTTAFold) at unconditional monomer generation (two-proportion z-test of in silico success: 
n=400 designs per condition, z=9.5, p=1.6e-21). While Hallucination successfully generates 
designs up to 100 amino acids in length, in silico success rates rapidly deteriorate beyond this 
length. E) Ablating pre-training (by starting from untrained RF), RFdiffusion fine-tuning (i.e., 
using original RF structure prediction weights as the denoiser), self-conditioning, or MSE losses 
(by training with FAPE) each dramatically decrease the performance of RFdiffusion. RMSD 
between design and AF2 is shown, for the unconditional generation of 300 amino acid proteins 
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(see Methods 5.8). F) Two example 300 amino acid proteins that expressed as soluble 
monomers. Designs (gray) overlaid with AF2 predictions (colors) are shown on the left, 
alongside CD spectra (top) and melt curves (bottom) on the right. The designs are highly 
thermostable. G) RFdiffusion can condition on fold information. An example TIM barrel is shown 
(bottom left), conditioned on the secondary structure and block-adjacency of a previously 
designed TIM barrel, PDB: 6WVS (top left). Designs have very similar CD spectra to 6WVS (top 
right) and are highly thermostable (bottom right). See also Extended Data Fig. 3 for additional 
traces. Boxplots represent median ± IQR; tails: min/max excluding outliers (±1.5x IQR). 
 
Figure 3: Design and experimental characterization of symmetric oligomers. A) 
RFdiffusion-generated assemblies overlaid with the AF2 structure predictions based of the 
designed sequences; in all 5 cases they are nearly indistinguishable (for the octahedron 
(bottom), the prediction was for the C3 substructure). Symmetries are indicated to the left of the 
design models. B-C) Designed assemblies characterized by negative stain electron microscopy. 
Model symmetries: B) Cyclic: C3 (HE0822, 350AA/chain); C6 (HE0626, 100AA/chain); C8 
(HE0675, 60AA/chain) C) Dihedral: D3 (HE0490, 80AA/chain); and D4 (HE0537, 100AA/chain). 
From left to right: 1) symmetric design model, 2) AF2 prediction of design following sequence 
design with ProteinMPNN, 3) 2D class averages showing both top and side views (scale bar = 
60Å for all class averages), 4) 3D reconstructions from class averages with the design model fit 
into the density map. The overall shapes are consistent with the design models, and confirm the 
intended oligomeric state. As in A), AF2 predictions of each design are nearly indistinguishable 
from the design model (backbone RMSDs (Å) for HE0822, HE0626, HE0490, HE0675, and 
HE0537, are 1.33, 1.03, 0.60, 0.74, and 0.75, respectively). D) nsEM characterization of an 
icosahedral particle (HE0902, 100AA/chain). The design model, including the AF2 prediction of 
the C3 subunit are shown on the left. nsEM data are shown on the right: on top, a 
representative micrograph is shown alongside 2D class averages along each symmetry axis 
(C3, C2, and C5, from left to right) with the corresponding 3D reconstruction map views shown 
directly below overlaid on the design model. 
 
Figure 4: Scaffolding of diverse functional sites with RFdiffusion. A) RFdiffusion 
outperforms other methods across 25 benchmark motif scaffolding problems collected from six 
recent publications (Supplementary Methods Table 9). In silico success is defined as AF2 
RMSD to design model < 2Å, AF2 RMSD to the native functional motif < 1 Å, and AF2 pAE < 5. 
100 designs were generated per problem, with no prior optimization on the benchmark set 
(some optimization was necessary for Hallucination). Supplementary Methods Table 10 
presents full results. In silico success rates on the problems are correlated between the 
methods, and RFdiffusion can still struggle on challenging problems where all methods have 
low success. B) Four examples of designs where RFdiffusion significantly outperforms existing 
methods. Teal: native motif; colors: AF2 prediction of a design. Metrics (RMSD AF2 vs design / 
vs native motif (Å), AF2 pAE): 5TRV Long: 1.17/0.57, 4.73; 6E6R Long: 0.89/0.27, 4.56; 7MRX 
Long: 0.84/0.82 4.32; 5TPN: 0.59/0.49 3.77. C) RFdiffusion can scaffold the p53 helix that binds 
MDM2 (left) and makes additional contacts with the target (right, average 31% increased 
surface area. Design: p53_design_89). Designs were generated with an RFdiffusion model fine-
tuned on complexes. D) BLI measurements demonstrate high affinity binding to MDM2 
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(p53_design_89: 0.7nM, p53_design_53: 0.5nM); the native affinity is 600nM42. E) 55/95 
designs showed binding to MDM2 (> 50% of maximum response). 32 of these were monomeric 
(Supplementary Information Fig. 10H.) F) After fine-tuning (Methods 4.2), RFdiffusion can 
scaffold enzyme active sites. An oxidoreductase example (EC1) is shown (PDB 1A4I); catalytic 
site (teal); RFdiffusion output (gray: model, colors: AF2 prediction); zoom of active site. AF2 vs 
design backbone RMSD 0.88Å, AF2 vs design motif backbone RMSD 0.53Å, AF2 vs design 
motif full-atom RMSD 1.05Å, AF2 pAE 4.47. G) In silico success rates on active sites derived 
from EC1-5 (AF2 Motif RMSD vs native: backbone < 1Å, backbone and sidechain atoms < 1.5Å, 
RMSD AF2 vs design < 2Å, AF2 pAE < 5). 
 
Figure 5: Symmetric motif scaffolding with RFdiffusion. A) Design of symmetric oligomers 
scaffolding the binding interface of ACE2 mimic AHB2 (left, teal) against the SARS-CoV-2 spike 
trimer (left, gray). Three AHB2 copies are input to RFdiffusion along with C3 noise (middle); 
output are C3-symmetric oligomers holding the three AHB2 copies in place to engage all spike 
subunits. AF2 predictions (right) recapitulate the AHB2 structure with 0.6Å RMSD over the 
assymetric unit and 2.9Å RMSD over the C3 assembly. B) Design of C4-symmetric oligomers to 
scaffold a Ni2+ binding motif (left). Starting from square-planar histidine rotamers within helical 
fragments (Methods 5.9), RFdiffusion generates a C4 oligomer scaffolding the binding domain 
(middle). AF2 predictions (color) agree closely with the design model (gray), with backbone 
RMSD < 1.0 Å (right). C) nsEM 2D class averages (scale bar = 60 Å) and 3D reconstruction 
density are consistent with the symmetry and structure of the NiB1.17 design model shown 
superimposed on the density in ribbon representation (top). Isothermal titration calorimetry 
binding isotherm of design NiB1.17 (blue) indicates a dissociation constant < 20 nM at a 
metal:monomer stoichiometry of 1:4. The H52A mutant isotherm (pink) ablates binding, 
indicating scaffolded histidine residues are critical for metal binding. D) Additional 
experimentally characterized Ni2+ binders NiB2.15 (left), NiB1.12 (middle), and NiB1.20 (right). 
Metal coordinating sidechains in the design models (top, teal) are closely recapitulated in the 
AF2 predictions (colors). 2D nsEM class averages (middle, scale bar = 60Å) are consistent with 
design models. Binding isotherms for wild-type and H52A mutant (bottom) indicate Ni2+ binding 
mediated directly by the scaffolded histidines at the designed stoichiometry. Note that for ITC 
plots, points represent single measurements. 
 
Figure 6: De novo design of protein-binding proteins.  
A) RFdiffusion generates protein binders given a target and specification of interface hotspot 
residues. B) De novo binders were designed to five protein targets; Influenza A H1 
Hemagglutinin (HA), Interleukin-7 Receptor-ɑ (IL-7Rɑ), Insulin Receptor (InsR), Programmed 
Death-Ligand 1 (PD-L1), and Tropomyosin Receptor Kinase A (TrkA) and hits with BLI 
response ≥ 50% of the positive control were identified for all targets. For IL-7Rɑ, InsR, PD-L1, 
and TrkA, RFdiffusion has success rates ~2 orders-of-magnitude higher than the original design 
campaigns. We attribute one order-of-magnitude to RFdiffusion, and the second to filtering with 
AF2 (estimated success rates for previous campaigns if AF2 confidence had been used: HA: No 
designs passed AF2 filter, IL-7Rɑ: 2.2%, InsR: 5.5%, PD-L1: 3.7%, TrkA: 1.5%). C) For IL-7Rɑ, 
InsR, PD-L1 and TrkA, the highest affinity binder is shown above a BLI titration series. Reported 
KDs are based on global kinetic fitting with fixed global Rmax. D) The highest affinity HA binder, 
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HA_20, binds with a KD of 28nM. C-D) Yellow/orange: target/hotspot residues; gray: design 
model; purple: AF2 prediction (RMSD AF2 vs design C) left to right: IL7Ra_55 (2.1Å), 
InsulinR_30 (2.6Å), PDL1_77 (1.5Å), TrkA_88 (1.4Å) D) HA_20 (1.7Å). E) Cryo-EM 2D class 
averages of HA_20 bound to Influenza Hemagglutinin, strain A/USA:Iowa/1943 H1N1 (scale bar 
= 10nm). F) 2.9Å cryo-EM 3D reconstruction of the complex viewed along two orthogonal axes. 
HA_20 (purple) is bound to H1 along the stem of all three subunits. G) The cryo-EM structure of 
the HA_20 binder in complex closely matches the design model (RMSD to RFdiffusion design: 
0.63Å, yellow: Influenza Hemagglutinin). H) Structure of the HA_20 binder alone superimposed 
on the design model viewed along two orthogonal axes. For cryo-EM panels, yellow: Influenza 
H1 map/structure; gray: HA_20 binder design model; purple: HA_20 binder map/structure. 
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Extended Data Legends 
 
Extended Data Table 1: Cryo-EM data collection, refinement and validation statistics 
 
Extended Data Figure 1: Training ablations reveal determinants of RFdiffusion success.  
A-C) RFdiffusion can generate high quality large unconditional monomers. Designs are routinely 
accurately recapitulated by AF2 (see also Fig. 2C), with high confidence (A) for proteins up to 
approximately 400 amino acids in length. B) Further orthogonal validation of designs by 
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ESMFold. C) Recapitulation of the design structure is often better with ESMFold compared with 
AF2. For each backbone, the best of 8 ProteinMPNN sequences is plotted, with points therefore 
paired by backbone rather than sequence. D) Comparing RFdiffusion trained with MSE loss on 
Cα atoms and N-Cα-C backbone frames (Methods 2.5), rather than with FAPE loss8,17. The 
MSE loss is not invariant to the global coordinate frame, unlike FAPE loss, and is required for 
good performance at unconditional generation (left, two-proportion z-test of in silico success 
rate, n=400 designs per condition, z=4.1, p=4.1e-5). For motif scaffolding problems, where the 
“motif” provides a means to align the global coordinate frame between timesteps, FAPE loss 
performs approximately as well as MSE loss, suggesting the L2 nature of MSE loss (as 
opposed to the L1 loss in FAPE) is not empirically critical for performance. E) Allowing the 
model to condition on its X0 prediction at the previous timestep (see Methods 2.4) improves 
designs. Designs with self-conditioning (pink) have improved recapitulation by AF2 (left) and 
better AF2 confidence in the prediction (right). Two-proportion z-test of in silico success rate, 
n=800 designs per condition z=11.4, p=6.1e-30. F) RFdiffusion leverages the representations 
learned during RF pre-training. RFdiffusion fine-tuned from pre-trained RF (pink) 
comprehensively outperforms a model trained for an equivalent amount of time, from untrained 
weights (gray). For context, sequences generated by ProteinMPNN on these output backbones 
are little better than sampling ProteinMPNN sequences from random Gaussian-sampled 
coordinates (white). Two-proportion z-test of in silico success rate, pre-training vs without pre-
training (or vs random noise; both have zero success rate), n=800 designs per condition, 
z=23.0, p=3.1e-117. Note that the data in pink in D-F is the same data, reproduced in each plot 
for clarity. G) The median (by AF2 RMSD vs design) 300 amino acid unconditional sample 
highlighting the importance of self-conditioning and pre-training. Without pre-training, 
RFdiffusion outputs bear little resemblance to proteins (gray, left). Without self-conditioning, 
outputs show characteristic protein secondary structures, but lack core-packing and ideality 
(gray, middle). With pre-training and self-conditioning, proteins are diverse and well-packed 
(pink, right). H) Greater coherence during unconditional denoising may partly explain the effect 
of self-conditioning. Successive X0 predictions are more similar when the model can self-
condition (lower RMSD between X0 predictions, pink curve). Data are aggregated from 
unconditional design trajectories of 100, 200 and 300 residues. I) During the reverse 
(generation) process, the noise added at each step can be scaled (reduced). Reducing the 
noise scale improves the in silico design success rates (left, middle; two-proportion z-test of in 
silico success rate, n=800 designs per condition, 0 vs 0.5: z=1.7, p=0.09, 0 vs 1: z=6.5, p=6.8e-
11; 0.5 vs 1: z=4.8, p=1.4e-6). This comes at the expense of diversity, with the number of 
unique clusters at a TM score cutoff of 0.6 reduced when noise is reduced (right). Note 
throughout this figure the 6EXZ_long benchmarking problem is abbreviated to 6EXZ for brevity. 
Boxplots represent median±IQR; tails: min/max excluding outliers (±1.5xIQR). 
 
 
Extended Data Figure 2: RFdiffusion learns the distribution of the denoising process, and 
inference efficiency can be improved. A) Analysis of simulated forward (noising) and reverse 
(denoising) trajectories shows that the distribution of Cα coordinates and residue orientations 
closely match, demonstrating that RFdiffusion has learned the distribution of the denoising 
process as desired. Left to right: i) average distance between a Cα coordinate at Xt and its 
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position in X0; ii) average distance between a Cα coordinate at Xt and Xt-1; iii) average distance 
between adjacent Cα coordinates at Xt; iv) average rotation distance between a residue 
orientation at Xt and X0; v) average rotation distance between a residue orientation at Xt and Xt-1. 
B-C) While RFdiffusion is trained to generate samples over 200 timesteps, in many cases, 
trajectories can be shortened to improve computational efficiency. B) Larger steps can be taken 
between timesteps at inference. Decreasing the number of timesteps speeds up inference, and 
often does not decrease in silico success rates (left) (for example, on an NVIDIA A4000 GPU, 
100 amino acid designs can be generated with 15 steps, in ~11s, with an in silico success rate 
of over 60%). With as few as 50 timesteps when normalized for compute budget (center) it is 
often much more efficient to run more trajectories with fewer timesteps. This can be done 
without loss of diversity in samples (right). For harder problems (e.g. unconditional 300 amino 
acids), one must strike an intermediate number of total timesteps (e.g., T=50) for optimal 
compute efficiency. Note that for all other analyses in the paper, 200 inference steps were used, 
in line with how RFdiffusion is trained. C) An alternative to taking larger steps is to stop 
trajectories early (possible because RFdiffusion predicts X0 at every timestep). In many cases, 
trajectories can be stopped at timestep 50-75 with little effect on the final in silico success rate 
of designs (left), and when normalized by compute budget (center), success rates per unit time 
are typically higher generating more designs with early-stopping. Again, this can be done 
without a significant loss in diversity (right). 

 
Extended Data Figure 3: Unconditionally-generated designs are folded and thermostable.  
A) Four 200 amino acid and fourteen 300 amino acid proteins were tested for expression and 
stability. 9/18 designs expressed, with a major peak at the expected elution volume. Blue: 300 
amino acid proteins; Purple: 200 amino acid proteins. B) Colored AF2 predictions overlaid on 
gray design models (left), circular dichroism spectra at 25oC (blue) and 95oC (pink) (middle) and 
circular dichroism melt curves (right) for all 9 designs passing expression thresholds. In all 
cases, proteins remain well folded even at 95oC. Note that data on 300aa_3 and 300aa_8 are 
duplicated from Fig. 2F, reproduced here for clarity.  

 
Extended Data Figure 4: RFdiffusion can condition on fold information to generate 
specific, thermostable folds. A) 6WVS is a previously-described de novo designed TIM barrel 
(left). A fine-tuned RFdiffusion model can condition on 1D and 2D inputs representing this 
protein fold, specifically secondary structure (middle, bottom) and block-adjacency information 
(middle, top) (see Methods 4.3.2). RFdiffusion then generates proteins that closely recapitulate 
this course-grained fold information (right). B) Outputs are diverse with respect to each other. 
With this coarse-grained fold specification, in silico successful designs are much more diverse 
(as quantified by pairwise TM scores) compared to diversity generated through simply sampling 
many sequences for the original PDB backbone (6WVS). C) NTF2 folds are useful scaffolds for 
de novo enzyme design56, and can also be readily generated with fold-conditioning in 
RFdiffusion. Designs are diverse and closely recapitulated by AF2. D) In silico success rates are 
high with fold-conditioned diffusion. TIM barrels are generated with an AF2 in silico success rate 
of 42.5% (left bar, pink) with in silico success incorporating both AF2 metrics and a TM score vs 
6WVS > 0.5. NTF2 folds are generated with an AF2 in silico success rate of 54.1% (right bar, 

ACCELE
RATED ARTIC

LE
 PREVIEW

https://www.zotero.org/google-docs/?p3EQ6L


 

 

pink), with in silico success incorporating both AF2 metrics and a TM score vs PDB: 1GY6 > 
0.5. In silico success was further validated with ESMFold (blue bars), where a plDDT > 80 was 
used as the confidence metric for success. Gray: RFdiffusion design, colors: AF2 prediction. E) 
11 TIM barrel designs were purified alongside the 6WVS positive control. Ten of these express 
and elute predominantly as monomers (note that the designs are approximately 4kDa larger 
than 6WVS). F) Eight designs expressed sufficiently for analysis by circular dichroism. All 
designs are folded, with circular dichroism spectra consistent with the designed structure 
(middle), and similar to 6VWS. Designs were also all highly thermostable, with CD melt 
analyses demonstrating designs were folded even at 95oC (right). Designs are shown in gray, 
with the AF2 predictions overlaid in colors (left). Note that data on 6WVS and TIM_barrel_6 are 
duplicated from Fig. 2G, reproduced here for clarity.  
 
Extended Data Figure 5: Symmetric oligomer design with RFdiffusion. A) Due to the (near-
perfect - see Methods 3.1) equivariance properties of RFdiffusion, X0 predictions from 
symmetric inputs are also symmetric, even at very early timepoints (and becoming increasingly 
symmetric through time; RMSD vs symmetrized: t=200 1.20Å; t=150 0.40Å; t=50 0.06Å; t=0 
0.02Å). Gray: symmetrized (top left) subunit; colors: RFdiffusion X0 prediction. B) In silico 
success rates for symmetric oligomer designs of various cyclic and dihedral symmetries. In 
silico success is defined here as the proportion of designs for which AF2 yields a prediction from 
a single sequence that has mean plDDT > 80 and backbone RMSD over the oligomer between 
the design model and AF2 < 2Å. Note that 16 sequences per RFdiffusion design were sampled. 
C) Box plots of the distribution of backbone RMSDs between AF2 and the RFdiffusion design 
model with and without the use of external potentials during the trajectory. The external 
potentials used are the “inter-chain” contact potential (pushing chains together), as well as the 
“intra-chain” contact potential (making chains more globular). Using these potentials 
dramatically improves in silico success (Two-proportion z-test of in silico success rate: n=100 
designs per condition, z=4.3, p=1.9e-5). D) Designs are diverse with respect to the training 
dataset (the PDB). While the monomers (typically 60-100aa) show reasonable alignment to the 
PDB (median 0.72), the whole oligomeric assemblies showed little resemblance to the PDB 
(median 0.50). E) Additional examples of design models (left) against AF2 predictions (right) for 
C3, C5, C12, and D4 symmetric designs (the symmetries not displayed in Fig. 3) with backbone 
RMSDs against their AF2 predictions of 0.82, 0.63, 0.79, and 0.78 with total amino acids 750, 
900, 960, 640. F) Additional nsEM data for symmetric designs. The model is shown on the left 
and the 2D class averages on the right for each design. G) Two orthogonal side views of 
HE0537 by cryo-EM. Representative 2D class averages from the cryo-EM data are shown to 
the right of 2D projection images of the computational design model (lowpass filtered to 8 Å), 
which appear nearly identical to the experimental data. Scale bars shown (white) are 60Å. 
Boxplot represents median±IQR; tails: min/max excluding outliers (±1.5xIQR). 
 
 
Extended Data Figure 6: External potentials for generating pockets around substrate 
molecules. A-D) Example in silico successful designs for enzyme classes 2-5 (ref [57], see also 
Fig. 4). Native enzyme (PDB: 1CWY, 1DE3, 1P1X, 1SNZ); catalytic site (teal); RFdiffusion 
output (gray: model, colors: AF2 prediction). Metrics (AF2 vs design backbone RMSD, AF2 vs 
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design motif backbone RMSD, AF2 vs design motif full-atom RMSD, AF2 pAE): EC2: 0.93Å, 
0.50Å, 1.29Å, 3.51; EC3: 0.92Å, 0.60Å, 1.07Å, 4.59; EC4: 0.93Å, 0.80Å, 1.03Å, 4.41; EC5: 
0.78Å, 0.44Å, 1.14Å, 3.32. E-H) Implicit modeling of a substrate for while scaffolding a 
retroaldolase active site triad [TYR1051-LYS1083-TYR1180] from PDB: 5AN7. E) The potential 
used to implicitly model the substrate, which has both a repulsive and attractive field (see 
Methods 4.4). F) Left: Kernel densities demonstrate that without using the external potential 
(pink), designs often fall into two failure modes: (1) no pocket, and (2) clashes with the 
substrate. Right: clashes (substrate < 3Å of the backbone) & pockets (no clash and > 16 Cα 
within 3-8Å of substrate) with and without the potential. Two-proportion z-test: n=71/51 +/- 
potential; clashes z=-2.053, p=0.020, pocket z=-2.274, p=0.011. Each datapoint represents a 
design already passing the stringent in silico success metrics (AF2 motif RMSD < 1Å, AF2 
backbone RMSD < 2Å, AF2 pAE < 5). Note that the potential and clash definition pertain only to 
backbone Cɑ atoms, and do not currently include sidechain atoms. G) Designs close to the 
labeled local maxima of the kernel density estimate. Without the potential, the catalytic triad is 
predominantly (1) exposed on the surface with no residues available to provide substrate 
stabilization or (2) buried in the protein core, preventing substrate access. With the potential, the 
catalytic triad is predominantly (3), partially buried in a concave pocket with shape 
complementary to the substrate. Backbone atoms within 3Å of the substrate are shown in red. 
H) A variety of diverse designs with pockets made using the potential, with no clashes between 
the substrate and the AF2-predicted backbone. The functional form and parameters used for the 
pocket potential are detailed in Methods 4.4. In each case the substrate is superimposed on the 
AF2 prediction of the catalytic triad. 
 
Extended Data Figure 7: Additional Ni2+ binding C4 oligomers. A) AF2 predictions of a 
subset of the experimentally verified Ni2+ binding oligomers, with corresponding isothermal 
titration calorimetry (ITC) binding isotherms for the wild-type (blue) and H52A mutant (pink) 
below. Note that these, with Figure 5, encompass all of the experimentally validated outputs 
deriving from unique RFdiffusion backbones. Wild-type dissociation constants are displayed in 
each plot. We observe a mixture of endothermic (NiB2.10, NiB2.23, NiB2.15) and exothermic 
isotherms. For all cases displayed we observe no binding to the ion for H52A mutants, 
indicating the scaffolded histidine at position 52 is critical for ion binding. KD values in the 
isotherms indicate binding of the ion with the designed stoichiometry (1:4 Ni2+:protein). Note that 
each backbone depicted is from a unique RFdiffusion sampling trajectory, and that models and 
data for designs NiB2.15, NiB1.12, NiB1.20 and NiB1.17 from Figure 5 are duplicated here for 
ease of viewing. B) Size exclusion chromatograms for elutions from the 44 purifications suggest 
the vast majority of designs are soluble and have the correct oligomeric state. C) Size exclusion 
chromatograms for 20 H52A mutants show that the mutants remain soluble and retain the 
intended oligomeric state. Note that for ITC plots, points represent single measurements. 
 
Extended Data Figure 8: Targeted unconditional and fold-conditioned protein binder 
design.  
A-B) The ability to specify where on a target a designed binder should bind is crucial. Specific 
“hotspot” residues can be input to a fine-tuned RFdiffusion model, and with these inputs, binders 
almost universally target the correct site. A) IL-7Rɑ (PDB: 3DI3) has two patches that are 
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optimal for binding, denoted Site 1 and Site 2 here. For each site, 100 designs were generated 
(without fold-specification). B) Without guidance, designs typically target Site 1 (left bar, gray), 
with contact defined as Cɑ-Cɑ distance between binder and hotspot reside < 10Å. Specifying 
Site 1 hotspot residues increases further the efficiency with which Site 1 is targeted (left bar, 
pink). In contrast, specifying the Site 2 hotspot residues can completely redirect RFdiffusion, 
allowing it to efficiently target this site (right bar, pink). C-D) As well as conditioning on hotspot 
residue information, a fine-tuned RFdiffusion model can also condition on input fold information 
(secondary structure and block-adjacency information - see Methods 4.5). This effectively 
allows the specification of a (for instance, particularly compatible) fold that the binder should 
adopt. C) Two examples showing binders can be specified to adopt either a ferredoxin fold (left) 
or a particular helical bundle fold (right). D) Quantification of the efficiency of fold-conditioning. 
Secondary structure inputs were accurately respected (top, pink). Note that in this design target 
and target site, RFdiffusion without fold-specification made generally helical designs (right, gray 
bar). Block-adjacency inputs were also respected for both input folds (bottom, pink). E) 
Reducing the noise added at each step of inference improves the quality of binders designed 
with RFdiffusion, both with and without fold-conditioning. As an example, the distribution of AF2 
interaction pAEs (known to indicate binding when pAE < 1026) is shown for binders designed to 
PD-L1. In both cases, the proportion of designs with interaction pAE < 10 is high (blue curve), 
and improved when the noise is scaled by a factor 0.5 (pink curve) or 0 (yellow curve). F) Full in 
silico success rates for the protein binders designed to five targets. In each case, the best fold-
conditioned results are shown (i.e. from the most target-compatible input fold), and the success 
rates at each noise scale are separated. In line with current best practice26, we tested using 
Rosetta FastRelax58 before designing the sequence with ProteinMPNN, but found that this did 
not systematically improve designs. In silico success is defined in line with current best 
practice26: AF2 plDDT of the monomer > 80, AF2 interaction pAE < 10, AF2 RMSD monomer vs 
design < 1Å. G) Experimentally-validated de novo protein binders were identified for all five of 
the targets. Designs that bound at 10 μM during single point BLI screening with a response 
equal to or greater than 50% of the positive control were considered binders. Concentration is 
denoted by hue for designs that were screened at concentrations less than 10 μM and thus may 
be false negatives. 
 
Extended Data Figure 9: Cryo-electron microscopy structure determination of designed 
Influenza HA binder.  
A) Representative raw micrograph showing ideal particle distribution and contrast. B) 2D Class 
averages of Influenza H1+HA_20 binder with clearly defined secondary structure elements and 
a full-sampling of particle view angles (scale bar = 10 nm). C) Cryo-EM local resolution map 
calculated using an FSC value of 0.143 viewed along two different angles. Local resolution 
estimates range from ~2.3Å at the core of H1 to ~3.4Å along the periphery of the N-terminal 
helix of the HA_20 binder. D) Cryo-EM structure of the full H1+HA_20 binder complex (purple: 
HA_20; yellow: H1; teal: glycans). E) Global resolution estimation plot. F) Orientational 
distribution plot demonstrating complete angular sampling. G) 3D ab initio (left) and 3D 
heterogenous refinement (right - unsharpened) outputs, performed in the absence of applied 
symmetry, and showing clear density of the HA_20 binder bound to all three stem epitopes of ACCELE

RATED ARTIC
LE

 PREVIEW

https://www.zotero.org/google-docs/?l5FSD3
https://www.zotero.org/google-docs/?71sIpP
https://www.zotero.org/google-docs/?uLgtK3
https://www.zotero.org/google-docs/?M1Z0CI


 

 

the Iowa43 HA glycoprotein trimer, in all maps. H) The designed binder has topological similarity 
to 5VLI, a protein in the PDB, but binds with very different interface contacts. 
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Extended Data Fig. 1
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Extended Data Fig. 2ACCELE
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Extended Data Fig. 3ACCELE
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Extended Data Fig. 4
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Extended Data Fig. 5
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Extended Data Fig. 6
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Extended Data Fig. 7
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Extended Data Fig. 8
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Extended Data Fig. 9
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Extended Data Table 1ACCELE
RATED ARTIC

LE
 PREVIEW


	SpringerNature_Nature_6415
	De novo design of protein structure and function with RFdiffusion

	Reporting summary

	Online content



	1
	2022-12-19951B-eJP merged PDF_new_use this one + figs
	Untitled-6


