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Abstract
Deep learning methods for protein design have shown considerable promise for sequence
design, scaffolding functional sites1,2, and building new monomers3, cyclic oligomers4, and
antibody loops5,6. Despite this progress, a general framework for protein design that enables
solution of a wide range of design challenges, including de novo binder design and design of
higher order symmetric architectures, has yet to be described. Diffusion models7,8 have had
considerable success in image and language generative modeling, and have been applied to
the protein monomer generation problem but with limited success likely due to the complexity of
protein backbone geometry and sequence-structure relationships. Here we show that by
utilizing powerful structure prediction methods, which have a deep understanding of protein
sequence and structure, as the diffusion denoising network, we can improve on the state of the
art for unconditional and topology constrained protein monomer design, protein and peptide
binder design, symmetric oligomer design, de novo enzyme design and symmetric motif
scaffolding for therapeutic and metal-binding protein design. We demonstrate the power and
generality of the method, called RoseTTAFold Diffusion (RFdiffusion), by experimentally
characterizing hundreds of new designs. Highlights include a picomolar binder to parathyroid
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hormone, considerably higher affinity than any previous computational designed binder prior to
experimental optimization, and a series of not previously observed symmetric assemblies
experimentally confirmed by electron microscopy.

Main
Denoising diffusion probabilistic models (DDPMs) have emerged as a powerful class of
generative models to sample from complex data distributions7,8. DDPMs are trained to
reconstruct data (for instance images or text) corrupted with varying amounts of added noise.
After this training, new samples can be generated by feeding the model random noise and then
refining it by iterative application of the trained denoising network7,8. The power of DPPMs is
illustrated in the context of computer graphics by the generation of novel, photorealistic images
in response to text prompts9. DDPMs have a number of qualities that naturally lends them to
protein design: they (1) generate highly diverse outputs, due to the stochasticity of the inputs
and subsequent denoising trajectory (2) can be guided at each step of the iterative data
generation process towards specific design objectives, either through provision of conditioning
information or through external “potentials”, and (3) unlike methods that design proteins through
generation or optimization of protein sequences alone1,3,4,10,11, DDPMs can be formulated to
generate protein structures directly, enabling more direct control over structural properties.
Recent work has sought to adapt DDPMs for protein monomer design by conditioning on small
protein “motifs”2,6 or on secondary structure and adjacency (“fold”) information5. While showing
promise, these attempts have thus far had limited success in generating sequences that are
predicted to fold to the intended structures in silico2,12, and have not been tested experimentally.

We reasoned that improved diffusion models for protein design could be developed by taking
advantage of the deep understanding of protein sequence and structure implicit in powerful
structure prediction methods like AlphaFold2 (AF2) and RoseTTAFold (RF). The power of
fine-tuning pretrained structure prediction networks for protein design is illustrated by an
inpainting version of RoseTTAFold (called RFjoint

1) that was trained to recover missing sequence
and structure information. Experimental characterization showed that the method can scaffold a
wide range of protein functional sites with atomic accuracy (Ref [1], see eLetter), but the
approach fails to generate useful designs for more minimalist sites when there is insufficient
topological information and, because it is deterministic, sampling of different input parameters is
required to generate output diversity. We reasoned that by instead fine-tuning RoseTTAFold for
use as the neural network in a diffusion based generative model, both problems could be
overcome: because the starting point is random noise, each denoising trajectory yields a
different solution, and because structure is built up progressively through many denoising
iterations, much less starting information would likely be required.

We formulate the diffusion model in a manner well-suited to fine-tuning from pre-trained
RoseTTAFold (Fig 1A). As in ref [5], at each timestep we predict the final protein structure given
the current noised structure. We then generate the slightly denoised input to the next timestep
via a noisy interpolation from the current (input) structure toward the predicted final structure.
The correspondence between RoseTTAFold structure prediction and a RFdiffusion denoising

https://www.zotero.org/google-docs/?cHzbwt
https://www.zotero.org/google-docs/?nITLYg
https://www.zotero.org/google-docs/?SnZSFa
https://www.zotero.org/google-docs/?Ssq8tK
https://www.zotero.org/google-docs/?PMgCys
https://www.zotero.org/google-docs/?LA7x75
https://www.zotero.org/google-docs/?QX5edm
https://www.zotero.org/google-docs/?ivNhmK
https://www.zotero.org/google-docs/?O2G0Q7
https://www.zotero.org/google-docs/?muaqA1


step is highlighted in Fig. 1A: in either case, input sequence and structure information is
transformed by the model into a prediction of native protein structure. During classical structure
prediction with RoseTTAFold, structural inputs to the model come from homologous template
structures, each of which have associated per-residue “confidence” values ϵ[0,1]13. In
RFdiffusion, structural inputs are derived from the partially (de-)noised structure, and the
confidence feature is reparameterized to represent the current denoising timestep, on which the
model conditions its prediction (see methods). To generate noised protein structures for training
or inference, we perform “forward” diffusion on some subset (potentially all) of the amino acids
in a protein over backbone N-Cɑ-C frame translations and rotations. For translations, we perturb
the Cɑ coordinates with 3D Gaussian noise. For rotations, we use Brownian motion on the
manifold of rotation matrices, SO(3) (building on refs [14,15]). The noised structures are input to
the network via the structure (3D) track of RF. While in this study we use RoseTTAFold as the
basis for the denoising network architecture, our approach is quite general, and it should be
possible to substitute in other structure prediction networks that manipulate 3D coordinates
(AF212, Omegafold17, ESMfold18, etc.).

We explored two different strategies for training RFdiffusion. Firstly, we trained it in a manner
akin to “canonical” diffusion models, such that predictions at each timestep are independent of
predictions at previous timesteps (as in previous work2,5,6,12). Secondly, we trained it allowing the
model to condition on previous predictions between timesteps (as in self-conditioning19, Fig. 1A
bottom row). The latter strategy was inspired by the success of “recycling” (allowing the model
to condition on previous predictions) in both AF2 and RF joint Inpainting. We found that
self-conditioning within RFdiffusion dramatically improved performance on in silico benchmarks
encompassing both conditional and unconditional protein design tasks (Fig. S1A, Table 1,
methods). Fine-tuning RFdiffusion from a pre-trained RF model was also crucial (Fig. S1B). For
all in silico benchmarks in this paper, we use the AF2 structure prediction network16 for
validation and define in silico “success” as an RFdiffusion output for which the AF2 structure
predicted from a single sequence (1) has high confidence (mean predicted aligned error, pAE, <
5), (2) is globally within 2Å backbone-RMSD of the designed structure, and (3) is within 1Å
backbone-RMSD on the scaffolded functional-site. Though more stringent than metrics
described elsewhere2,5,12,20 (TM score between design and subsequent structure prediction, see
Fig. S2A-B), these metrics have been demonstrated to be good predictors of experimental
success1,4,21. Because RoseTTAFold and AF2 are entirely different networks, AF2 serves as a
reasonably independent arbitrator of the success of a design calculation. To design amino acid
sequences that encoded the RFdiffusion-generated backbones, we experimented both with
simultaneous diffusive generation of sequence within RFdiffusion (similar to refs [19,22]) and with
simply using the rapid and robust ProteinMPNN network23. Benchmark tests showed that the
latter approach was more powerful and more flexible (as multiple diverse sequences can be
readily generated for each output structure) and we use this throughout the remainder of the
paper. We generate 8 ProteinMPNN sequences per backbone, and select those predicted to
fold to the target structure most accurately by AF2 (in line with previous work2,12).
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Unconditional protein monomer generation

Unconstrained generation of diverse protein monomers is a longstanding challenge in protein
design which is difficult to address with physically-based protein design methods due to the
magnitude of the conformational sampling problem, and has been a primary test of deep
learning based protein design approaches2,3,5,10,12,24. As illustrated in Fig. 1C-E, Fig. S3A,
RFdiffusion can readily generate complex protein structures from scratch with little overall
structural similarity to any known protein structures, indicating considerable generalization
beyond the PDB training set. The designs span a wide range of alpha-, beta- and mixed
alpha-beta- topologies, with AF2 predictions very close to the design structure models for de
novo designs with as many as 600 residues (we interestingly found that ESMFold20 even more
closely recapitulated the design structures - Fig. S1H, S2A, but given the experimental success
in using AF2 for design validation1,4,21, we used AF2 as the primary independent validation for
the design challenges described in this study). RFdiffusion generates plausible structures for
even very large proteins, but these are difficult to validate in silico as they are likely beyond the
single sequence prediction capabilities of AF2. The quality and diversity of designs that are
sampled is inherent to the model, and does not require any auxiliary conditioning input (for
example secondary structure information5). RFdiffusion strongly outperforms Hallucination, the
only experimentally validated deep learning approach for unconditional generation, with success
rates for Hallucination deteriorating beyond 100 amino acids. RFdiffusion is also far more
compute efficient than unconstrained hallucination, requiring 2:20 minutes on an NVIDIA RTX
A4000 GPU to generate a 100 residue structure compared to 8:20 for Hallucination.
Computational efficiency can be further improved by taking larger steps at inference time, and
by truncating trajectories early - an advantage of predicting the final structure at each timestep
(Fig S2C-D). For design problems where a particular fold or architecture is desired (such as TIM
barrels or cavity-containing NTF2s for small molecule binder and enzyme design25,26), we further
fine-tuned RFdiffusion to condition on (partial) input secondary structure and/or fold information,
enabling rapid and accurate generation of diverse designs with the desired topologies or folds
(Fig. S3B-D). In silico success rates were 42.5% and 54.1% for TIM barrels and NTF2s
respectively (Fig. S3C).

Higher order oligomer design through denoising with explicit symmetrization

There is considerable interest in designing new higher order symmetric oligomers which can
serve as vaccine platforms27, delivery vehicles28, and catalysts29. Cyclic oligomers have been
generated using structure prediction networks by starting from a random sequence and carrying
out a Monte Carlo search for sequences predicted to fold to the desired cyclic symmetry4. This
“hallucination” approach fails with higher order dihedral, tetrahedral, octahedral, and icosahedral
symmetries, likely because these architectures require multiple distinct sets of
monomer-monomer interactions. We reasoned that this limitation could be overcome using our
diffusion framework. As RFdiffusion acts directly on amino acid coordinates (as opposed to input
sequence tokens), it allows the explicit symmetrisation of the “denoising” process, and RF's
equivariance properties with respect to global rotation of coordinate inputs ensures that the
targeted symmetry is maintained in denoising predictions (see methods). We experimented with
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arranging multiple copies of a starting random Gaussian monomer coordinate distribution with
the desired symmetry as the input, and explicitly symmetrizing the denoising updates at each
step (Fig. 1B, second row). For octahedral and icosahedral architectures, to reduce the
computational cost and memory footprint, we only explicitly modeled the smallest subset of
monomers required to generate the full assembly (in the icosahedral case, the subunits at the
five-fold, three-fold, and two-fold symmetry axes).

We found that despite not being trained on symmetric inputs, RFdiffusion was able to generate
higher order symmetric oligomers with high in silico success rates (Fig. S4A), particularly when
guided by an auxiliary inter- and intra- chain contact potential (Fig. S4B). As illustrated in Figure
2A,B,D and Fig. S4C, D, RFdiffusion-generated cyclic (C3, C5, C6, C8, C10, C12), dihedral (D2,
D3, D4, D5), tetrahedral, octahedral and icosahedral designs are nearly indistinguishable from
AF2 predictions of the structures adopted by the designed sequences (for the full assemblies for
the cyclic and dihedral designs, and trimeric substructures of the octahedral and icosahedral
designs). These include a number of topologies not seen in nature, including two-layer beta
strand barrels (Fig. 2A, bottom row) and complex mixed alpha/beta topologies (Fig. 2A). We
selected 376 designs for experimental characterization, and found using size exclusion
chromatography that at least 37 had oligomerization states closely consistent with the design
models. We collected negative stain electron microscopy (nsEM) data on five of the 37 designs
with the highest total molecular weights (ranging from 70-110 kilodaltons), and for four of the five
distinct particles were evident with shapes resembling the design models (Fig 2C,D).

Averages of the electron microscopy data for the four designs are shown in Fig. 2D. All
structures of all four assemblies are to our knowledge unprecedented in nature. HE0537 is a D4
octameric dihedral assembly resembling a dimer of tetramers with an overall rectangular prism
shape (5x5x6 nanometers) formed by a largely alpha helical monomer. The electron microscopy
images clearly indicate the rectangular prism shape in both top down and side views. HE0600 is
a C12 dodecameric ring shaped assembly with an inner 24 stranded barrel buttressed by an
outer ring of 12 helices. Electron microscopy micrographs reveal homogeneous ring shaped
particles, and the resulting 2D class averages are consistent with the design models. HE0675 is
a C8 octameric ring composed of an inner ring of 16 strands and an outer ring of 16 helices. In
contrast to HE0600, the helices are not parallel to each other, instead forming a flower-like
pattern. The electron microscopy individual particle images and corresponding 2D class
averages are again closely consistent with the design model. HE0626 is a C6 hexameric ring
composed of an inner ring of 18 strands and an outer ring of 18 helices. As in HE0675, the
helices are packed in a flower-shaped arrangement, and nsEM micrographs and 2D class
averages are again close to the design model (Fig. 2D). Importantly, we were also able to obtain
a nsEM 3D reconstruction of HE0626 (Fig. 2E), where rigid-body docking of the design model
demonstrated strikingly high agreement with the density map. This agreement empirically
validates the design of the intended two ring architecture and the flower-shaped outer ring
surface of this symmetric oligomer.



Functional-site scaffolding with RFdiffusion

We next investigated the use of RFdiffusion for scaffolding protein structural motifs that carry out
binding and catalytic functions, where the role of the scaffold is to hold the site in precisely the
3D geometry needed for optimal function. A number of deep learning methods have been
recently developed to address this problem, including RFjoint Inpainting1, constrained
hallucination1, and probabilistic diffusion networks2,5,20. To rigorously evaluate the performance of
these methods in comparison to RFdiffusion across a representative set of design challenges,
we established an in silico benchmarking test comprising all functional site scaffolding design
problems described in six recent publications1,2,20,30–32 encompassing both deep learning-based
and conventional design methodologies. There are 25 challenges in total, spanning a broad
range of functional sites, including simple “inpainting” problems, viral epitopes, receptor traps,
small molecule binding sites, binding interfaces and enzyme active sites. Full details of this
benchmark are described in Table 1. RFdiffusion, with no prior optimization on the problem set,
outperforms Hallucination (where some preliminary optimization was used) and Inpainting in all
but one design problem, and provides solutions to six problems for which hallucination and
inpainting, even with the aid of ProteinMPNN, fail to generate successful designs under these
conditions in silico (Fig. 3A-C). In 17/23 of the problems, RFdiffusion generated successful
solutions with higher success rates when noise was not added during the reverse diffusion
trajectories.

Fine-tuning RFdiffusion for enzyme design from minimalist active site motifs

A grand challenge in protein design is the ability to scaffold minimalist descriptions of enzyme
active sites (typically just a few single amino acids). While some in silico success has been
reported previously1, a general solution that can readily produce high-quality,
orthogonally-validated outputs is not currently available. Following fine tuning on training
examples involving scaffolding of the relative orientations and geometries of 2-3 residues close
in Euclidean space, but discontinuous in sequence space, RFdiffusion was able to scaffold
enzyme active sites comprised of multiple sidechain and backbone functional groups with high
accuracy and in silico success rates (Fig. 3D-F), illustrating the ease with which RFdiffusion can
be fine-tuned to solve problems beyond those in the original training set. While RFdiffusion is
currently unable to explicitly model bound small molecules (see conclusion), the substrate could
be implicitly modeled using an auxiliary potential, which could be used to guide the generation
of “pockets” around the active site (Fig. S5).

Symmetric functional-site scaffolding for metal mediated assemblies and antiviral
therapeutics and vaccines

A number of important design challenges involve the scaffolding of multiple copies of a
functional motif in symmetric arrangements. For example, many viral glycoproteins are trimeric,
and symmetry matched arrangements of inhibitory domains can be extremely potent33–36. On the
other hand, symmetric presentation of viral epitopes in an arrangement that mimics the virus
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could induce new classes of neutralizing antibodies37,38. To explore this general direction, we
sought to design trimeric multivalent binders to the SARS-CoV-2 spike protein. In previous work,
flexible linkage of a design that binds to the ACE2 binding site on the receptor binding domain of
the spike to a trimerization domain yielded a high-affinity inhibitor that had potent and broadly
neutralizing antiviral activity in animal models33. Rigidly fusing or oligomerizing the binder could
in principle improve its affinity for the target by reducing the entropic cost of binding while
maintaining the avidity benefits from multivalency. We used RFdiffusion to design C3 symmetric
trimers which rigidly hold three binding domains (the “functional-site” in this case) so they
exactly match the ACE2 binding sites on the SARS-CoV-2 spike protein trimer. Design models
were confidently recapitulated by AF2 to both assemble as C3-symmetric oligomers, and to
scaffold the AHB2 SARS-CoV-2 binder interface with sub-angstrom accuracy (Fig. 3G).

The ability to scaffold functional sites with any desired symmetry opens up new approaches to
design protein-metal assemblies. Divalent metal ions exhibit distinct preferences for different
metal coordination geometries - square planar (C4), tetrahedral, and octohedral - with
ion-specific optimal sidechain-metal bond lengths. RFdiffusion provides a general route to
building up symmetric protein assemblies around such sites. As a first test of this, we sought to
design square planar Nickel binding sites. We designed C4 protein assemblies with four central
histidine imidazoles arranged in ideal Nickel binding geometry (Fig. 3H, left panel). Designs
starting from two different C4-symmetric histidine functional sites showed high in silico design
success (Fig. 3H, middle and right panel). The confident AF2 predictions of the histidine
residues in the desired geometry strongly suggests these designs would indeed bind to Nickel,
although further experimental evidence will be required to verify this.

De novo protein and peptide binder design

The design of high-affinity binders to target proteins is a grand challenge in protein design, with
numerous therapeutic applications39. The ability to design binders de novo using the physically
based Rosetta method was recently described40, and subsequently, the utility of ProteinMPNN
and AF2 for sequence design and design filtering respectively has improved design success
rates21. However, experimental success rates are typically low, requiring many thousands of
designs to be screened for each design campaign40. Further, this work relied on pre-specifying a
particular set of protein scaffolds as the basis for the designs, inherently limiting the diversity
and shape complementarity of possible solutions40. We reasoned that RFdiffusion might be able
address this challenge by directly generating diverse, and target-compatible protein binders. To
our knowledge, no deep-learning method has yet demonstrated general experimental success
in designing binders completely de novo.

It is often desirable to be able to specify specific sites on a target protein that binders should
bind to. We therefore fine-tuned RFdiffusion on protein complex structures, providing as input a
subset of the interface residues the diffused chain binds (Fig. S6A, B, see methods). With this
fine-tuned model, we were able to design putative binders confidently predicted by AF2 to bind
their target21. These could be generated without any fold/topology information, with success
rates several orders of magnitude higher than with our previous Rosetta based approach (Fig.
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4A-B). To enable control over binder scaffold topology, we also fine-tuned a model to condition
binder diffusion on secondary structure adjacency information5 (Fig. S6C, D), and in cases
where compatible folds for putative binders were known, this model typically further improved in
silico success rates (Fig. 4B, bottom row).

An outstanding challenge in protein design is the design of binders to flexible helical peptides,
which are challenging targets due to their general lack of structure in solution and therefore the
entropic cost of binding in a rigid conformation. Experimental characterization revealed that
RFdiffusion had quite remarkable success on this problem. Designed binders to the
apoptosis-related peptide Bim were found using biolayer interferometry to have single digit
nanomolar affinity (Fig. 4C, D). Designed binders to parathyroid hormone (PTH) had even
higher affinity: fluorescence polarization measurements indicated a dissociation constant of
~340pM (Fig. 4E, F). To our knowledge, this is the highest affinity binder to any target (protein,
peptide, or small molecule) achieved directly by computational design with no experimental
optimization.

Conclusion

RFdiffusion is a major improvement over current physically based and deep learning protein
design methods over a wide range of protein design challenges. Substantial progress was
recently made using Rosetta in designing binding proteins from target structural information
alone, but this required testing tens of thousands of designs – with RFdiffusion high affinity
binders can now be identified in testing of dozens of targets. There has also been progress in
scaffolding protein functional motifs using deep learning methods (hallucination, inpainting and
diffusion), but hallucination becomes very slow for complex systems, inpainting fails when
insufficient starting information is provided, and previous diffusion methods had quite low
accuracy; our benchmark tests show that RFdiffusion considerably outperforms all previous
methods in the complexity of the motifs that can be scaffolded, the ability to precisely position
sidechains (for catalysis and other functions), and the accuracy of motif recapitulation by AF2.
For the classic unconstrained protein structure generation problem, RFdiffusion readily
generates novel protein structures with as many as 600 residues that are accurately predicted
by AF2 (and ESMFold), far exceeding the complexity and accuracy achieved by previously
described diffusion and other methods. The versatility and control provided by diffusion models
enabled extension of RFdiffusion unconditional generation to higher order architectures with any
desired symmetry (hallucination methods are primarily limited to cyclic symmetries);
experimental characterization of a subset of these designs using electron microscopy revealed
overall all structures very similar to the design models which are without precedent in nature.
Combining the accurate motif scaffolding with the ability to design symmetric assemblies, we
were able to scaffold functional sites spanning multiple symmetrically arranged chains which
has not been previously possible. Overall, the complexity of the problems solvable with
RFdiffusion and the robustness and accuracy of the solutions (as evaluated by similarity to AF2
predictions in silico and by experimental characterization) far exceeds what has been achieved
previously.
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The power and scope of RFdiffusion can be extended in several directions. RF has recently
been extended to nucleic and protein-nucleic acid complexes13 which should enable diffusive
modeling of protein-nucleic acid assemblies. Extension of RF to incorporate ligands should
similarly enable diffusive generation of protein-small molecule complexes. The ability to
customize RFdiffusion to specific design challenges by addition of external potentials and by
fine-tuning (as illustrated here for catalytic site scaffolding, binder-targeting and
fold-specification) should enable protein design to achieve still higher levels of complexity
moving forward, to approach and in some cases surpass what was achieved by natural
evolution.
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Figures



Figure 1: Incorporating diffusion into RoseTTAFold addresses a broad range of protein
design problems. A) Top panel: Diffusion models for protein design are typically trained to take
a true protein structure with some degree of noise added to it, and to iteratively denoise this
input back to the true protein structure. At inference time, the reverse (generative) process is
employed, with random Gaussian coordinates input to the model, which iteratively refines this
input until a final, novel protein sample is generated. Middle panel: Diffusion models can be
incorporated into RoseTTAFold. RoseTTAFold (RF, left) is an SE(3)-equivariant protein structure
prediction network that takes in sequence, template structures and initial coordinates, which it
uses and refines to generate a protein structure prediction for those inputs . RFdiffusion (right) is
trained from a pre-trained RF network with minimal architectural changes. The input sequence is
partially (or even fully) masked, and the template is derived from the model’s previous prediction
(self-conditioning, see methods). Finally, the input coordinates to the model are derived by
“noising” the true protein structure to timestep “t” (following the process depicted in the top
panel), with this timestep feature also provided to the model. The output from RFdiffusion, just
as in RF, is the prediction of the true protein structure (now denoted X0). Bottom panel:
RFdiffusion can be used over many (typically 200) timesteps to iteratively refine random input
coordinates to generate a novel designed protein. A single timestep of this iterative refinement
is depicted here. At time “t”, RFdiffusion takes noised coordinates as input, along with a
template representation of the model’s X0 prediction from the previous timestep (t+1), and the
partially-masked true protein sequence (not depicted here). This template input allows
RFdiffusion to “self-condition” on its previous predictions, a concept introduced in this study.
RFdiffusion then predicts the X0 structure, and the coordinate input to the model at the next time
step (t-1) is generated by a noisy interpolation towards this X0 prediction. These steps are
repeated until a novel protein structure (X0 at time=0) is generated. B) RFdiffusion is of broad
applicability to protein design, and can be employed in many design scenarios, described in this
study. RFdiffusion can generate protein samples without any conditioning information (top row),
or can condition on: symmetric inputs to design symmetric oligomers (second row); a target
structure to which it designs protein binders (third row); protein functional sites to which it
designs scaffolds supporting their structure (fourth row); symmetric functional sites to design
symmetric oligomers scaffolding these sites (bottom row). In each case, random gaussian noise,
along with conditioning information, is input to RFdiffusion, which iteratively refines that noise
until a final protein is designed. C) RFdiffusion can generate new monomeric proteins with no
conditioning information. Two examples are shown here for two different lengths; 300 and 600
amino acids in length. Gray=design model; colors= AlphaFold2 (AF2) prediction. RMSD AF2 vs
design (Å), left to right: 0.90, 0.98, 1.15, 1.67. D) Unconditional designs from RFdiffusion are
novel and not present in the training set. The closest match (highest TM score) to the protein
databank (PDB) is plotted here. Designs are increasingly diverse with increasing length. E)
Unconditional samples are closely re-predicted by AF2, an independent structure prediction
network. Beyond approximately 400 amino acids, the recapitulation by AF2 deteriorates. F)
RFdiffusion significantly outperforms hallucination (with RoseTTAFold) at unconditional
monomer generation. While hallucination is quite successful at generating designs up to 100
amino acids in length, beyond this length, in contrast to RFdiffusion, success rates deteriorate
significantly (as assessed by RMSD recapitulation by AF2).





Figure 2: Design and experimental validation of high-order symmetric oligomers. A)
RFdiffusion generated cyclic and dihedral assemblies (left) compared to AF2 structure
predictions based on the designed sequences (right); in all 5 cases they are nearly
indistinguishable (backbone RMSDs vs AF2 for C6, C8, C10, D3, D5 are 1.04, 0.45, 0.60, 0.66,
0.72, respectively, with total amino acids 1200, 480, 600, 480, 1000, respectively). Symmetries
are indicated to the left of the design models. B) Octohedral (left) and icosohedral (right)
assemblies generated by RFdiffusion (gray). These structures are too large to be predicted by
AF2 in their entirety; instead AF2 predictions for trimeric substructures are shown superimposed
on the models (colors). C) Size exclusion chromatography of designs selected for experimental
characterization, demonstrating major peaks at the expected elution volumes. D) Designed
assemblies validated by single molecule electron microscopy averages. Top row: design models
(gray) with superimposed AF2 predictions (color); as in A they are nearly indistinguishable
(backbone RMSDs for HE0537, HE0600, HE0675 are 0.75, 0.88, 0.74, respectively) . Model
symmetries from left to right are D4 (HE0537), C12 (HE0600), and C8 (HE0675). Middle row:
representative fields of negative stained particles, demonstrating homogeneous samples.
Bottom row: 2D averages of single particle images. The overall shapes are closely consistent
with the design models. E) 3D reconstruction of design HE0627 (C6 symmetry) is closely
consistent with the design model. Left: EM field and averages as in panel D; right: top, side, and
bottom view of EM reconstructed density with superimposed design model. The density closely
follows the contours of the design model.



Figure 3 - Scaffolding of diverse functional-sites with RFdiffusion. A) RFdiffusion is state of
the art across a diverse set of benchmark functional-site (“inpainting") problems. These 25
problems were collected from six recent papers, and encompass a broad range of functional
sites, including enzyme active sites, binding interfaces and viral epitopes. Success was defined
as AF2 RMSD to design model < 2Å, AF2 RMSD to the native functional site (the “motif”) <
1Å, and AF2 predicted alignment error (pAE) < 5, and the examples are ordered by success
rate with RFdiffusion (with noise scale = 0). 100 designs were generated per problem, with no



prior optimization on the benchmark set (some optimization was necessary and permitted for the
hallucination data). RFdiffusion solves 23/25 problems, and outperforms existing methods in
22/23 of these problems (RFjoint and hallucination were similarly unable to generate solutions
for the latter two problems). B) Four example designs for problems where RFdiffusion
significantly outperforms existing methods. Teal: native motif; colors: AF2 prediction of an
RFdiffusion design. Metrics (RMSD AF2 vs Design, RMSD AF2 vs native motif, AF2 pAE):
5TRV Long: 1.17Å, 0.57Å, 4.73; 6E6R Long: 0.89Å, 0.27Å, 4.56; 7MRX Long: 0.84Å,
0.82Å 4.32; 1PRW: 0.77Å, 0.89Å, 4.49. C) RFdiffusion can scaffold the native p53 helix that
binds to Mdm2, and can make additional contacts with the target. The designed scaffold (pink)
is confidently predicted to interact with Mdm2 by AF2, and is predicted to scaffold the native p53
helix with atomic accuracy (Interaction pAE: 4.65, Monomer pAE: 4.93, AF2 Motif RMSD:
0.52Å, AF2 vs design RMSD: 0.43Å). In silico successful designs had, on average, 31% higher
contacting surface area than the original helix. D) RFdiffusion can be fine-tuned for specific and
highly challenging design tasks, including the design of scaffolds supporting minimalist
functional sites such as enzyme active sites. The input to RFdiffusion is a few individual
residues (left, in this case from the first enzyme class) and the network then designs a scaffold
to these sites, which are often accurately repredicted by AF2 (middle and right, gray: design
model; colors: AF2 prediction. Motif backbone RMSD 0.53Å, Motif full-atom RMSD 1.05Å, AF2
vs Design RMSD: 0.88Å; AF2 pAE: 4.47). E) RFdiffusion is able to scaffold a broad range of
enzyme active sites from the five major enzyme classes. A random active site was selected
from each of the five classes in the M-CSA database41 designs generated with the fine-tuned
RFdiffusion model. Given the challenging nature of this problem, three degrees of stringency for
success are reported: Stringent, Full-Atom/Stringent, Backbone/Moderately Stringent: AF2 vs
design RMSD (backbone) < 2Å/2Å/3Å; AF2 vs design Motif RMSD (backbone) <
1Å/1Å/1.5Å, AF2 pAE < 5/5/7.5; AF2 vs design RMSD (full-atom) 1.5Å/na/na. For all cases,
designs were generated that passed our most stringent filters (EC1: 2.6%; EC2: 0.6%; EC3:
2.7%; EC4: 4.7%; EC5: 2.6%) F) An example (top row) and zoomed view (bottom row) of
successful designs generated to the other four enzyme classes, demonstrating high-accuracy
scaffolding of the active sites. Gray: design model, colors: AF2 model, Teal: motif structure
prediction. Metrics (AF2 vs design backbone RMSD, AF2 vs design motif backbone RMSD, AF2
vs design motif full-atom RMSD, AF2 pAE): EC2: 0.93Å, 0.50Å, 1.29Å, 3.51; EC3: 0.92Å,
0.60Å, 1.07Å, 4.59; EC4: 0.93Å, 0.80Å, 1.03Å, 4.41; EC5: 0.78Å, 0.44Å, 1.14Å, 3.32.
G-H) RFdiffusion can scaffold symmetric functional sites. G) The SARS-CoV-2 spike protein is a
C3-symmetric trimer. AHB2, a previously-described ACE2 mimic, can bind to a single spike
protein subunit. To achieve higher affinity through multivalency, we symmetrized AHB2 around
the C3 axis (left) and used RFdiffusion to design a bespoke C3-symmetric oligomer to allow
rigid scaffolding of the AHB2 interface in a position well-suited to interacting with all three spike
subunits (right). Teal: SARS-CoV-2 structure (from PDB: 7JZL), colors: symmetrized AHB2 (left)
and AF2 model of RFdiffusion design (right). Metrics: AF2 pAE (monomer): 7.18; AF2 RMSD vs
design (monomer/triple): 1.07Å/1.28Å; AF2 Motif RMSD (monomer/triple): 0.53Å/2.36Å. H)
Nickel can be coordinated in a square-planar geometry. We generated C4 symmetric motifs
scaffolding Histidine residues in positions ideal for coordinating nickel (left). RFdiffusion
generates C4 symmetric oligomers scaffolding these motifs.

https://www.zotero.org/google-docs/?ZjI1a7


Figure 4: Design of protein and peptide binders. A-B) De novo binders were designed to five
protein targets; PD-L1, IL7 Receptor ɑ, Insulin Receptor, TrkA receptor and Influenza
Hemagglutinin, and tested in silico with AF2 prediction. A) An example structure for each of the
five targets, highlighting the diversity and complementarity of designs to their respective targets.
AF2 models are shown (teal: target, pink: design). Metrics (Monomer pLDDT, Interaction pAE,
Monomer RMSD AF2 vs Design): PD-L1: 87.9, 4.35, 0.56Å; IL7-Rɑ: 94.9, 7.33, 0.23Å; Insulin:
94.0, 4.84, 0.37Å; TrkA Receptor: 95.3, 4.62, 0.37Å; Hemagglutinin: 91.9, 9.20, 0.71Å. B) Full
in silico success rates for the protein binders designed to five targets. In each case, the best
fold-conditioned results are shown (i.e. from the most target-compatible input fold), and the
success rates at each noise scale are shown. In line with current best practice21, we tested
using Rosetta FastRelax42 before designing the sequence with ProteinMPNN, but found that this
did not systematically improve designs. Success is defined in line with current best practices21:
AF2 pLDDT of the monomer > 80, AF2 interaction pAE < 10, AF2 RMSD monomer vs design <
1Å. C-F) RFdiffusion can design binders to helical peptides. C) Design model (gray) and AF2
prediction (colors) of an experimentally validated binder to the apoptosis-related peptide Bim.
Teal: Bim peptide, Pink: designed binder. Metrics: RMSD AF2 vs Design: 1.14Å; interaction
pAE: 4.18; Binder pLDDT: 94.0. D) The designed binder bound with 2.8nM affinity to Bim, as

https://www.zotero.org/google-docs/?ap6Cu5
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https://www.zotero.org/google-docs/?aKrxnT


measured by bio-layer interferometry. E) Design model (gray) and AF2 prediction (colors) of an
experimentally validated binder to the helical peptide parathyroid hormone (PTH). Teal: PTH
peptide, Pink: designed binder. Metrics: RMSD AF2 vs Design: 0.78Å; interaction pAE: 4.40;
Binder pLDDT: 94.3. F) The design bound PTH with an exceptionally high affinity of 340pM, as
measured by Fluorescence Polarization with TAMRA-labeled PTH peptide.



Supplementary Figures



Figure S1: Self-conditioning and RF pre-training dramatically improve RFdiffusion
performance. A) Allowing the model to condition on its X0 prediction at the previous timestep
(see methods) improves designs. Designs with self-conditioning (pink) improves the
recapitulation of designs by AF2 (left), the AF2 confidence in the prediction (middle) and the
AF2 RMSD to the native motif (right). B) RFdiffusion leverages the protein representations
learned during RF pre-training. RFdiffusion fine-tuned from pre-trained RF (pink)
comprehensively outperforms a model trained for an equivalent amount of time, from untrained
weights (gray). Indeed, training RFdiffusion without pre-training showed minimal improvement
as compared to generating ProteinMPNN sequences from random Gaussian-sampled
coordinates (white). C) The median (by AF2 RMSD vs design) 300 amino acid unconditional
sample highlighting the importance of self-conditioning and pre-training. Without pre-training,
RFdiffusion outputs bear little resemblance to proteins (gray, left). Without self-conditioning,
outputs show characteristic protein secondary structures, but lack core-packing and ideality
(gray, middle). With pre-training and self-conditioning, proteins are diverse and well-packed
(pink, right). D-E) During the reverse (generation) process, the noise added at each step can be
scaled (reduced). Reducing the noise scale comprehensively improves the quality of designs
(particularly by AF2 RMSD vs design and AF2 pAE, D) left and middle). As expected however,
this comes at the expense of diversity, with the number of unique clusters at a TM score cutoff
of 0.6 reduced by reducing the noise (E). F-H) RFdiffusion (without reducing the added noise)
can generate high quality large unconditional monomers. Designs are routinely accurately
recapitulated by AF2 (see also Fig. 1E), with high confidence (F) for proteins up to
approximately 400 amino acids in length. G) Further orthogonal validation of designs by
ESMFold demonstrates the quality of unconditional RFdiffusion designs. H) Recapitulation of
the design structure is generally better with ESMFold compared with AF2. For each backbone,
the best of 8 ProteinMPNN sequences is plotted here, so points are paired by backbone rather
than sequence.





Figure S2: Optimizing inference and improving metrics for in silico success. A-B) TM
score between a design and a subsequent orthogonal prediction (e.g. AF2), has been
previously used, typically with a threshold of > 0.5, as a metric for design success. A) By TM
score, RFdiffusion has high scores to both the AF2 (left) and ESMFold (right) predictions of the
unconditional structures, with TM > 0.5 for a significant fraction of designs even up to 1000
amino acids in length. B) TM score is, however, much less stringent than RMSD alignment.
Depicted here are three unconditional RFdiffusion designs of 600 amino acids in length (gray),
overlaid with the AF2 prediction (colors), with TM scores of 0.983, 0.757 and 0.506 respectively.
While a TM score of 0.5 clearly shows some resemblance to the designed structure, it differs
significantly and should not be classed as “successfully designed”. RMSD with a strict threshold
(for example, 2Å) is significantly more stringent. RMSDs for the displayed designs are 1.15Å,
9.78Å and 21.4Å respectively. C-D) While RFdiffusion is trained to generate samples over 200
timesteps, in many cases, trajectories can be shortened to improve computational efficiency. C)
Bigger steps can be taken between timesteps at inference. While decreasing the number of
timesteps typically reduces the per-design success rate (left plot), when normalized for compute
budget (right plot), it is often more efficient to run more trajectories with fewer timesteps. For
example, while generating 100 amino acid unconditional proteins, using a schedule with just 10
timesteps (as opposed to 200) allows the generation of 1584 in silico successful designs in the
time taken to generate 86 successful designs with 200 timesteps. As problems get more
challenging, however, this no longer remains the case (for example, fourth column, with
generation of 300 amino acid designs). D) An alternative to taking larger steps is to stop
trajectories early (possible because RFdiffusion predicts X0 at every timestep). In many cases,
trajectories can be stopped at timestep 50-75 with little effect on the final success rate of
designs (left plot), and when normalized by compute budget (right plot), success rates per unit
time are typically higher generating more designs with early-stopping. For example, in the
6EXZ_Long benchmarking motif-scaffolding problem, stopping trajectories at t=100 allows the
generation of 128 in silico successful designs in the time it takes to generate 42 successful
designs running full trajectories.





Figure S3: RFdiffusion designs are novel without conditional information, or can be
conditioned to generate specific folds. A) Example designs demonstrating extrapolation
beyond the training set for generating novel folds. Gray: closest protein in the PDB by TM score,
colors: RFdiffusion design model, overlaid by TM alignment. For each protein length, the
median and most diverse samples are shown. While for short proteins, designs typically show
some similarity to known protein folds, with increasing length, designs become increasingly
dissimilar to the PDB. TM score (closest PDB, TM score; median, most diverse): 100aa:
5WVE_A, 0.71; 4W5T_A, 0.59; 200aa: 4AV3_A, 0.58; 4CLY_A, 0.47; 300aa: 4PEW_B, 0.53;
4RDR_A, 0.46; 400aa: 4AIP_A, 0.49; 6R9T_A, 0.42. B-D) Designs can also be generated by
conditioning on protein fold information. B) 6WVS is a previously-described de novo designed
TIM barrel (left). A fine-tuned RFdiffusion model can condition on 1D and 2D inputs representing
this protein fold, specifically secondary structure (middle, bottom) and block adjacency
information (middle, top, see methods). RFdiffusion readily conditions on this information and
generates a diverse set of TIM barrels (right). Gray: RFdiffusion design, colors: AF2 prediction.
C) TIM barrels are generated with an in silico success rate of 42.5% (left bar). Success
incorporates AF2 metrics and a TM score vs 6WVS > 0.5. C-D) NTF2 folds are useful scaffolds
for de novo enzyme design, and can also be readily generated with fold-conditioned
RFdiffusion. Designs are diverse (D) and designed with an in silico success rate of 54.1% (C,
right bar). NTF2 fold design success also included both AF2 metrics and a TM score vs PDB:
1GY6 > 0.5. Gray: RFdiffusion design, colors: AF2 prediction.



Figure S4: Symmetric oligomer design with RFdiffusion. A) In silico success rates for
symmetric oligomer designs of various cyclic and dihedral symmetries. Success is defined here
as the proportion of designs for which AF2 yields a prediction from a single sequence that has
mean pLDDT > 80 and backbone RMSD over the oligomer between the design model and AF2
< 2 Å. Note that 16 sequences per RFdiffusion design were sampled. B) Box plots of the
distribution of backbone RMSDs between AF2 and the RFdiffusion design model with and
without the use of external potentials during the trajectory. The external potentials used are the
“inter-chain” contact potential (pushing chains together), as well as the “intra-chain” contact
potential (making chains more globular). Using these potentials dramatically improves in silico



success. C) Additional examples of design models (left) against AF2 predictions (right) for C3,
C5, C12, D2, and D4 symmetric designs with backbone RMSDs against their AF2 predictions of
0.82, 0.63, 0.79, 0.43, 0.78 with total amino acids 750, 900, 960, 240, 640.

Figure S5: External potentials for generating pockets around substrate molecules. A)
Enzymes generated from the triadic active site [TYR1051-LYS1083-TYR1180] of a
retro-aldolase: PDB:5AN7. All designs shown here have AF2 RMSD to the native motif
backbone < 1 Å, AF2 RMSD to the design model < 2Å, and AF2 pAE < 5. The functional form
and parameters used for the pocket potential are discussed in Methods section N4. In each
case, the substrate is superimposed on the AF2 prediction of the catalytic triad. In all cases
depicted here, RFdiffusion designs pockets around the (implicitly-modeled) substrate.



Figure S6: Targeted unconditional and fold-conditioned protein binder design. A-B) The
ability to specify where on a target a designed binder should bind is crucial. Specific “hotspot”
residues can be input to a fine-tuned RFdiffusion model, and with these inputs, binders almost
universally target the correct site. A) IL7-Rɑ (PDB: 3DI3) has two patches that are optimal for
binding, denoted Site 1 and Site 2 here. For each site, 100 designs were generated (without
fold-specification). B) Without guidance, designs typically target Site 1 (left bar, gray), with
contact defined as Cɑ-Cɑ distance between binder and hotspot reside < 10Å. Specifying Site 1
hotspot residues increases further the efficiency with which Site 1 is targeted (left bar, pink). In
contrast, specifying the Site 2 hotspot residues can completely redirect RFdiffusion, allowing it
to efficiently target this site (right bar, pink). C-D) As well as conditioning on hotspot residue
information, a fine-tuned RFdiffusion model can also condition on input fold information
(secondary structure and block-adjacency information - see methods). This effectively allows the
specification of a (for instance, particularly compatible) fold that the binder should adopt. C) Two
examples showing binders can be specified to adopt either a ferredoxin fold (left) or a particular
helical bundle fold (right). D) Quantification of the efficiency of fold-conditioning. Secondary
structure inputs was accurately respected (top, pink). Note that in this design target and target
site, RFdiffusion without fold-specification made generally helical designs (right, gray bar). Block
adjacency inputs were also respected for both input folds (bottom, pink). E) Reducing the noise



added at each step of inference improves the quality of binders designed with RFdiffusion, both
with and without fold-conditioning. As an example, the distribution of AF2 interaction pAEs
(known to indicate binding when pAE < 10) is shown for binders designed to PD-L1. In both
cases, the proportion of designs with interaction pAE < 10 is high (blue curve), and improved
when the noise is scaled by a factor 0.5 (pink curve) or 0 (yellow curve).



Name,
Reference

Description Input Total Length Sequence to be redesigned*

1PRW1 Double EF-hand motif 5-20,A16-35,10-25,A52-71,5-20 60-105 A16-19,A21,A23,A25,A27-30,A32-35,A52-55,A57,
A59,A61,A63-66,A68-71

1BCF1 Di-iron binding motif 8-15,A92-99,16-30,A123-130,1
6-30,A47-54,16-30,A18-25,8-15

96-152 A19-25,A47-50,A52-53,A92-93,A95-99,A123-126,
A128-129

5TPN1 RSV F-protein Site V 10-40,A163-181,10-40 50-75 A163-168,A170-171,A179,A189

5IUS1 PD-L1 binding
interface on PD-1

0-30,A119-140,15-40,A63-82,
0-30

57-142 A63,A65,A67,A69,A71,A72,A76,A79,A80,A82,A11
9,A120,A121,A122,A123,A125,A127,A129,A130,A
131,A133,A135,A137,A138,A140

3IXT31 RSV F-protein Site II 10-40,P254-277,10-40 50-75 P255,P258-259,P262-263,P268,P271-272,P275-2
76

5YUI1 Carbonic anhydrase
active site

5-30,A93-97,5-20,A118-120,10-
35,A198-200,10-30

50-100 A93,A95,A97,A118,A120

1QJG1 Delta5-3-ketosteroid
isomerase active site

10-20,A38,15-30,A14,15-30,A9
9,10-20

53-103 n/a

1YCR1 P53 helix that binds to
Mdm2

10-40,B19-27,10-40 40-100 B17-18,B20-22,B24-25

2KL81,20 De novo designed
protein

A1-7,20,A28-79 79 n/a

7MRX_6020

Barnase ribonuclease
inhibitor

0-38,B25-46,0-38 60 n/a

7MRX_8520 0-63,B25-46,0-63 85 n/a

7MRX_12820 0-122,B25-46,0-122 128 n/a

4JHW30 RSV F-protein
Site 0

10-25,F196-212,15-30,F63-69,1
0-25

60-90 F196,F198,F203,F211-212,F63,F69

4ZYP30 RSV F-protein
Site 4

10-40,A422-436,10-40 30-50 A422-427,A430-431,A433-436

5WN931 RSV G-protein
2D10 site

10-40,A170-189,10-40 35-50 A170-175,A188-189

6VW11,32 ACE2 interface
binding SARS-CoV-2

E400-510/20-30,A24-42,4-10,
A64-82,0-5†

62-83 A25-26,A29-30,A32-34,A36-42,A64-82

5TRV_short2

De novo designed
protein

0-35,A45-65,0-35 56 n/a

5TRV_med2 0-65,A45-65,0-65 86 n/a

5TRV_long2 0-95,A45-65,0-95 116 n/a

6E6R_short2

Ferridoxin Protein

0-35,A23-35,0-35 48 n/a

6E6R_med2 0-65,A23-35,0-65 78 n/a

6E6R_long2 0-95,A23-35,0-95 108 n/a

6EXZ_short2

RNA export factor

0-35,A28-42,0-35 50 n/a

6EXZ_med2 0-65,A28-42,0-65 80 n/a

6EXZ_long2 0-95,A28-42,0-95 110 n/a
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Table 1: A benchmarking set of recently published functional-site scaffolding problems.
To benchmark RFdiffusion at functional-site scaffolding, against existing methods, we generated
a benchmark set encompassing problems described in six recent publications1,2,20,30–32, which
utilize a range of design methodologies to address these problems. For each problem, named
by PDB accession (and, where applicable, the length of the designs to be generated, left
column), we recapitulated the inputs as closely as possible with respect to details available in
each publication. So that others can test methods on this benchmark, the exact input is
specified in the third column. In bold, prefixed by a letter, are the inputs (chain, residues) from
the PDB structure provided to the model (the “functional-site”). In non-bold text are the lengths
that the different methods randomly sampled to generate good designs. The final lengths of the
proteins were either specified by the input to the model, or were provided as constraints (for
example, for 6EXZ_Long, the model could sample any N- and C-terminal length between 0 and
95 residues, but the total length of the output had to equal 110 amino acids). For each design
challenge, 100 designs were generated, and, where ProteinMPNN was used, 8 sequences were
designed, with the best sequence chosen for each backbone. *Both the RFjoint and
RoseTTAFold constrained hallucination approaches can simultaneously redesign sequences
during generation, which can, in some cases, be helpful (if extracting the “functional-site”
exposes hydrophobic residues which may subsequently end up as surface residues in the
output designs, for example). Therefore, in this benchmark, these methods were allowed to
redesign non-functional residues, listed in the right-most column. † This example is multi-chain
generation (scaffolding a functional-site in the presence of a second chain). All methods
benchmarked here can represent chain breaks (with large residue index jumps).

https://www.zotero.org/google-docs/?G1gtwi


Materials & Methods

M. RF-diffusion as an SE(3) invariant generative model of protein structure:
In this section we describe in greater detail how we have repurposed RoseTTAFold (RF) as a
generative model of protein structure.

Machine learning models for protein structure design must confront two major challenges to
representing protein structures: (1) protein structure is most naturally represented by
coordinates in a semantically arbitrary 3D coordinate system, yet (2) each amino acid which
lives in this subspace has (effectively) two degrees of freedom (the 𝝓 and 𝝍 backbone torsions)
as opposed to the canonical six for a free rigid body. To navigate these challenges, most
previous works on generative models of protein structure24,43 have represented proteins as
“maps” of pairwise distances between amino acids, followed by realizing chemically plausible
3D structures from these maps. However, given the remarkable representative power and
accuracy of networks like AlphaFold2 (AF2) and RF which manipulate a “gas” of rigid bodies in
3D space in an SE(3) equivariant manner to produce a final 3D protein structure, we chose to
formulate the protein generation task in a way that was compatible with this representation
strategy. Moreover, design methods that directly parameterize structures in 3D are appealing for
design because they allow specification of both rigid structural constraints such as the presence
of functional motifs or existence of a desired symmetry by direct manipulations of structure2,5.

We next give a brief overview of our diffusion modeling framework and how we have adapted it
to protein structures in 3D. We then detail how we have applied it to the different components of
our representation of structure. Lastly, we describe how we train conditional variants of the
diffusion model for motif-scaffolding and generation with secondary structure constraints.

M1 Diffusion probabilistic modeling of protein structure

Our approach builds on denoising diffusion probabilistic models (DDPMs)7,8. We follow & adapt
the conventions and notation set by [7], which we review here. DDPMs are a class of generative
models based on a reversible, discrete-time diffusion process. The forward process starts with a
sample from an unknown data distribution . Noise is added at each step, to obtain a𝑥
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trained such that approximates . One then draws from by first𝑝
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| 𝑥

𝑡
) 𝑞(𝑥
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) 𝑝

θ
(𝑥

0
)

sampling from the reference distribution and then for each iteratively𝑥
𝑇
~ 𝑝

θ 
(𝑥

𝑇
) ≈ 𝑞(𝑥

𝑇
), 𝑡 < 𝑇

denoising by sampling until is obtained.𝑥
𝑡−1

~𝑝
θ
(𝑥

𝑡−1
|𝑥

𝑡
) 𝑥

0
∼ 𝑝

θ
(𝑥

0
)
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In our case, we consider to be a distribution over the structures of backbones of native𝑞(𝑥
0
)

proteins. We adopt the “residue-gas” representation of backbones used by both RF44. This
representation consists of the 3D coordinates ( ) of the central carbon (C ) and 3x3 rotation𝑧 α
matrices (r) representing the rigid-body orientation of each residue in a global reference frame,
thereby additionally defining the coordinates of the N and C backbone atoms. . We𝑥 = [𝑧,  𝑟]
defined a forward process that applies noise independently both across residues and across
these two components of residue geometry. We similarly model the reverse process transitions
as independent across these components:

.𝑝
θ
(𝑥

𝑡−1
|𝑥

𝑡
) =  𝑝

θ
(𝑧

𝑡−1
|𝑥

𝑡
)𝑝

θ
(𝑟

𝑡−1
|𝑥

𝑡
)

While can in general be correlated across these different components of structure,𝑞(𝑥
𝑡−1

| 𝑥
𝑡
)

standard practice has found it beneficial to ignore the correlation across dimensions in the
reverse diffusion process7. Indeed, in the limiting regime where the number of steps in the
forward process tends to infinity, and the forward process is viewed as a discretization of a
continuous time diffusion process, one can see that the correlation between different
dimensions is absent in the reverse process as well45.

To address the challenge of the arbitrary reference frames we build on previous work2, and seek
to learn a distribution over protein structure that is invariant to global rotation; that is, we require
that any protein structure is modeled as equally likely upon a rigid body rotation. More formally,
this means that for any structure and rotation we desire to have that ,𝑥

0
𝑅 𝑝

θ
(𝑥

0
) = 𝑝

θ
(𝑅 * 𝑥

0
)

where represents the structure obtained by rotating about the origin, by (for𝑅 * 𝑥
0
 𝑥

0
[0, 0, 0] 𝑅

each residue ).𝑅 * 𝑥 = [𝑅𝑧,  𝑅𝑟]

Following others2,46, we incorporate this invariance by (1) using a rotation invariant reference
distribution ( = ) and (2) constraining the reverse diffusion model to be𝑝

θ
(𝑥

𝑇
) 𝑝

θ
(𝑅 * 𝑥

𝑇
)

equivariant to rigid body rotations ( = ). To this end, we leverage𝑝
θ
(𝑥

𝑡
|𝑥

𝑡+1
) 𝑝

θ
(𝑅 * 𝑥

𝑡
|𝑅 * 𝑥

𝑡+1
)

the geometric equivariance and invariance properties inherent to RoseTTAFold. In particular RF
uses the SE(3)-transformer architecture47 to provide equivariant updates to intermediate
predictions of structure across recycling steps; we use these same input channels to obtain
equivariant updates of Cɑ coordinates (M2) and rotations for each residue (M3).

M2 Training RosettaFold to denoise protein structures

Our approach to learning the reverse process transition is to train RoseTTAFold to denoise
noisy protein structures. For each step of training, we first choose an example protein structure

and a time step uniformly at random between 1 and T, and then simulate the forward𝑥
0

𝑡

process to obtain . We next apply RoseTTAFold to obtain a prediction of the𝑥
𝑡
~𝑞(𝑥

𝑡
|𝑥

0
)

denoised structure, which we denote by . We then compute a loss on this𝑥
^

θ
(𝑥

𝑡
) = (𝑧

^

0
,  𝑟

^

0
)

https://www.zotero.org/google-docs/?qW6uPR
https://www.zotero.org/google-docs/?jVDCUr
https://www.zotero.org/google-docs/?jGddKJ
https://www.zotero.org/google-docs/?dU8aOt
https://www.zotero.org/google-docs/?t7CKob
https://www.zotero.org/google-docs/?FsxHBh


output consisting of the squared Euclidean distance on the Cɑ coordinates and the square of a
metric on the space of rotation matrices48. Algorithm 1 summarizes this procedure.

The approach above takes inspiration from Ho et al7. In particular, Ho et al7 (section 3.2)
comments that when the forward process consists of adding Gaussian noise, the training
objective of minimizing the KL divergence of to can be rewritten as a𝑞(𝑥

𝑡
|𝑥

𝑡−1
) 𝑝

θ
(𝑥

𝑡−1
|𝑥

𝑡
)

rescaling of the expected squared error of a prediction of from noisy observations :𝑥
0

𝑥
𝑡

, (1)𝐸
𝑥

0
,𝑥

𝑡
~𝑞

[𝐾𝐿(𝑞(𝑥
𝑡
|𝑥

𝑡−1
)||𝑝

θ
(𝑥

𝑡−1
|𝑥

𝑡
))] ∝ 𝐸

𝑥
0
,𝑥

𝑡
~𝑞

[ || 𝑥
0
 −  𝑥

θ

^
(𝑥

𝑡
)||2] +  𝑐 

where is a constant that does not depend on . Consequently when one minimizes the𝑐 θ
right-hand-side of equation (1), they maximize a weighted variational lower bound on the
likelihood of the data7 that is globally minimized only when each matches ,𝑝

θ
(𝑥

𝑡−1
|𝑥

𝑡
) 𝑞(𝑥

𝑡−1
|𝑥

𝑡
)

and therefore matches the data-distribution. Although ref [7] found better performance in𝑝
θ
(𝑥

0
)

generative modeling of images when predicting the noise added in the forward process (rather
than ), we reasoned that by predicting we could better leverage the inductive biases of𝑥

0
𝑥

0

RoseTTAFold pre-trained for structure prediction to produce realistic structures as in [1].
Additionally, although the Gaussian distribution and Euclidean distance are not well defined on
the space of rotation matrices we reasoned that our approach was reasonable because noising
process and metric on rotations we use are approximately Gaussian and Euclidean,
respectively, and closely agrees at time steps t near zero [M4 for details]

In the following sections we show how to relate to approximations of𝑥
^

θ
(𝑥

𝑡
) 𝑝

θ
(𝑥

𝑡−1
|𝑥

𝑡
) 𝑞(𝑥

𝑡−1
|𝑥

𝑡
)

.
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M3 Details of forward and reverse diffusion of backbone residue translations:

In this subsection we describe our forward diffusion over backbone coordinates ( ), and how we𝑧

relate predictions of to our approximation of . Our development𝑥
^

θ
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𝑡
) 𝑥

0
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θ
(𝑧

𝑡−1
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𝑡
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𝑡
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)

and notation follows ref [7]. We let be scalars between 0 and 1 that define aβ
1
,  β

2
,  ···,  β

𝑇

variance schedule such that for each the transition density of the forward𝑡 = 1,  2,  ···,  𝑇

process is . Define and . To sample𝑞(𝑧
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𝑡

𝑧
𝑠
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directly from its marginal distribution,
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|𝑧
𝑡
, 𝑧

0
) =  𝑁(𝑧
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; µ
~
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for and , we choose to parameterize theµ
~
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𝑡
, 𝑧

0
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reverse transitions by
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where are the predicted Cɑ coordinates obtained from . We choose according to𝑧
^

θ
(𝑥

𝑡
) 𝑥

^

θ
(𝑥

𝑡
) β

𝑡

a linear variance schedule as in24,49 with parameters and . We chose theseβ
0

= 0. 01 β
𝑇

= 0. 07

parameters such that signal remaining in (as quantified by ) decayed slowly toward zero as𝑥
0

𝑎‾
𝑡

t approaches T=200 (Fig. M1).

Figure M1: Noising schedules for translations and rotations associated with each residue.
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M.4 Details of forward and reverse diffusion on backbone residue rotations

We model the remaining two backbone atoms (N and C) with a diffusion process on rigid body
rotations that map an axis-aligned residue with idealized internal geometry (i.e. bond lengths
and angle) to the positions of these atoms relative to central Cɑ. Specifically, for any backbone
atom coordinates , and for any residue we may apply a Gram-Schmidt process to𝑧

𝑐
𝑧

𝑐α
𝑧

𝑁

compute a 3x3 rotation matrix with rows𝑟
,𝑟[1] =  (𝑧

𝑐
− 𝑧

𝑐α
) / ||𝑧

𝑐
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𝑐α
||

, and𝑟[2] =  ((𝑧
𝑁
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𝑐α

) −  (𝑧
𝑁

− 𝑧
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) · 𝑟[1])/||(𝑧
𝑁

− 𝑧
𝑐α

) −  (𝑧
𝑁

− 𝑧
𝑐α

) · 𝑟[1]||

.𝑟[3] =  𝑟[1] ×  𝑟[2]
where and are the dot and cross-products, respectively. 3D backbone coordinates can then· ×

be reconstructed by multiplication of idealized coordinates (with at the origin,𝑧*
𝑐α

 𝑧*
𝑐
 − 𝑧*

𝑐α

along the -axis, and in the -plane) by :𝑥 𝑧*
𝑁

− 𝑧*
𝑐α

𝑥𝑦 𝑅

,[𝑧
𝑐
,  𝑧

𝑁
,  𝑧

𝑐α
] =  𝑅 [𝑧*

𝑐
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𝑁
,  𝑧*

𝑐α
] + 𝑧

𝑐α
1
→

3

where .1
→

3
 =  [1,  1,  1]

So we can see that modeling the locations of backbone atoms is equivalent to modeling
associated rotation matrices.

However, modeling rotation matrices introduces challenges not addressed by ref [7]; the space
of 3x3 rotation matrices (known as the special orthogonal group of dimension 3, or SO(3)) is a
compact Riemmanian manifold on which the typical Gaussian distribution is not well-defined
and the so the associated techniques of [7] do not apply. To this end we adapt the approach of
[14], who extend diffusion generative modeling to Riemannian manifolds. In brief, they build on
the continuous-time diffusion framework45 and define their forward diffusion as the Brownian
motion on the manifold of interest. In the case of SO(3), this Brownian motion is described by
the IGSO3 distribution.15 In brief, the density of the IGSO3 distribution with respect to the
uniform distribution on SO(3) is given by

, (3)𝐼𝐺𝑆𝑂3(𝑟
 
; µ ,  ϵ2) = 𝑓(ω(𝑟µ⊤)),  𝑓𝑜𝑟 𝑓(ω) =  

𝑙=0

∞

∑ (2𝑙 +  1)𝑒−𝑙(𝑙+1)ϵ2 sin((𝑙+ 1
2 )ω)

sin(ω/2)  

where is 3x3 mean rotation matrix and denotes the angle of rotation in radiansµ ω(𝑟)
associated with a rotation (i.e. if were written in the axis-angle parameterization). Notably, if a𝑟 𝑟
rotation matrix evolves according to Brownian motion from initialization , then𝑟

𝑡
𝑑𝑟

𝑡
= 𝑑𝐵

𝑡
𝑟

0
= µ

.𝑟
𝑡 

∼ 𝐼𝐺𝑆𝑂3(𝑟
𝑡 
; µ ,  2𝑡)

Accordingly, these dynamics motivate the following discrete forward noising process:
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and marginally𝑞(𝑟
𝑡 
| 𝑟

𝑡−1
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where is a variance schedule for rotations [Figure M1]. In contrast to , the forward process σ
𝑡 

2 𝑧
𝑡

for converges to the uniform distribution on .𝑟
𝑡

𝑆𝑂(3)

De Bortoli et al14 (Theorem 1) prove that (up to error from discretization of the continuous time
process) the reverse process transitions have the form,

for ),  (4)𝑟
𝑡−1

|𝑥
𝑡
 ∼  exp{∆𝑟

𝑡
} 𝑟

𝑡 
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where denotes the “Stein score”, that is the gradient with respect to of the log∇
𝑟

𝑡 

log 𝑞(𝑥
𝑡
) 𝑟

𝑡

density of the noised structure according to the forward process at time , and denotes𝑥
𝑡

𝑡 exp{·}

the exponential map to SO(3) from the Lie algebra of SO(3) (the space in which the score is
defined).

Equation 4 describes how one could sample from the reverse process using the IGSO(3)
distribution based on the score of the forward process. One could in principle learn this score
function directly by score matching training as described previously14. However, we instead rely
on an approximation that directly leverages RoseTTAFold’s ability to produce denoised
structures when trained according to Algorithm 1. For a given and we note that we may write𝑡 𝑟

𝑡

(5)
where the first line is known as the denoising score matching identity14,50, the second line
obtains from the conditional independence structure of the forward process, the third line is an
approximation that can be thought of as replacing with a point mass on the noiseless𝑞(𝑟

0
|𝑟

𝑡
)

rotation predicted by RoseTTAFold, and the final line recognizes the approximation as the𝑟
0

^

tractable IGSO3 density. In particular,
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Where log is the logarithmic map from SO(3) to the Lie algebra of SO(3) [51], is the angleω(𝑟𝑟
^
 𝑇)

of rotation associated with ,𝑟𝑟
^
 𝑇

and is the IGSO3 density factor in equation (3). Notably, represents a𝑓 𝑟 log(𝑟𝑟
^
 𝑇) /ω(𝑟𝑟
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 𝑇)

rotation of unit length on the tangent space of SO(3) at , and is a𝑟 𝑑
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^
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scaling of this direction.
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We reasoned that approximation in equation (5) may be reasonably accurate for two reasons.
First, in the case of Gaussian DDPMs where optimizing to convergence would provide

, this approximation holds exactly in the sense that𝑧
^
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IGSO(3), because SO(3) is a Riemannian manifold and is therefore locally Euclidean the
IGSO(3) closely resembles a Gaussian for small t. Second, again when t is near to zero, will𝑥

𝑡

be close to an un-noised structure and, if the model is trained well, will be concentrated𝑞(𝑟
0
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)

around . Finally, we note that this rule has beneficial qualitative behavior -- as with the𝑟
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distance between and (in terms of the geodesic distance on SO(3)). Consequently, this𝑟
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leads to larger steps when is farther from .𝑟
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In summary we approximate reverse transitions by ,𝑝
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computed as in Equation (6).

M.5 Self-Conditioning

Self-conditioning was introduced previously19 where it was shown to dramatically improve text
diffusion. Self-conditioning is closely related to Step Unrolled Denoising Autoencoders52; both
methods perform a step of inference at training time to train the model to expect inputs of the
same distribution that will be generated at inference time. We implement self-conditioning in the
manner described in Chen et al19, which we review here.

We wish to train a denoising function . During training 50% of the time we train the𝑓(𝑥
𝑡
,  𝑥

0
,  𝑡)

model with . The other 50% of the time, the model first performs one step of inference to𝑥
0

= 0

generate = , gradients are then turned on and the model is trained to estimate𝑥
0

𝑓(𝑥
𝑡
,  0,  𝑡)

. The training step with is required during training so that the model can make𝑓(𝑥
𝑡
,  𝑥

0
,  𝑡) 𝑥

0
= 0

accurate estimates of = and provide valid inputs to the Self-Conditioning training𝑥
0

𝑓(𝑥
𝑡
,  0,  𝑡)

step.
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In RFdiffusion, we input through the template structure feature and we input as input𝑥
0

𝑥
𝑡

coordinates to the 3D track of RF. Inputting as coordinates, as opposed to the distogram and𝑥
𝑡

anglegram used in the template structure feature, allows the network to keep the motif fixed in
coordinate space.

M.6 Symmetric diffusion

As discussed in the main text, generating oligomeric assemblies obeying desired point-group
symmetry constraints is a design goal. In what follows we describe how we have leveraged
RFdiffusion to design symmetric oligomers.

Point group symmetries may be represented by a finite collection of rotation matrices that form a
mathematical group with respect to matrix multiplication as the group operation29. For example,
we may represent the cyclic symmetry group of order K by the set of rotation matrices that

rotate increments of (360/K)° about the z-axis, . Analogous𝐶
𝐾

= {𝑅
𝑧

(𝑘/𝐾)360°}
𝑘=0

𝐾−1

representations exist for all other point groups (including dihedral, tetrahedral, octahedral, and
icosahedral). Without loss of generality, we set the first rotation to be the identity . We𝑅

1
= 𝐼

3

represent an oligomer with K monomer subunits each with M residues by 𝑋 =  [𝑥1 , ···,  𝑥𝐾]

where each subunit consists of the translations and rotations .𝑘 𝑥𝑘 = ([𝑧𝑘
1
,..., 𝑧𝑘

𝑀
],  [𝑟𝑘

1
,...  𝑟𝑘

𝑀
]) 

Then, we say an oligomer obeys a point group symmetry if𝔑 = {𝑅
1
,...,  𝑅

𝐾
} ,  

where denotes the rotation𝑋 = [𝑅
1

* 𝑥1, ···,  𝑅
𝐾

* 𝑥1] 𝑅 * 𝑥1 = ([𝑅𝑥1
1
,  ...,  𝑅𝑥1

𝑀
],  [𝑅𝑟1

1
,...,  𝑅𝑟1

𝑀
]) 

of the monomer backbone structure by .𝑅

Previous work has demonstrated some success generating designs with symmetry through
hallucination with the inclusion of penalty terms on the deviation of predicted structures from the
desired symmetry, but this work suffered from large computational cost (on the order of 1 GPU
day per design) and low success rates, presumably due to the inability to precisely control the
desired symmetry. We hypothesized that RFdiffusion by contrast could provide improved control
over symmetries in design by enforcing hard constraints during the reverse process.

In contrast to the hallucination approach, the desired symmetry is enforced from the beginning
of the design trajectory and preserved throughout (Algorithm 2). Although exact symmetry is
enforced through explicit symmetrization at each denoising step, we observe that RFdiffusion
provides predictions of the denoised oligomer structures that preserve the desired symmetry
nearly exactly, even in the first denoising steps. This property of denoised predictions owes to
the exact equivariance of RoseTTAFold with respect to global rotations and the approximate
equivariance with respect to permutation (i.e. relabeling) of chains. In particular, in Section M.6II
we provide a proposition that guarantees that rotation and permutation equivariance of a neural
network are sufficient conditions for maintenance of point group symmetries of the neural
network’s output. In RoseTTAFold diffusion, exact rotation equivariance is inherited from the
SE(3)-transformer architecture used in the structure module of RoseTTAFold44. Permutation

https://www.zotero.org/google-docs/?pkDRh4
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equivariance by contrast arises if the intermediate representations and outputs for each residue
are unaffected by the ordering of chains. This is nearly the case with RF diffusion, with the
exception that the RoseTTAFold pair representation contains directional sequence distance
feature inputs for each pair of residues, clipped between -32 and 32 residues away; since
oligomers are presented to RosettaFold by incrementing the sequence position index at the
start of each chain44, the sign of these features breaks exact permutation symmetry. However,
we find empirically that deviation from exact symmetry in RFdiffusion predictions is minimal
even at the early steps.

M.6.II Proposition on rotation symmetry

We here provide a proposition that provides a mechanism by which predictions of denoised
structures maintain the desired symmetry at each step. Here, we consider functions

that transform rigid objects.𝐹:  [𝑥
1
,  ...,  𝑥

𝐾
] → [𝑥

^

1
,  ...,  𝑥

^

𝐾
] 𝐾

We first formally define rotation and permutation equivariance before stating the proposition.

Definition 1: is rotation equivariant if for every and every rotation matrix , if𝐹 [𝑥
1
,  ...,  𝑥

𝐾
] 𝑅

then .𝐹([𝑥
1
,  ...,  𝑥

𝐾
]) = [𝑥

^

1
,  ...,  𝑥

^

𝐾
] 𝐹([𝑅𝑥

1
,  ...,  𝑅𝑥

𝐾
]) = [𝑅𝑥

^

1
,  ...,  𝑅𝑥

^

𝐾
]

Definition 2: is permutation equivariant if for every and every permutation𝐹 [𝑥
1
,  ...,  𝑥

𝐾
]

, if then .σ = [σ
1
,...,  σ

𝐾
] 𝐹([𝑥

1
,  ...,  𝑥

𝐾
]) = [𝑥

^

1
,  ...,  𝑥

^

𝐾
] 𝐹([𝑥

σ
1

,  ..., 𝑥
σ

𝐾

]) = [𝑥
^

σ
1

,  ..., 𝑥
^

σ
𝐾

]

We now state the proposition.

Proposition 1: Consider any function and point group symmetry𝐹:  [𝑥
1
,  ...,  𝑥

𝐾
] → [𝑥

^

1
,  ...,  𝑥

^

𝐾
]

If is both (1) rotation equivariant and (2) permutation equivariant, then𝔑 = {𝑅
1
,...,  𝑅

𝐾
}. 𝐹 𝐹

preserves symmetry; that is for any , for some .𝑥 𝐹([𝑅
1
𝑥,  ...,  𝑅

𝐾
𝑥]) = [𝑅

1
𝑥
^
 ,..., 𝑅

𝐾
𝑥
^
] 𝑥

^

Notably, Proposition 1 holds for any neural network satisfying the assumption on above.𝐹
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Supplementary section N:

Supplementary section M described the construction and RF-diffusion for unconditional
generation of protein backbones. In this section we describe how we have leveraged
RF-diffusion for generation subject to specific design criteria.

N1 Training RFdiffusion

a) RoseTTAFold2 Architecture
RoseTTAFold2 (RF2) is an updated version of RoseTTAFold44 with multiple architectural
improvements: 1) use of a three-track architecture with initial coordinates from a template
structure, 2) use of biased axial attention to update 2D pair features by considering geometric
constraints between residues inferred from the current 3D structure, 3) communication between
1D, 2D, and 3D tracks through attention biasing, and 4) use of recycling that executes the
network multiple times with the updated input embeddings based on outputs from the previous
cycle. RF2 contains two major types of architecture blocks: main three-track blocks and the final
structure refinement blocks. The 3-track blocks consist of layers of biased row and column
attention over the 1D and 2D features , SE(3)-equivariant layers47 to update 3D coordinates,
and layers to communicate between 1D, 2D, and 3D features. The structure refinement blocks
is based on SE(3)-equivariant network which gives refined 3D coordinates based on given 1D
and 2D features.

b) RoseTTAFold2 Training

RF2 was trained based on mixture of dataset including 1) monomer/homo-oligomer structures in
PDB, 2) hetero-oligomer structures in PDB, 3) AlphaFold2 structural models having pLDDT >
0.7, and 4) negative protein-protein interaction examples generated by random pairing. The
training examples were sampled from each database with ratio of 2:1:4:1. The model was
trained using the masked language model loss, distogram prediction loss, FAPE loss, accuracy
estimation loss, and bond geometry loss, van der Waals energy loss. For the initial round of
training, only the first four loss terms were used with crop size 256. After 200 epochs of initial
round training, we performed fine-tuning with all the loss terms with crop size 384 for 100
epochs. The entire training took ~4 weeks of training using 64 V100 GPUs on Microsoft Azure.
The training details are summarized in Table 2.

https://www.zotero.org/google-docs/?TxhRpy
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Table 2. Details for RoseTTAFold2 training

Initial training Fine-tuning

Crop size 256 384

Batch size 64 64

Loss function 3.0*LossMLM + 1.0*Lossdist +
10.0*LossFAPE + 0.1*Lossaccuracy

3.0*LossMLM + 1.0*Lossdist +
10.0*LossFAPE + 0.1*Lossaccuracy +
0.1*Lossbond + 0.1*LossvdW

Learning rate &
scheduling

0.001
Linear warm-up for first 1000
optimization steps, then decay
learning rate by 0.95 after every
15000 optimization steps

0.0005
No warm-up. Decay learning rate by
0.95 after every 15000 optimization
steps

Number of
epochs

200 100

c) RFdiffusion Training

RFdiffusion is trained starting from the final RF2 weights. We do not implement loss ramping
when training RFdiffusion. We train RFdiffusion with the following weights on each loss:

L2 Cɑ Displacement: 0.5
L2 Frame Displacement: 1
Distogram CCE: 1

RFdiffusion trains to convergence when started from RF2 weights in ~5 epochs. Training takes
~3 days on 8 NVIDIA A100 GPUs.

N2: Conditional training for motif scaffolding

Our approach to scaffolding functional motifs with RF-Diffusion follows [2] and treats motif
scaffolding as a conditional sampling problem. Notably, we consider partitioning the residues of
a structure into the motif, and consider the remainder of the backbone as the scaffold that
supports it. For a structure with L residues, we let denote the set of indices corresponding to𝑀

the motif and be the remaining indices, such that the union of and is the set of indices up𝑀‾ 𝑀 𝑀‾

to L (i.e. ). We write to denote the structure of the motif residues and𝑀 ∪ 𝑀‾  =  {1, ···,  𝐿} 𝑥𝑀 𝑥𝑀‾

to be the scaffold residues such that we may write the whole protein structure as .𝑥 = [𝑥𝑀,  𝑥𝑀‾
]

We build on previous work1 demonstrating that RoseTTAFold may be trained to respect motif
constraints provided as inputs through the template structure input features through retraining.
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In the context of RFdiffusion, inpainting training corresponds to learning the reverse process of
a conditional generation task53. In particular, at training we learn

.𝑝
θ
(𝑥

𝑡−1
𝑀‾

|𝑥
𝑡
𝑀‾

,  𝑥
0

𝑀)

To compute this we provide to RFdiffusion the structure at each step, and apply𝑥
𝑡

= [𝑥𝑀,  𝑥
𝑡
𝑀‾

]

the RFdiffusion denoising step only to the scaffold residues. For training and inference for motif
scaffolding, we also condition the associated amino acid sequence and side chain torsion
angles in addition to the backbone structure (provided through RoseTTAFold’s template feature
inputs). At training, losses are applied to both motif and scaffold residues to encourage
RFdiffusion to not move the motif.

N3: Fine-tuning RFdiffusion on Protein Complexes and with fold information

The version of RFdiffusion fine-tuned on protein complexes, henceforth referred to as
RFdiffusion-PPI, is trained starting from the base version of RFdiffusion trained for 5 epochs.
The model is shown monomer examples 50% of the time and complex examples 50% of the
time. When the model is shown a complex example, only one side of the complex is noised, the
other side is kept fixed (this is in keeping with established PPI design methods21 where the
target protein is kept fixed). When the model is shown a complex example the model is provided
with the residue indices of 0-20% of the residues (“hotspot residues”) in the interface on the
fixed chain side (the interface is defined as all residues within 10Å Cβ-Cβ distance of another
chain), to permit targeting of the designed binder at inference time. During both complex and
monomer training the model is provided with secondary structure 50% of the time and
(independently) block adjacency information 50% of the time for the noised region. The
junctions between blocks of secondary structure and their corresponding entries in the block
adjacency matrix are masked during training, such that at inference time, one does not need to
specify exact, per residue secondary structure and block adjacency matrices. Specifically,
0-75% of secondary structure (and corresponding adjacency, when provided), is masked, with
this masking occurring over junctions in secondary structure (mask length 1-8 residues).

N4 Guiding RFdiffusion inference with external potentials

In addition to the network’s inbuilt ability to condition on structural motifs, the inference process
can be steered by external potential functions to generate proteins which possess arbitrary
desired properties, such as making contact with another protein chain or creating a desired
concavity. Previous work has demonstrated that diffusion models can made to sample
conditionally from without retraining if given a classifier able to operate on noisy𝑝

0
(𝑥

0
|𝑦)

samples, by moving in the direction of in the𝑝
0
(𝑦|𝑥

𝑡
)

reverse step8,45. Using domain knowledge, it is relatively simple to construct heuristic

approximations of for many protein conditional generation
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objectives. When designing symmetric oligomers, we employ an inter- and intra-chain contact
potential to promote the formation of contacts between subunits:

where the functional form of the attractive term is inspired by the differentiable coordination
counter used in molecular dynamics:

When designing enzymes, in addition to recapitulating the sidechain geometry of the active site,
a pocket must be formed which has shape complementarity to the substrate. This condition can
be captured effectively by a simple attractive-repulsive potential parameterized by the minimum
distance between enzyme alpha-carbons and the substrate:

where:

decays smoothly from slope -1 at r=0 to 0 at r= , penalizing clashes between the protein𝑟
0

backbone and the substrate. As the noise monotonically increases with t, at higher t theβ
𝑡

network is less sensitive to changes in induced by a potential, so we scale of the potential by𝑋
𝑡

a monotonically increasing guide-scale g(t), such that:

The following hyperparameters for the potentials were empirically selected:



N5: In silico experiments with RFdiffusion

Unconditional benchmarking
To test RFdiffusion on unconditional generation of monomers (Fig. 1C-F), we generated 100
designs for lengths 70, 100, 200, 300, 400, 600, 800 and 1000 amino acids. For each
backbone, we generated 8 sequences with ProteinMPNN and subsequently predicted their
structures with AF2 (or ESMFold - Fig. S1H). The best sequence (by alignment of the predicted
structure to the design model) was taken for each backbone. We benchmarked against the
recently-published RoseTTAFold Hallucination1. As some knowledge of how best to use
RoseTTAFold for Hallucination is required, these samples were generated by the respective
expert.

Conditional benchmarking
The full conditional benchmark is described in Table 1, and encompasses 25 design challenges
from six recent publications1,2,20,30–32. RFdiffusion was compared to RoseTTAFold Hallucination
and RFjoint Inpainting. While both Hallucination and Inpainting are able to generate sequences
directly, for the fairest comparison, we also redesigned the sequence with ProteinMPNN, and
took the best of 8 sequences per backbone. Both RFjoint Inpainting and RF Hallucination are
able to scaffold structure without sequence, so in cases where functional-site residues were not
required for function, these methods were permitted to redesign the sequence of the
non-functional residues, which is generally beneficial for design. Finally, as Hallucination
requires some expert knowledge and empirical hyperparameter tuning, some exploration of the
benchmark set was permitted, and these designs were generated by the respective expert.

Design of protein binders to rigid targets

To test the ability of RFdiffusion to design de novo binders to rigid targets, we designed binders
to five targets: PD-L1 (PDB: 5O45), IL7 Receptor ɑ (PDB: 3DI3), Insulin Receptor (PDB: 4ZXB),
TrkA Receptor (PDB: 1WW7) and Flu Hemagglutinin (PDB: 5VLI). We generated designs both
with and without fold conditioning, with the folds used derived from scaffold sets typically used
for Rosetta-based protein binder design. In all cases, we targeted binders, using input “hotspot”
residues, to a specific site on the target protein. In line with current best practice21, we tried
using Rosetta FastRelax42 before running a single ProteinMPNN, although we found that this
was not systematically helpful for design success rates. For the five design cases, we generated
several thousand designs. We classed a design as successful if it had AF2 pAE of interaction
between binder and target < 10 (this has been shown to be highly indicative of design success),
as well as RMSD between the designed binder and the AF2 prediction < 1Å, and AF2 pLDDT >
80. Success rates are reported in figure 4B, and were several orders of magnitude higher than
with traditional Rosetta binder design.
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