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Abstract

Deep learning methods for protein design have shown considerable promise for sequence
design'3, scaffolding functional sites*5, and building new monomers®, cyclic oligomers’, and
antibody loops®®. Despite this progress, a general framework for protein design that enables
solution of a wide range of design challenges, including de novo binder design and design of
higher order symmetric architectures, has yet to be described. Diffusion models'" have had
considerable success in image and language generative modeling, and have been applied to
the protein monomer generation problem, but with limited success, likely due to the complexity
of protein backbone geometry and sequence-structure relationships. Here we show that by
utilizing powerful structure prediction methods as diffusion denoising networks, we can leverage
the protein representations they have learned. We demonstrate state of the art performance on
unconditional and topology constrained protein monomer design, protein and peptide binder
design, symmetric oligomer design, enzyme active site scaffolding, and symmetric motif
scaffolding for therapeutic and metal-binding protein design. We demonstrate the power and
generality of the method, called RoseTTAFold Diffusion (RFdiffusion), by experimentally
characterizing hundreds of new designs. Highlights include a picomolar binder to parathyroid


https://www.zotero.org/google-docs/?etsnAy
https://www.zotero.org/google-docs/?zDo2vp
https://www.zotero.org/google-docs/?zkGif3
https://www.zotero.org/google-docs/?x4dakL
https://www.zotero.org/google-docs/?lkRY1P
https://www.zotero.org/google-docs/?wUJOj4

hormone, considerably higher affinity than any previous computational designed binder prior to
experimental optimization, and a series of not-previously-observed symmetric assemblies
experimentally confirmed by electron microscopy. In a manner somewhat reminiscent of
networks which produce images from user-specified inputs, RFdiffusion makes accessible the
design of diverse and complex protein architectures and functions from simple semantic
molecular specifications.

Main

Denoising diffusion probabilistic models (DDPMs) have emerged as a powerful class of
generative models to sample from complex data distributions'"". DDPMs are trained to
reconstruct data (for instance images or text) corrupted with varying amounts of added noise.
After this training, new samples are generated by feeding the model random noise and then
refining it by iterative application of the trained denoising network'"'. The power of DDPMs is
illustrated in the context of computer graphics by the generation of novel, photorealistic images
in response to text prompts'>'*. DDPMs have a number of qualities that naturally lends them to
protein design: they (1) generate highly diverse outputs, due to the stochasticity of the inputs
and subsequent denoising trajectory (2) can be guided at each step of the iterative data
generation process towards specific design objectives, either through provision of conditioning
information or through external guide potentials, and (3) unlike methods that design proteins
through generation or optimization of protein sequences alone?*%’* DDPMs can be formulated
to generate protein structures directly, enabling more direct control over structural properties.
Recent work has sought to adapt DDPMs for protein monomer design by conditioning on small
protein “motifs”>° or on secondary structure and adjacency (“fold”) information®. While showing
promise, these attempts have thus far had limited success in generating sequences that are
predicted to fold to the intended structures in silico®'®, and have not been tested experimentally.

We reasoned that improved diffusion models for protein design could be developed by taking
advantage of the deep understanding of protein structure implicit in powerful structure prediction
methods like AlphaFold2 (AF2) and RoseTTAFold (RF). The power of fine-tuning pretrained
structure prediction networks for protein design was previously illustrated by a version of
RoseTTAFold (called RF,;, Inpainting *) that was trained to recover missing sequence and
structure information. Experimental characterization showed that the method can scaffold a wide
range of protein functional sites with atomic accuracy’®, but the approach fails on minimalist site
descriptions with insufficient topological information, and because it is deterministic, can
produce only a limited diversity of designs for a given problem. We reasoned that by instead
fine-tuning RoseTTAFold as the denoising network in a generative diffusion model, we could
overcome both problems: because the starting point is random noise, each denoising trajectory
yields a different solution, and because structure is built up progressively through many
denoising iterations, little to no starting information should be required.

We formulate the diffusion model in a manner well-suited to fine-tuning from pre-trained
RoseTTAFold (Fig 1A). As in ref [®], at each timestep we predict the final protein structure given
the current noised structure. We then generate the slightly denoised input to the next timestep
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via a noisy interpolation from the current (input) structure toward the predicted final structure.
The correspondence between RoseTTAFold structure prediction and a RFdiffusion denoising
step is highlighted in Fig. 1A: in both cases, input sequence and structure information is
transformed by the model into a prediction of the native protein structure. During classical
structure prediction with RoseTTAFold, structural inputs to the model come from homologous
template structures, each of which have associated per-residue “confidence” values'’. In
RFdiffusion, structural inputs are derived from the partially (de-)noised structure, and the
confidence feature is reparameterized to represent the current denoising timestep, on which the
model conditions its prediction (see Methods 2.3). To generate noised protein structures for
training or inference, we perform “forward” diffusion on all or some subset of the amino acid
residues in a protein over backbone N-C,-C frame translations and rotations. For translations,
we perturb the C, coordinates with 3D Gaussian noise. For rotations, we use Brownian motion
on the manifold of rotation matrices, SO(3) (building on refs ['®'°]). The noised structures are
input to the network via the structure (3D) track of RF. We trained RFdiffusion with losses similar
to those described in previous work for image generation (Fig. S1A, methods section 1.3).
While in this study we use RoseTTAFold as the basis for the denoising network architecture, our
approach is quite general, and it should be possible to substitute in other structure prediction
networks that manipulate 3D coordinates (AF2'?, Omegafold?!, ESMfold?, etc.).

We explored two different strategies for training RFdiffusion: 1) in a manner akin to “canonical’
diffusion models, with predictions at each timestep independent of predictions at previous
timesteps (as in previous work>2%1%) and 2) with self-conditioning®, where the model can
condition on previous predictions between timesteps (Fig. 1A bottom row). The latter strategy
was inspired by the success of “recycling” in both AF2 and RF,,; Inpainting. We found that
self-conditioning within RFdiffusion dramatically improved performance on in silico benchmarks
encompassing both conditional and unconditional protein design tasks (Fig. S1B, Methods 3.1,
3.2). Fine-tuning RFdiffusion from a pre-trained RF model was far more successful than training
from scratch (Fig. S1C). For all in silico benchmarks in this paper, we use the AF2 structure
prediction network? for validation and define in silico “success” as an RFdiffusion output for
which the AF2 structure predicted from a single sequence (1) has high confidence (mean
predicted aligned error, pAE, < 5), (2) is globally within 2A backbone-RMSD of the designed
structure, and (3) is within 1 A backbone-RMSD on the scaffolded functional-site. We choose
these metrics, which are more stringent than metrics described elsewhere®®'52* (e.g., TM score
between design and subsequent structure prediction > 0.5, see Fig. S2A-B), because they have
been demonstrated to be good predictors of experimental success*”%. Because RoseTTAFold
and AF2 are different networks, AF2 serves as a reasonably independent arbitrator of the
success of a design calculation. To design amino acid sequences that encoded the

RF diffusion-generated backbones, we chose to use the ProteinMPNN network’, which allows
the rapid and robust generation of many high-quality sequences for each backbone. We
generate 8 ProteinMPNN sequences per backbone, and select those predicted to fold to the
target structure most accurately by AF2 (in line with previous work®'?).
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Unconditional protein monomer generation

Unconstrained generation of diverse protein monomers is difficult to address with
physically-based protein design methods due to the magnitude of the conformational sampling
problem, and has been a primary test of deep learning based protein design
approaches®%8141526 Ag jllustrated in Fig. 1C-E, Fig. S3A, RFdiffusion can readily generate
complex protein structures with little overall structural similarity to any known protein structures,
indicating considerable generalization beyond the PDB training set. The designs span a wide
range of alpha-, beta- and mixed alpha-beta- topologies, with AF2 predictions very close to the
design structure models for de novo designs with as many as 600 residues (we found that
ESMFold?* often more closely recapitulated the design structures - Fig. S11, S2A, but given the
experimental success in using AF2 for design validation*”%5, we used AF2 as the primary in
silico validation for the design challenges described in this study). RFdiffusion generates
plausible structures for even very large proteins, but these are difficult to validate in silico as
they are likely beyond the single sequence prediction capabilities of AF2. The quality and
diversity of designs that are sampled is inherent to the model, and does not require any auxiliary
conditioning input (for example secondary structure information?®). RFdiffusion strongly
outperforms Hallucination (Fig. 1F), the only experimentally validated deep learning approach
for unconditional generation, with success rates for Hallucination deteriorating beyond 100
amino acids. RFdiffusion is also more compute efficient than unconstrained hallucination,
requiring ~2.5 minutes on an NVIDIA RTX A4000 GPU to generate a 100 residue structure
compared to ~8.5 minutes for Hallucination. Computational efficiency can be further improved
by taking larger steps at inference time, and by truncating trajectories early - an advantage of
predicting the final structure at each timestep (Fig. S2C-D). For design problems where a
particular fold or architecture is desired (such as TIM barrels or cavity-containing NTF2s for
small molecule binder and enzyme design?’-?), we further fine-tuned RFdiffusion to condition on
(partial) input secondary structure and/or fold information, enabling rapid and accurate
generation of diverse designs with the desired topologies or folds (Fig. S3B-D). /n silico success
rates were 42.5% and 54.1% for TIM barrels and NTF2 folds respectively (Fig. S3C).

Higher order oligomer design through denoising with explicit symmetrization

There is considerable interest in designing new higher order symmetric oligomers which can
serve as vaccine platforms?, delivery vehicles®, and catalysts®'. Cyclic oligomers have been
generated using structure prediction networks by starting from a random sequence and carrying
out a Monte Carlo search for sequences predicted to fold to the desired cyclic symmetry’. This
“hallucination” approach fails with higher order dihedral, tetrahedral, octahedral, and icosahedral
symmetries, likely because these architectures require multiple distinct sets of
monomer-monomer interactions. We reasoned that this limitation could be overcome by
leveraging two aspects of RFdiffusion; first, RFdiffusion acts directly on amino acid coordinates
(as opposed to input sequence tokens) and so allows explicit symmetrization throughout the
denoising process, and second the equivariance properties of the RosettaFold architecture with
respect to global rotation of coordinate inputs and chain annotations ensures that the targeted
symmetry is maintained in denoising predictions (see Methods 1.7). We experimented with
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arranging multiple copies of a starting random Gaussian monomer coordinate distribution with
the desired symmetry as the input, and explicitly symmetrizing the denoising updates at each
step (Fig. 1B, second row). For octahedral and icosahedral architectures, to reduce the
computational cost and memory footprint, we explicitly model only the smallest subset of
monomers required to generate the full assembly (in the icosahedral case, the subunits at the
five-fold, three-fold, and two-fold symmetry axes).

We found that despite not being trained on symmetric inputs, RFdiffusion was able to generate
higher order symmetric oligomers with high in silico success rates (Fig. S4B), particularly when
guided by an auxiliary inter- and intra-chain contact potential (Fig. S4C). As illustrated in Fig. 2
and Fig. S4D,E, RFdiffusion-generated cyclic (C3, C5, C6, C8, C10, C12), dihedral (D2, D3, D4,
D5), tetrahedral, octahedral and icosahedral designs are nearly indistinguishable from AF2
predictions of the structures adopted by the designed sequences (for the full assemblies for the
cyclic and dihedral designs, and trimeric substructures of the octahedral and icosahedral
designs). These include a number of topologies not seen in nature, including two-layer beta
strand barrels (Fig. 2A, bottom row) and complex mixed alpha/beta topologies (Fig. 2A). We
selected 376 designs for experimental characterization, and found using size exclusion
chromatography that at least 37 had oligomerization states closely consistent with the design
models (Fig. S8, S9). We collected negative stain electron microscopy (nsEM) data on six of the
37 designs with the highest total molecular weights (ranging from 70-110 kilodaltons), and for all
six, distinct particles were evident with shapes resembling the design models (Fig. 2C, and Fig
S4D).

The structures of these assemblies are, to our knowledge, unprecedented in nature. HE0626 is
a C6 hexameric ring composed of an inner ring of 18 strands and an outer ring of 18 helices.
The helices are packed in a flower-shaped arrangement, and nsEM micrographs, 2D class
averages, and 3D reconstruction are in agreement with the computational design model. The
inner beta ring and the outer helical ring can be distinguished in both the 2D averages and in
the 3D reconstruction. HE490 is a hexameric D3 ring composed of helical subunits and
resembles a trimeric ring of dimers. The original micrographs and the 2D class averages for
HE0490 have the overall triangular shape of this design, with the 3D reconstruction further
confirming the overall topology. The side-view of the reconstruction shows the two distinct
hemispheres represented by the dimeric substructures. HE0675 is a C8 octameric ring
composed of an inner ring of 16 strands and an outer ring of 16 helices. The helices —similar to
HEO0626—form a flower-like arrangement, with somewhat more distinguishable lobes. The
electron microscopy individual particle images, corresponding 2D class averages, and resulting
3D reconstruction are again closely consistent with the design model. HE0537 is a D4 octameric
dihedral assembly resembling a dimer of tetramers with an overall rectangular prism shape
(5x5x6 nanometers) formed by a largely alpha helical monomer. The electron microscopy
images clearly indicate the rectangular prism shape in both top down and side views. The 3D
reconstruction of HE0537 (Fig. 2C, bottom row) closely matches the design model,
recapitulating the approximate 45° offset between tetramic subunits. Taken together, these data
demonstrate the efficacy of RFdiffusion for the accurate design of symmetric homo-oligomers
across a wide range of symmetry groups and structural topologies.



Functional-site scaffolding with RFdiffusion

We next investigated the use of RFdiffusion for scaffolding protein structural motifs that carry out
binding and catalytic functions, where the role of the scaffold is to hold the site in precisely the
3D geometry needed for optimal function. A number of deep learning methods have been
recently developed to address this problem, including RF,, Inpainting®, constrained
hallucination®, and diffusion generative models®®?*. To rigorously evaluate the performance of
these methods in comparison to RFdiffusion across a representative set of design challenges,
we established an in silico benchmark test comprising all functional site scaffolding design
problems described in six recent publications**24*2-** encompassing both deep learning-based
and conventional design methodologies. There are 25 challenges in total, spanning a broad
range of functional sites, including simple “inpainting” problems, viral epitopes, receptor traps,
small molecule binding sites, binding interfaces and enzyme active sites. Full details of this
benchmark are described in Table 1. RFdiffusion, with no hyperparameter tuning or external
potentials, on the problem set, outperforms Hallucination (where some preliminary optimization
was used) and Inpainting in all but one design problem, and provides solutions to six problems
for which hallucination and inpainting, even with the aid of ProteinMPNN, fail to generate
successful designs under these conditions in silico (Fig. 3A-C). In 17/23 of the problems,
RFdiffusion generated successful solutions with higher success rates when noise was not
added during the reverse diffusion trajectories (see Fig S1E-F for further discussion of the effect
of noise on design quality).

Scaffolding enzyme active sites

A grand challenge in protein design is the ability to scaffold minimalist descriptions of enzyme
active sites (typically just a few single amino acids). While some in silico success has been
reported previously*, a general solution that can readily produce high-quality,
orthogonally-validated outputs is not currently available. Following fine tuning for 4 epochs on
training examples involving scaffolding of the relative orientations and geometries of 2-3
residues close in Euclidean space, but discontinuous in sequence space, RFdiffusion was able
to scaffold enzyme active sites comprised of multiple sidechain and backbone functional groups
with high accuracy and in silico success rates across a range of enzyme classes (Fig. 3D-F),
illustrating the ease with which RFdiffusion can be fine-tuned to solve problems beyond those in
the original training set. While RFdiffusion is currently unable to explicitly model bound small
molecules (see conclusion), the substrate can be implicitly modeled using an external potential
to guide the generation of “pockets” around the active site. As a demonstration we scaffold the
triadic active site of a retro-aldolase while implicitly modeling its substrate (Fig. S5).

Symmetric functional-site scaffolding for metal mediated assemblies and antiviral
therapeutics and vaccines

A number of important design challenges involve the scaffolding of multiple copies of a
functional motif in symmetric arrangements. For example, many viral glycoproteins are trimeric,
and symmetry matched arrangements of inhibitory domains can be extremely potent®-3,
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Conversely, symmetric presentation of viral epitopes in an arrangement that mimics the virus
could induce new classes of neutralizing antibodies***°. To explore this general direction, we
sought to design trimeric multivalent binders to the SARS-CoV-2 spike protein. In previous work,
flexible linkage of a design that binds to the ACE2 binding site on the receptor binding domain of
the spike to a trimerization domain yielded a high-affinity inhibitor that had potent and broadly
neutralizing antiviral activity in animal models®. Rigidly fusing or oligomerizing the binder could
in principle improve its affinity for the target by reducing the entropic cost of binding while
maintaining the avidity benefits from multivalency. We used RFdiffusion to design C3 symmetric
trimers which rigidly hold three binding domains (the “functional-site” in this case) so they
exactly match the ACE2 binding sites on the SARS-CoV-2 spike protein trimer. Design models
were confidently recapitulated by AF2 to both assemble as C3-symmetric oligomers, and to
scaffold the AHB2 SARS-CoV-2 binder interface with sub-angstrom accuracy (Fig. 3G).

The ability to scaffold functional sites with any desired symmetry opens up new approaches to
designing metal coordinating protein assemblies. Divalent metal ions exhibit distinct preferences
for specific coordination geometries - square planar (C4), tetrahedral, and octahedral - with
ion-specific optimal sidechain-metal bond lengths. RFdiffusion provides a general route to
building up symmetric protein assemblies around such sites. As a first test of this, we sought to
design square planar nickel binding sites. We designed C4 protein assemblies with four central
histidine imidazoles arranged in ideal nickel binding geometry. Designs starting from six different
C4-symmetric histidine functional (Fig. 3H, Fig. S6A) sites showed high in silico design success
rates (Fig. S6C), with the histidine residues in near ideal geometries for coordinating metal in
the AF2 predicted structures (Fig. 3H rightmost panel, Fig S6B,D)

De novo protein and peptide binder design

The design of high-affinity binders to target proteins is a grand challenge in protein design, with
numerous therapeutic applications*'. The ability to design de novo binders using the physically
based Rosetta method was recently described*?, and subsequently, the utility of ProteinMPNN
and AF2 for sequence design and design filtering respectively has improved design success
rates®®. However, experimental success rates are typically low, requiring many thousands of
designs to be screened for each design campaign*?. Further, this work relied on pre-specifying a
particular set of protein scaffolds as the basis for the designs, inherently limiting the diversity
and shape complementarity of possible solutions*?. We reasoned that RF diffusion might be able
to address this challenge by directly generating diverse and target-compatible protein binders.
To our knowledge, no deep-learning method has yet demonstrated general experimental
success in designing completely de novo binders.

For many therapeutic applications, for example blocking a protein-protein interaction, it is
desirable to bind to a particular site on a target protein. To enable this, we fine-tuned RFdiffusion
on protein complex structures, providing as input a subset of the residues on the target chain to
which the diffused chain binds (Fig. S7A, B, see Methods 2.5). With this fine-tuned model, we
were able to design putative binders confidently predicted by AF2 to bind their target®®. These
could be generated without any fold/topology information, with success rates several orders of
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magnitude higher than with our previous Rosetta-based approach (Fig. 4A-B). To enable control
over binder scaffold topology, we also fine-tuned a model to condition binder diffusion on
secondary structure adjacency information® (Fig. S7C, D), and in cases where compatible folds
for putative binders were known, this model typically further improved in silico success rates
(Fig. 4B, bottom row).

An outstanding challenge in protein design is the design of binders to flexible helical peptides,
which are challenging targets due to their general lack of structure in solution and therefore the
entropic cost of binding in a rigid conformation. For two such peptides, the apoptosis-related
peptide Bim and parathyroid hormone (PTH), we experimented with unconditional binder design
- providing RFdiffusion only with the sequence and structures of the two peptides in helical
conformations, and leaving the topology of the binding protein and the binding mode completely
unspecified. From this minimal starting information, RFdiffusion generated designs predicted by
AF2 to fold and bind to the targets with high in silico success rates. We obtained synthetic
genes encoding 96 designs for each target. Using yeast surface display, we found that 25 of the
96 designs bound to Bim (10nM, no avidity). The highest affinity design (Fig. 4C), which purified
as a soluble monomer, bound too tightly for steady state estimates of the dissociation constant
(KD); global fitting of the association and dissociation kinetics suggest a Kb of ~100pM (Fig 4D).
For parathyroid hormone, we found that 56/96 of the designs bound by yeast surface display
with sub-micromolar affinities. The highest affinity design (Fig. 4E) again bound too tightly for
accurate KD estimation; instead fluorescence polarization data provides an approximate upper
bound for the Kb of 350pM (Fig. 4F). To our knowledge, these Bim and PTH binding proteins
are the highest affinity binders to any target (protein, peptide, or small molecule) achieved
directly by computational design with no experimental optimization.

Conclusion

RFdiffusion is a major improvement over current physically-based and deep learning protein
design methods over a wide range of design challenges. Substantial progress was recently
made using Rosetta in designing binding proteins from target structural information alone, but
this required testing tens of thousands of designs — with RFdiffusion high affinity binders to the
targets experimentally characterized here can be identified through testing of dozens of designs
(more experimental testing will be required to determine success rates over a broader range of
targets). There has also been progress in scaffolding protein functional motifs using deep
learning methods (hallucination, inpainting and diffusion), but hallucination becomes very slow
for complex systems, inpainting fails when insufficient starting information is provided, and
previous diffusion methods had quite low accuracy; our benchmark tests show that RFdiffusion
considerably outperforms all previous methods in the complexity of the motifs that can be
scaffolded, the ability to precisely position sidechains (for catalysis and other functions), and the
accuracy of motif recapitulation by AF2. For the classic unconstrained protein structure
generation problem, RFdiffusion readily generates novel protein structures with as many as 600
residues that are accurately predicted by AF2 (and ESMFold), far exceeding the complexity and
accuracy achieved by previously described diffusion and other methods. The versatility and
control provided by diffusion models enabled extension of RFdiffusion unconditional generation
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to higher order architectures with any desired symmetry (hallucination methods are primarily
limited to cyclic symmetries); experimental characterization of a subset of these designs using
electron microscopy revealed structures very similar to the design models (which are without
precedent in nature). Combining the accurate motif scaffolding with the ability to design
symmetric assemblies, we were able to scaffold functional sites spanning multiple symmetrically
arranged chains which has not been previously possible. Overall, the complexity of the
problems solvable with RFdiffusion and the robustness and accuracy of the solutions (validated
both in silico and experimentally) far exceeds what has been achieved previously. In a manner
somewhat reminiscent of the generation of images from text prompts, RFdiffusion makes
possible, with minimal specialist knowledge, the generation of proteins from very simple,
semantic specifications (for example, from a specification of target peptide, high affinity binders
to that peptide, and from specification of a desired symmetry, diverse protein assemblies with
that symmetry).

The power and scope of RFdiffusion can be extended in several directions. RF has recently
been extended to nucleic acids and protein-nucleic acid complexes’’, which should enable
RFdiffusion to design nucleic acid binding proteins, and perhaps folded RNA structures.
Extension of RF to incorporate ligands should similarly enable RFdiffusion to design small
molecule binding proteins. The ability to customize RFdiffusion to specific design challenges by
addition of external potentials and by fine-tuning (as illustrated here for catalytic site scaffolding,
binder-targeting and fold-specification), along with continued improvements to the underlying
methodology, should enable protein design to achieve still higher levels of complexity, to
approach and in some cases surpass what natural evolution has achieved.
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Figure 1: Incorporating diffusion into RoseTTAFold addresses a broad range of protein
design problems. A) Top panel: Diffusion models for proteins are trained to recover structures
of proteins corrupted with noise, and generate new structures by reversing the corruption
process through iterative denoising of initially random noise XT into a realistic structure XO.

Middle panel: Diffusion models can be incorporated into RoseTTAFold (RF, left), a rotationally
equivariant protein structure prediction network that maps sequence, template structures and
initial coordinates into accurate structure predictions. RFdiffusion (right) is trained from a
pre-trained RF network with minimal architectural changes. The input sequence is (partially)
masked and the model’s previous prediction provided in place of the template
(“self-conditioning”, see Methods 1.6). A noised structure at timestep “t” (Xt) is provided as input

coordinates, with the timestep also provided to the model. The output from RF diffusion, just as
in RF, is the prediction of the true protein structure (now denoted XO). Bottom panel: At each

A t+1
timestep “t” of a design trajectory (typically 200 steps), RFdiffusion takes X, and X, from the

At
previous step and then predicts an updated X0 structure (X0 ) and the coordinate input to the

model at the next time step (Xt—l) is generated by a noisy interpolation toward )(A’Ot. B)
RFdiffusion is of broad applicability to protein design. RFdiffusion generates protein structures
either without conditioning (top row), or conditioning on: symmetric inputs to design symmetric
oligomers (second row); a structure of a binding target (third row); protein functional sites (fourth
row); symmetric functional sites to design symmetric oligomers scaffolds (bottom row). In each
case, random noise, along with conditioning information, is input to RFdiffusion, which iteratively
refines that noise until a final protein is designed. C) RFdiffusion can generate new monomeric
proteins of different lengths (left: 300, right: 600) with no conditioning information. Gray=design
model; colors= AlphaFold2 (AF2) prediction. RMSD AF2 vs design (A ), left to right: 0.90, 0.98,
1.15, 1.67. D) Unconditional designs from RFdiffusion are novel and not present in the training
set as quantified by highest TM score to the protein databank (PDB). Designs are increasingly
diverse with increasing length. E) Unconditional samples are closely re-predicted by AF2.
Beyond 400 amino acids, the recapitulation by AF2 deteriorates. F) RFdiffusion significantly
outperforms hallucination (with RoseTTAFold) at unconditional monomer generation (two-way
ANOVA & Tukey'’s test, p < 0.007). While hallucination successfully generates designs up to 100
amino acids in length, success rates rapidly deteriorate beyond this length.



Icosahedral

ign model

Des
Octahedral

del

Design mo

C6
cs8
C1

o
c 9¢903H 06¥03H SL903H LESO3H



Figure 2: Design and experimental validation of high-order symmetric oligomers. A)
RFdiffusion-generated cyclic and dihedral assemblies (left) compared to AF2 structure
predictions based on the designed sequences (right); in all 5 cases they are nearly
indistinguishable (backbone RMSDs vs AF2 for C6, C8, C10, D3, D5 are 1.04, 0.45, 0.60, 0.66,
0.72, respectively, with total amino acids 1200, 480, 600, 480, 1000, respectively). Symmetries
are indicated to the left of the design models. B) Octahedral (left) and icosahedral (right)
assemblies generated by RFdiffusion (gray). These structures are too large to be predicted by
AF2 in their entirety; instead AF2 predictions for trimeric substructures are shown superimposed
on the models (colors). C) Designed assemblies validated by single molecule electron
microscopy. From left to right: 1) symmetric design model, 2) raw micrographs and 2D particle
class averages demonstrating homogeneous samples, 3) 3D reconstructions from class
averages, and 4) AF2 predictions fitted into 3D reconstruction. The overall shapes are closely
consistent with the design models. As in A), the AF2 predictions of each design are nearly
indistinguishable from the original diffusion model (backbone RMSDs for HE0626, HE0490,
HEO0675, HE0537, are 1.03, 0.60 0.74, 0.75, respectively). Model symmetries from top to bottom
are C6 (HE0626, 100 AA/ chain), D3 (HE0490, 80 AA/ chain), C8 (HE0675, 60 AA/ chain), and
D4 (HE0537, 100 AA/ chain).
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Figure 3 - Scaffolding of diverse functional-sites with RFdiffusion. A) RFdiffusion is state of
the art across a diverse set of benchmark functional-site scaffolding problems. The 25 problems,
collected from six recent publications, encompass a broad range of functional sites, including
enzyme active sites, binding interfaces and viral epitopes (Table 1). Success was defined as
AF2 RMSD to design model < 2 A, AF2 RMSD to the native functional site (the “motif’) < 1A,
and AF2 predicted alignment error (pAE) < 5, and the examples are ordered by success rate
with RFdiffusion (with noise scale = 0). 100 designs were generated per problem, with no prior
optimization on the benchmark set (some optimization was necessary and permitted for the
hallucination data). RF diffusion solves 23/25 problems, outperforming existing methods in all but
one. Table 2 presents full results. B) Four examples of designs for benchmarking problems
where RFdiffusion significantly outperforms existing methods. Teal: native motif; colors: AF2
prediction of an RFdiffusion design. Metrics (RMSD AF2 vs Design, RMSD AF2 vs native motif,
AF2 pAE): 5TRV Long: 1.17A,0.57 A, 4.73; 6E6R Long: 0.89 A, 0.27 A, 4.56; 7TMRX Long:
0.84A,0.82A 4.32; 1PRW: 0.77A, 0.89 A, 4.49. C) RFdiffusion can scaffold the native p53
helix that binds to Mdm2 and makes additional contacts with the target. The designed scaffold
(pink) is confidently predicted to interact with Mdm2 by AF2, and to scaffold the native p53 helix
with atomic accuracy (Interaction pAE: 4.65, Monomer pAE: 4.93, AF2 Motif RMSD: 0.52 A, AF2
vs design RMSD: 0.43 A). In silico successful designs had, on average, 31% higher contacting
surface area than the original helix. D) RFdiffusion can be fine-tuned for specific and highly
challenging design tasks, including the design of scaffolds supporting minimalist enzyme active
sites (see Methods 2.6). The input to RFdiffusion is a few individual residues (left, in this case
from the first enzyme class) and the network scaffolds these sites, with designs often accurately
re-predicted by AF2 (middle and right, gray: design model; colors: AF2 prediction. Motif
backbone RMSD 0.53 A, Motif full-atom RMSD 1.05A , AF2 vs Design RMSD: 0.88 A ; AF2
pAE: 4.47). E) After fine-tuning on motifs close in Euclidean space, but discontinuous in
sequence-space, RFdiffusion is able to scaffold a broad range of enzyme active sites from the
five major enzyme classes (a random triadic active site from an apo structure belonging to each
of the five classes in the M-CSA database*®). Three degrees of stringency for success are
reported: Stringent, Full-Atom/Stringent, Backbone/Moderately Stringent. AF2 vs design RMSD
(backbone) < 2A/2 A /3 A; AF2 vs design Motif RMSD (backbone) < 1A/1A/1.5A, AF2 pAE <
5/5/7.5; AF2 vs design Motif RMSD (full-atom) 1.5 A /na/na. For all cases, RF diffusion generated
designs that passed our most stringent filters (EC1: 2.6%; EC2: 0.6%; EC3: 2.7%; EC4: 4.7%;
EC5: 2.6%). Without fine-tuning RF diffusion, produces no successful designs passing the
Full-Atom/Stringent filter for these enzyme benchmarks. F) An example (top row) and zoomed
view (bottom row) of successful designs generated to the other four enzyme classes,
demonstrating high-accuracy scaffolding of the active sites. Gray: design model, colors: AF2
model, Teal: motif structure prediction. Metrics (AF2 vs design backbone RMSD, AF2 vs design
motif backbone RMSD, AF2 vs design motif full-atom RMSD, AF2 pAE): EC2: 0.93A, 0.50A,
1.29A,3.51; EC3:0.92A, 0.60A, 1.07A, 4.59; EC4: 0.93A, 0.80A, 1.03A, 4.41; EC5:
0.78 A,0.44A,1.14 A, 3.32. G-H) RFdiffusion can scaffold symmetric functional sites. G) The
SARS-CoV-2 spike protein is a C3-symmetric trimer. AHB2, a previously-described ACE2
mimic, can bind to a single spike protein subunit. To increase avidity, we symmetrized AHB2
around the C3 axis (left) and used RFdiffusion to design bespoke C3-symmetric oligomers to
allow rigid scaffolding of the AHB2 interface in a position well-suited to interacting with all three


https://www.zotero.org/google-docs/?ZjI1a7

spike subunits (right). Teal: SARS-CoV-2 structure (from PDB: 7JZL), colors: symmetrized AHB2
(left) and AF2 model of RF diffusion design (right). Metrics: AF2 pAE (monomer): 7.18; AF2
RMSD vs design (monomer/triple): 1.07 A/1.28 A ; AF2 Motif RMSD (monomeri/triple):
0.53A/2.36 A . H) Nickel can be coordinated in a square-planar geometry. We generated C4
symmetric motifs scaffolding histidine residues in positions ideal for coordinating nickel (left).
RFdiffusion generates C4 symmetric oligomers scaffolding these motifs, with AF2 predictions
recapitulating the site with high confidence (pAE < 10) and full-atom RMSD on the coordinating
histidine residues between AF2 and the ideal motif < 1A.
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Figure 4: Design of protein and peptide binders. A-B) De novo binders were designed to five
protein targets; PD-L1, IL7 Receptor q, Insulin Receptor, TrkA receptor and Influenza
Hemagglutinin, and tested in silico with AF2 prediction. A) An example structure for each of the
five targets, highlighting the diversity and complementarity of designs to their respective targets.
AF2 models are shown (teal: target, pink: design). Metrics (Monomer pLDDT, Interaction pAE,
Monomer RMSD AF2 vs Design): PD-L1: 87.9, 4.35, 0.56 A ; IL7-Ra: 94.9, 7.33, 0.23 A ; Insulin:
94.0, 4.84, 0.37 A; TrkA Receptor: 95.3, 4.62, 0.37 A ; Hemagglutinin: 91.9, 9.20, 0.71A. B) Full
in silico success rates for the protein binders designed to five targets. In each case, the best
fold-conditioned results are shown (i.e. from the most target-compatible input fold), and the
success rates at each noise scale are shown. In line with current best practice®, we tested
using Rosetta FastRelax* before designing the sequence with ProteinMPNN, but found that this
did not systematically improve designs. Success is defined in line with current best practices?:
AF2 pLDDT of the monomer > 80, AF2 interaction pAE < 10, AF2 RMSD monomer vs design <
1A . C-F) RFdiffusion can design binders to helical peptides. C) Design model (gray) and AF2
prediction (colors) of an experimentally validated binder to the apoptosis-related peptide Bim.
Orange: Bim peptide, Pink: designed binder. Metrics: RMSD AF2 vs Design: 0.80 A ; interaction
pAE: 4.50; Binder pLDDT: 96.6 D) Biolayer interferometry measurement of Bim binding indicate
a sub-nanomolar affinity, and notably slow dissociation kinetics. E) Design model (gray) and
AF2 prediction (colors) of an experimentally validated binder to the helical peptide parathyroid
hormone (PTH). Teal: PTH peptide, Pink: designed binder. Metrics: RMSD AF2 vs Design:
0.78 A ; interaction pAE: 4.40; Binder pLDDT: 94.3. F) Fluorescence polarization measurements
with TAMRA-labeled PTH indicate a sub-nanomolar binding affinity.
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Figure S1: Training ablations reveal determinants of RFdiffusion success A) Comparing
RFdiffusion trained with squared distance losses on C, atoms and N-C,-C backbone frames
(see methods), rather than with FAPE loss®?°. The two models were benchmarked on
functional-site scaffolding problems (see Methods 3.4 for justification of this decision), and
across all cases, AF2 recapitulation of the structure (left) and AF2 confidence (right) was
improved when RFdiffusion was trained with squared distance losses. Two-way ANOVA:
Success rate p < 0.001. Henceforth, these losses were used for all models described in this
paper. B) Allowing the model to condition on its Xo prediction at the previous timestep (see
methods) improves designs. Designs with self-conditioning (pink) have improved recapitulation
by AF2 (left) and better AF2 confidence in the prediction (right). Two-way ANOVA, in silico
success rate: p < 0.001. C) RFdiffusion leverages the protein representations learned during RF
pre-training. RFdiffusion fine-tuned from pre-trained RF (pink) comprehensively outperforms a
model trained for an equivalent amount of time, from untrained weights (gray). Indeed, training
RFdiffusion without pre-training showed no significant improvement (in terms of in silico success
rates) compared with generating ProteinMPNN sequences from random Gaussian-sampled
coordinates (white, two-way ANOVA & Tukey'’s test, p<0.001; Random noise vs no pre-training,
p=0.9 (n.s.); Random noise vs with pre-training, p<0.001; Pre-training vs not, p<0.0017). Note
that the data in pink in A-C is the same data, reproduced in each plot for clarity. D) The median
(by AF2 RMSD vs design) 300 amino acid unconditional sample highlighting the importance of
self-conditioning and pre-training. Without pre-training, RF diffusion outputs bear little
resemblance to proteins (gray, left). Without self-conditioning, outputs show characteristic
protein secondary structures, but lack core-packing and ideality (gray, middle). With pre-training
and self-conditioning, proteins are diverse and well-packed (pink, right). E-F) During the reverse
(generation) process, the noise added at each step can be scaled (reduced). Reducing the
noise scale comprehensively improves the in silico design success rates (two-way ANOVA &
Tukey’s test: p < 0.001, 0 vs 0.5: p=0.13,0vs 1: p <0.007; 0.5 vs 1: p < 0.001). This comes at
the expense of diversity, with the number of unique clusters at a TM score cutoff of 0.6 reduced
when noise is reduced (F). G-l) RFdiffusion (without reducing the added noise) can generate
high quality large unconditional monomers. Designs are routinely accurately recapitulated by
AF2 (see also Fig. 1E), with high confidence (G) for proteins up to approximately 400 amino
acids in length. H) Further orthogonal validation of designs by ESMFold demonstrates the
quality of unconditional RFdiffusion designs. I) Recapitulation of the design structure is often
better with ESMFold compared with AF2. For each backbone, the best of 8 ProteinMPNN
sequences is plotted, with points therefore paired by backbone rather than sequence.
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Figure S2: Optimizing inference and improving metrics for in silico success. A-B) TM
score between a design and a subsequent orthogonal prediction (e.g. AF2), has been
previously used, typically with a threshold of > 0.5, as a metric for design success. A)
RFdiffusion designs have high TM score agreement to both the AF2 (left) and ESMFold (right)
predictions of the unconditional structures, with TM > 0.5 for a significant fraction of designs
even up to 1000 amino acids in length. B) TM score is, however, much less stringent than
RMSD alignment. Depicted here are three unconditional RFdiffusion designs of 600 amino acids
in length (gray), overlaid with the AF2 prediction (colors), with TM scores of 0.983, 0.757 and
0.506 respectively. While a TM score of 0.5 clearly shows some resemblance to the designed
structure, it differs significantly and should not be classed as “successfully designed”. RMSD
with a strict threshold (for example, 2 A) is significantly more stringent. RMSDs for the displayed
designs are 1.15A, 9.78 A and 21.4 A respectively. C-D) While RFdiffusion is trained to
generate samples over 200 timesteps, in many cases, trajectories can be shortened to improve
computational efficiency. C) Bigger steps can be taken between timesteps at inference. While
decreasing the number of timesteps typically reduces the per-design success rate (left), when
normalized for compute budget (right), it is often more efficient to run more trajectories with
fewer timesteps. For example, while generating 100 amino acid unconditional proteins, using a
schedule with just 10 timesteps (as opposed to 200) allows the generation of 1584 in silico
successful designs in the time taken to generate 86 successful designs with 200 timesteps. As
problems get more challenging, however, this no longer remains the case (for example, fourth
column, with generation of 300 amino acid designs). D) An alternative to taking larger steps is to
stop trajectories early (possible because RFdiffusion predicts X0 at every timestep). In many
cases, trajectories can be stopped at timestep 50-75 with little effect on the final success rate of
designs (left), and when normalized by compute budget (right), success rates per unit time are
typically higher generating more designs with early-stopping. For example, in the 6EXZ_Long
benchmarking motif-scaffolding problem, stopping trajectories at t=100 allows the generation of
128 in silico successful designs in the time it takes to generate 42 successful designs running
full trajectories.
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Figure S3: RFdiffusion designs are novel without conditional information, or can be
conditioned to generate specific folds. A) Example designs demonstrating extrapolation
beyond the training set for generating novel folds. Gray: closest protein in the PDB by TM score,
colors: RFdiffusion design model, overlaid by TM alignment. For each protein length, the
median and most diverse samples are shown. While for short proteins, designs typically show
some similarity to known protein folds, with increasing length, designs become increasingly
dissimilar to the PDB. TM score (closest PDB, TM score; median, most diverse): 100aa:
5WVE_A, 0.71; 4W5T_A, 0.59; 200aa: 4AV3_A, 0.58; 4CLY_A, 0.47; 300aa: 4PEW_B, 0.53;
4RDR_A, 0.46; 400aa: 4AIP_A, 0.49; 6R9T_A, 0.42. B-D) Designs can also be generated by
conditioning on protein fold information. B) 6WVS is a previously-described de novo designed
TIM barrel (left). A fine-tuned RF diffusion model can condition on 1D and 2D inputs representing
this protein fold, specifically secondary structure (middle, bottom) and block adjacency
information (middle, top, see Methods 2.5). RFdiffusion readily conditions on this information
and generates a diverse set of TIM barrels (right). Gray: RFdiffusion design, colors: AF2
prediction. C) TIM barrels are generated with an in silico success rate of 42.5% (left bar).
Success incorporates AF2 metrics and a TM score vs 6WVS > 0.5. C-D) NTF2 folds are useful
scaffolds for de novo enzyme design, and can also be readily generated with fold-conditioned
RFdiffusion. Designs are diverse (D) and designed with an in silico success rate of 54.1% (C,
right bar). NTF2 fold design success also included both AF2 metrics and a TM score vs PDB:
1GY6 > 0.5. Gray: RFdiffusion design, colors: AF2 prediction.
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Figure S4: Symmetric oligomer design with RFdiffusion. A) Due to the (near-perfect - see
Methods 1.7) equivariance properties of RFdiffusion, X0 predictions from symmetric inputs are
also symmetric, even at very early timepoints (and becoming more symmetric through time;
RMSD vs symmetrized: =200 1.20A; t=150 0.40A ; =50 0.06 A ; t=0 0.02A). Gray:
symmetrized (top left) subunit; colors: RFdiffusion Xo prediction. B) In silico success rates for
symmetric oligomer designs of various cyclic and dihedral symmetries. Success is defined here
as the proportion of designs for which AF2 yields a prediction from a single sequence that has
mean pLDDT > 80 and backbone RMSD over the oligomer between the design model and AF2
<2 A. Note that 16 sequences per RFdiffusion design were sampled. C) Box plots of the
distribution of backbone RMSDs between AF2 and the RF diffusion design model with and
without the use of external potentials during the trajectory. The external potentials used are the
“inter-chain” contact potential (pushing chains together), as well as the “intra-chain” contact
potential (making chains more globular)o. Using these potentials dramatically improves in silico
success (Student’s unpaired t-test, p < 0.007). D) Additional symmetric oligomers structurally
verified by negative stain electron microscopy (nsEM). D4 symmetric HE0473 (left) design
model fitted into the 3D reconstruction, with micrograph and two 2D class averages. C12
symmetric HE0600 (right) design model (gray) overlaid with its AF2 prediction (color), with
micrograph and two 2D class averages. E) Additional examples of design models (left) against
AF2 predictions (right) for C3, C5, C12, D2, and D4 symmetric designs (the symmetries not
displayed in Fig. 2) with backbone RMSDs against their AF2 predictions of 0.82, 0.63, 0.79,
0.43, 0.78 with total amino acids 750, 900, 960, 240, 640.
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Figure S5: External potentials for generating pockets around substrate molecules.
Enzymes generated from the triadic active site [TYR1051-LYS1083-TYR1180] of a
retro-aldolase: PDB: 5AN7. A) The potential used to implicitly model the substrate, which has
both a repulsive and attractive field (see Methods 2.7). B) Left: Kernel densities demonstrate
that without using the external potential (pink), designs often fall into two failure modes: (1) no
pocket, and (2) clashes with the substrate. Right: clashes (substrate < 3A of the backbone) &
pockets (no clash and > 16 Ca within 3-8A of substrate) with and without the potential.
Two-proportion z-test: clashes p<0.03, pocket p<0.02. Each datapoint represents a design
already passing the stringent success metrics (AF2 motif RMSD < 1A, AF2 backbone RMSD <
2 A, AF2 pAE < 5). C) Designs close to the labeled local maxima of the kernel density estimate.
Without the potential, the catalytic triad is predominantly (7) exposed on the surface with no
residues available to provide substrate stabilization or (2) buried in the protein core, preventing
substrate access. With the potential, the catalytic triad is predominantly (3), partially buried in a
concave pocket with shape complementary to the substrate. Backbone atoms within 3 A of the



substrate are shown in red. D) A variety of diverse designs with pockets made using the
potential, with no clashes between the substrate and the AF2-predicted backbone. The
functional form and parameters used for the pocket potential are discussed in Methods 2.7. In
each case, the substrate is superimposed on the AF2 prediction of the catalytic triad.
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Figure S6: Symmetric motif scaffolding for square planar nickel binding. A) Depiction of a
set of C4-symmetrized backbone-dependent (¢ = -40°, y = -60°) inverse rotamers* used as
motifs input to RFdiffusion for symmetrically scaffolding a theoretical nickel binding site. The
inverse rotamers (teal) all have identical placements of the imidazole group within histidine
relative to an ideal nickel atom placement (orange), but different positions of backbone atoms
which could yield this imidazole placement.. B) AF2 predictions of selected in silico hits for
scaffolding the C4 inverse rotamers show significant structural diversity in RFdiffusion solutions.
C) In silico success count for the various inverse rotamers depicted in panel A. An in silico
“success” here is defined as an AF2 prediction for a single sequence which has (1) full-atom
RMSD over the four histidine residues between the AF2 prediction and the ideal C4 motif of <
1.0 A and (2) an AF2 pAE < 10. D) Overlay of the 6 solutions in panel B reveals that the diverse
array of RFdiffusion solutions all place the imidazole groups with near atomic accuracy of the
desired conformation (according to AF2).
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Figure S7: Targeted unconditional and fold-conditioned protein binder design. A-B) The
ability to specify where on a target a designed binder should bind is crucial. Specific “hotspot”
residues can be input to a fine-tuned RFdiffusion model, and with these inputs, binders almost
universally target the correct site. A) IL7-Ra (PDB: 3DI3) has two patches that are optimal for
binding, denoted Site 1 and Site 2 here. For each site, 100 designs were generated (without
fold-specification). B) Without guidance, designs typically target Site 1 (left bar, gray), with
contact defined as C.-C, distance between binder and hotspot reside < 10 A . Specifying Site 1
hotspot residues increases further the efficiency with which Site 1 is targeted (left bar, pink). In
contrast, specifying the Site 2 hotspot residues can completely redirect RFdiffusion, allowing it
to efficiently target this site (right bar, pink). C-D) As well as conditioning on hotspot residue
information, a fine-tuned RFdiffusion model can also condition on input fold information
(secondary structure and block-adjacency information - see Methods 2.5). This effectively allows
the specification of a (for instance, particularly compatible) fold that the binder should adopt. C)
Two examples showing binders can be specified to adopt either a ferredoxin fold (left) or a
particular helical bundle fold (right). D) Quantification of the efficiency of fold-conditioning.
Secondary structure inputs were accurately respected (top, pink). Note that in this design target
and target site, RFdiffusion without fold-specification made generally helical designs (right, gray
bar). Block adjacency inputs were also respected for both input folds (bottom, pink). E)



Reducing the noise added at each step of inference improves the quality of binders designed
with RFdiffusion, both with and without fold-conditioning. As an example, the distribution of AF2
interaction pAEs (known to indicate binding when pAE < 10) is shown for binders designed to
PD-L1. In both cases, the proportion of designs with interaction pAE < 10 is high (blue curve),
and improved when the noise is scaled by a factor 0.5 (pink curve) or O (yellow curve).
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Figure S8: Size exclusion chromatography of symmetric oligomers. Size exclusion
chromatography (SEC) was used as a primary screening method for all RFdiffusion-generated
oligomers. Here, SEC traces from 376 oligomers are shown for each of the eight experimentally
tested symmetry groups, excluding the void volume. On the left, SEC traces are overlaid for all

designs, and on the right, traces are normalized and stacked. As designs increase in complexity

(higher number of individual subunits), the amount of soluble protein shown by SEC visibly

decreases.
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Figure S9: SEC data for symmetric oligomers with respect to calibration curves. Retention
volume for the major SEC peak versus molecular weight for each design are plotted in
comparison to a known calibration curve. The calibration curve is shown in gray, with shading
representing the 95% confidence interval. Total yield of each design is indicated by the scale bar
on the right of the graphs. Given that MW is being used as a proxy for hydrodynamic radius, we
expect that some designs (e.g. cycles with large pores) may be true to their design model, but
deviate from the standard curve. These calibration curves provide a rough estimate of the
success rate of each symmetry group, and help guide the selection process for downstream
analysis of any design.



Name, Description Input Total Length | Sequence to be redesigned*®
Reference
1PRW* Double EF-hand motif | 5-20,A16-35,10-25,A52-71,5-20 | 60-105 A16-19,A21,A23,A25,A27-30,A32-35,A52-55,A57,
A59,A61,A63-66,A68-71
1BCF* Di-iron binding motif 8-15,A92-99,16-30,A123-130,1 96-152 A19-25,A47-50,A52-53,A92-93,A95-99,A123-126,
6-30,A47-54,16-30,A18-25,8-15 A128-129
5TPN* RSV F-protein Site V 10-40,A163-181,10-40 50-75 A163-168,A170-171,A179,A189
5lUS* PD-L1 binding 0-30,A119-140,15-40,A63-82, 57-142 AB3,A65,A67,A69,A71,A72,A76,A79,A80,A82,A11
interface on PD-1 0-30 9,A120,A121,A122,A123,A125,A127,A129,A130,A
131,A133,A135,A137,A138,A140
3IXT™ RSV F-protein Site I 10-40,P254-277,10-40 50-75 P255,P258-259,P262-263,P268,P271-272,P275-2
76
5YUI* Carbonic anhydrase 5-30,A93-97,5-20,A118-120,10- | 50-100 A93,A95,A97,A118,A120
active site 35,A198-200,10-30
1QJG* Delta5-3-ketosteroid 10-20,A38,15-30,A14,15-30,A9 53-103 n/a
isomerase active site 9,10-20
1YCR* P53 helix that binds to | 10-40,B19-27,10-40 40-100 B17-18,B20-22,B24-25
Mdm2
2KL8*?* De novo designed A1-7,20,A28-79 79 n/a
protein
7MRX_60* 0-38,B25-46,0-38 60 n/a
Barnase ribonuclease
7MRX_85% inhibitor 0-63,B25-46,0-63 85 n/a
7MRX_128% 0-122,B25-46,0-122 128 n/a
4JHW=2 RSV F-protein 10-25,F196-212,15-30,F63-69, 60-90 F196,F198,F203,F211-212,F63,F69
Site 0 10-25
4ZYP32 RSV F-protein 10-40,A422-436,10-40 30-50 A422-427,A430-431,A433-436
Site 4
5WN93* RSV G-protein 10-40,A170-189,10-40 35-50 A170-175,A188-189
2D10 site
B6VW1434 ACE?2 interface E400-510/20-30,A24-42,4-10, 62-83 A25-26,A29-30,A32-34,A36-42,A64-82
binding SARS-CoV-2 A64-82,0-51
5TRV_short® 0-35,A45-65,0-35 56 n/a
5TRV_med® De novo designed 0-65,A45-65,0-65 86 n/a
protein
5TRV_long® 0-95,A45-65,0-95 116 n/a
6EBR_short® 0-35,A23-35,0-35 48 n/a
6E6R_med® Ferridoxin Protein 0-65,A23-35,0-65 78 n/a
6E6R_long® 0-95,A23-35,0-95 108 n/a
6EXZ_short® 0-35,A28-42,0-35 50 n/a
6EXZ_med® RNA export factor 0-65,A28-42,0-65 80 n/a
6EXZ_long® 0-95,A28-42,0-95 110 n/a
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Table 1: A benchmarking set of recently published functional-site scaffolding problems.
To benchmark RFdiffusion at functional-site scaffolding, against existing methods, we generated
a benchmark set encompassing problems described in six recent publications*®2*32-3* which
utilize a range of design methodologies to address these problems. For each problem, named
by PDB accession (and, where applicable, the length of the designs to be generated, left
column), we recapitulated the inputs as closely as possible with respect to details available in
each publication. So that others can test methods on this benchmark, the exact input is
specified in the third column. In bold, prefixed by a letter, are the inputs (chain, residues) from
the PDB structure provided to the model (the “functional-site”). In non-bold text are the lengths
that the different methods randomly sampled to generate good designs. The final lengths of the
proteins were either specified by the input to the model, or were provided as constraints (for
example, for 6EXZ_Long, the model could sample any N- and C-terminal length between 0 and
95 residues, but the total length of the output had to equal 110 amino acids). For each design
challenge, 100 designs were generated, and, where ProteinMPNN was used, 8 sequences were
designed, with the best sequence chosen for each backbone. *Both the RFjoint and
RoseTTAFold constrained hallucination approaches can simultaneously redesign sequences
during generation, which can, in some cases, be helpful (if extracting the “functional-site”
exposes hydrophobic residues which may subsequently end up as surface residues in the
output designs, for example). Therefore, in this benchmark, these methods were allowed to
redesign non-functional residues, listed in the right-most column. 1 This example is multi-chain
generation (scaffolding a functional-site in the presence of a second chain). All methods
benchmarked here can represent chain breaks (with large residue index jumps). Full results are
shown in Fig. 3A, and tabulated in Table 2.
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Problem RFdiffusion RFdiffusion RFjoint RFjoint + RF RF
Name (noise=0) (noise=1) ProteinMPNN Hallucination Hallucination +
ProteinMPNN
1BCF 100 98 65 94 0 0
6E6R_med 89 67 0 14 2 9
2KL8 88 96 71 62 20 34
6E6R_long 86 63 0 1 0 1
6EXZ_long 76 51 0 0 1 4
1YCR 74 58 12 20 11 61
6vw1 69 66 0 2 2 32
5TPN 61 59 0 1 0 1
6EXZ_med 49 33 0 0 5 15
4ZYP 40 31 1 7 1 18
6E6R_short 39 29 0 15 3 7
5TRV_long 37 30 0 0 0 2
3IXT 25 16 21 24 2 34
5TRV_med 24 20 0 0 0 3
7MRX_85 1 6 0 0 0 0
7MRX_128 9 4 0 0 0 0
1PRW 8 9 0 5 0 0
5TRV_short 4 7 0 0 0 1
7MRX_60 2 0 0 0 0 0
6EXZ_short 2 4 1 10 4 15
51US 2 0 0 0 0 0
5YUI 0 0 0 0 0 0
5WN9 0 1 0 0 0 0
4JHW 0 0 0 0 0 0
1QJG 0 1 0 0 0 0

Table 2: Functional-site scaffolding benchmark results. Full results for the benchmark test
described in Fig. 3A and Table 1. In each case, values represent the success rate (%) in a set of
100 designs generated with each method.




Materials & Methods

Section 1: Motivation for and explanation of RF as the neural network in a generative
diffusion model

In this section we describe in greater detail how we have repurposed RoseTTAFold (RF) as a
generative model of protein structure.

1.1 Preliminaries

Machine learning models for protein structure design must confront two major challenges to
representing protein structures: (1) protein structure is most naturally represented by
coordinates in a semantically arbitrary 3D coordinate system, yet (2) each amino acid which
lives in this subspace has (effectively) two degrees of freedom (the ¢ and y backbone torsions
angles) as opposed to the canonical six for a free rigid body. To navigate these challenges, most
previous works on generative models of protein structure®**° have represented proteins as
“‘maps” of pairwise distances between amino acids, followed by realizing chemically plausible
3D structures from these maps. However, given the remarkable representative power and
accuracy of networks like AlphaFold2 (AF2) and RF which manipulate a “gas” of rigid bodies in
3D space in an SE(3) equivariant manner to produce a final 3D protein structure, we chose to
formulate the protein generation task in a way that was compatible with this representation
strategy. Moreover, design methods that directly parameterize structures in 3D are appealing for
design because they allow specification of both rigid structural constraints such as the presence
of functional motifs or existence of a desired symmetry by direct manipulations of structure®®,

We next give a brief overview of our diffusion modeling framework and how we have adapted it
to protein structures in 3D. We then detail how we have applied it to the different components of
our representation of structure. Lastly, we describe how we train conditional variants of the
diffusion model for motif-scaffolding and generation with secondary structure constraints.

1.2 Diffusion probabilistic modeling of protein structure

Our approach builds on denoising diffusion probabilistic models (DDPMs)'*™". We follow & adapt
the conventions and notation set by ['°], which we review here. DDPMs are a class of generative
models based on a reversible, discrete-time diffusion process. The forward process starts with a
sample x0~q(x0) from an unknown data distribution q. Noise is added at each step, to obtain a

sequence of increasingly noisy samples X, such that the final step x_~ q(x,) is indistinguishable

from a reference distribution that has no dependence on the data. DDPMs approximate q(xo)
with a second distribution pe(xo) defined by transition distributions of the reverse process
pe(xt_1| xt) at each t which are parameterized by a neural network. The neural network is

trained such that pe(xt—1| xt) approximates q(xt_1| xt). One then draws from pe(xo) by first
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sampling from the reference distribution X~ D, (xT) ~ q(xT), and then for each t < T iteratively

denoising by sampling xt_1~pe(xt_1|xt) until Xy~ pe(xo) is obtained.

In our case, we consider q(xo) to be a distribution over the structures of backbones of native

proteins. We adopt the “residue-gas” representation of backbones used by RF*". This
representation consists of the 3D coordinates (z) of the central carbon (C,) and 3x3 rotation
matrices (r) representing the rigid-body orientation of each residue in a global reference frame,
thereby additionally defining the coordinates of the N and C backbone atoms. x = [z, r]. We
defined a forward process that applies noise independently both across residues and across
these two components of residue geometry. We similarly model the reverse process transitions
as independent across these components:

p(x_|x) = pyz,_ |x)p,(r,_Ix).

While q(x,_ 1 x)can in general be correlated across these different components of structure,

standard practice has found it beneficial to ignore the correlation across dimensions in the
reverse diffusion process™. Indeed, in the limiting regime where the number of steps in the
forward process tends to infinity, and the forward process is viewed as a discretization of a
continuous time diffusion process, one can see that the correlation between different
dimensions is absent in the reverse process as well*®,

To address the challenge of the arbitrary reference frames we build on previous work®, and seek
to learn a distribution over protein structure that is invariant to global rotation; that is, we require
that any protein structure is modeled as equally likely upon a rigid rotation. More formally, this
means that for any structure X, and rotation R we desire to have that pe(xo) = pe(R * xO),

where R * X, represents the structure obtained by rotating X, about the origin by R (for each

residue R * x = [Rz, Rr]).

Following prior work®4°, we incorporate this invariance by (1) using a rotation invariant reference
distribution (i.e. satisfying pe(xT) = pe(R * xT)) and (2) constraining the reverse diffusion model

to be equivariant to rotations (i.e. satisfying P(x |x, ) =P, (R * x IR * xm)). To this end, we

leverage the geometric equivariance and invariance properties inherent to RoseTTAFold. In
particular, RF uses the SE(3)-transformer architecture®®®' to provide equivariant updates to
intermediate predictions of structure across recycling steps; we use these same input channels
to obtain equivariant updates of C, coordinates (Methods 1.4) and rotations (Methods 1.5) for
each residue.

1.3 Training RosettaFold with rotation and translation distance losses

Our approach to learning the reverse process transition is to train RoseTTAFold to denoise
noisy protein structures. For each step of training, we first choose an example protein structure
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X, and a time step t uniformly at random between 1 and T, and then simulate the forward

process to obtain xt~q(xt|x0). We next apply RoseTTAFold to obtain a prediction of the
denoised structure, which we denote by Qo(xt) = (zAO, rAO) . We then compute a loss on this
output consisting of, for each residue, the squared Euclidean distance (i.e. the squared L, error)

on the C, coordinates (Ltrans = llz, - ZAOHZ) and the square of a metric on the space of rotation

AT

, 2 . .
matrices (Lmt = ||I3 -, r0||F , Where || - ||F denotes the Frobenius norm of a matrix)®2.

Algorithm 1 summarizes the training procedure.

The approach above takes inspiration from Ho et al'®. In particular, Ho et al'® (section 3.2)
comments that when the forward process consists of adding Gaussian noise, the training
objective of minimizing the KL divergence of q(xt|xt_1) to pe(xt_1|xt) can be rewritten as a

rescaling of the expected squared error of a prediction of X, from noisy observations X

E___[KLGqCxJx, DlIp,Gc_ x)] < [llx, = x,G)II] + ¢ (1)

X X ~q

0"t XX ~4

where c is a constant that does not depend on 6. Consequently when one minimizes the
right-hand-side of equation (1), they maximize a weighted variational lower bound on the
likelihood of the data'® that is globally minimized only when each pe(xt_1|xt) matches Q(lext)’

and Py(x,) therefore matches the data-distribution. Although ref ['°] found better performance in

generative modeling of images when predicting the noise added in the forward process (rather
than xo), we reasoned that by predicting x, we could better leverage the inductive biases of

RoseTTAFold pre-trained for structure prediction to produce realistic structures (as in Rij,nt [*]).

However, the equivalence of learning to optimally denoise according to average squared L,

error and matching the reverse process in equation (1) applies only when the forward process
consists of Gaussian noise. This presents a challenge for learning the reverse process for the
rotations, because neither the Gaussian distribution nor Euclidean distance are well-defined on

the space of rotation matrices (SO(3)), and so prior work did not offer an obvious choice of loss
for the r 0 prediction. However the squared Frobenius norm metric (Lmt) seemed to be a

sensible choice because (1) our chosen forward noising process for rotations is approximately
Gaussian in the tangent space of SO(3) at T for t close to zero (see Methods 1.5), and (2) L .

is approximately equal to squared L, distance in the tangent space of SO(3) when T is close to

r, (ref ).
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Algorithm 1 RFDiffusion Training.

function FORWARDNOISE(xg, )
[(ZO,la ?”0,1), ceey (ZO,M, TO,M)] = Zo
form=1,...,M do
Zt.m ™ N (Zt,m; V a-’tz(],ma (]- - a’t)IS)
re.m ~ IGSO3 (’rt,m; T0,m; crf)
end for
Ty = [(Zt,laTt,l)a ceey (Zt,M; ?"t,M)]
return z;
end function

function Loss(zg, 0, Wirans, = 1, Wret. = D)
[(ZO,la ?"0,1), ceey (ZO,M, TO,M)] = To
[(20,1,70,1), - - -5 (20,0, T0,01)] = Zo

Lirans. = ﬁ Znﬂle 120,m — 20,m||2
Lyot, = ﬁ Zfrﬂrle 113 — T(Im"A’O,m”%?
Lyiotal = Wtrans. Ltrans. + Wrot. Lrot.
return Ly i1
end function

function TRAIN(zo, ?)
while not converged do
xo ~ TrainingSet
t ~ Uniform({1,...,T7})
x; = ForwardNoise(zg, t)
To,prev. = 0 > Self-conditioning variable
if Uniform(0,1.0) < 0.5 and ¢t < T then
x411 = ForwardNoise(zg,t + 1)
£o,prev. = RFDiffusiong (x4, 0, t)
ﬁ\?o,prev, = StOpGradient(@o,prev,)
x; = ReverseStep(z;41, Zo,prev.,t)
end if
:f?o — RFDifoSiOIlg (:’Et, io’prev‘ y t)
Take gradient step on VyLoss (zg, o)
end while
end function




Algorithm 2 RFDiffusion reverse step and rotation score approximation
function F(w, €2, L = 2000)
> IGSO3 den31ty factor, truncated to L terms
return Y (21 + 1)e 0D %
end function

function ROTATIONSCOREAPPROXIMATION (7, 7o, 07)
For =LOG(ry7q ) > Log map from SO(3) to rotation vector, 7, € R?
w = “T_"[)t“Q >weE [O,ﬂ']

> Compute score approximation as rotation vector
— TiTo d .2 3
s—ﬁ-alogF(w,at) >seR
return score_approx

end function

function REVERSESTEP(Z¢41, £0)
> One step of reverse diffusion
[(Zt+1,1, T’t+1,1), sy (Zt+1,M, Tt,M)] = Ti+1
[(20,1,%0,1); - - -, (Z0,m, T0,m0)] = %o
form=1,...,M do
> Update translations

N_N'(‘/_'B“'z m—l—\/_(l—at 1)Zt41,m, Bt)

> Update rotations

Sm ZROTATIONSCOREAPPROXIMATION(?’t s T0.ms OF)

Arp, = Exp{(c} , —07)sm} > Exp map from Lie algebra to SO(3)
Tt,m ™~ IGSO3(ATmTt+1 m,O't+1 )

end for

Iy = [(Zt,l, T’t,l), ) (zt,Ma T’t,M)]
return z;
end function




Algorithm 3 RFDiffusion generation of monomers and symmetric oligomers

function SAMPLEREFERENCE(M)
> Random initial structure for M residues

form=1,...,M do

zp N(O, Ig)
rp ~ Uniform(SO(3))
end for
T = [(ZT,1, TT,l): cey (ZT,Ma TT,M)]
return xr

end function

function SAMPLE(M)
> RFDiffusion generation of M-residue backbone structure
zr = SampleReference(M)
Zo,prev. = 0 > Initialize self-conditioning
fort=T-1,...,0do
Zfio = RFDifoSiOIlg (xt—l-l, f:O,pI'EV.)
z+ = ReverseStep(z¢41,Zo)
Zo,prev. = Zo
end for
return I
end function

function SAMPLESYMMETRIC(M, R = { R} £ )
> RFDiffusion generation of oligomer with symmetry R
z% = SampleReference( M)

X, =1[0,...,0] > Initialize self-conditioning
fort=T-1,...,0do
Xi+1 = [Riziyq, ..., Rzt 4] > Symetrization of chains
Xo = RFDiffusiong (X1, )ACO)
[z1,...,2K] = ReverseStep(X,41, Xo)
end for
return XO

end function




1.4 Details of forward and reverse diffusion of backbone residue translations

In this subsection we describe our forward diffusion over backbone Ca coordinates (z), and how
we relate predictions Qe(xt) of X, to our approximation pe(zt—llxt) of Q(Ztle)' Our development
and notation follows ref ['°]. We let 81' BZ, BT be scalars between 0 and 1 that define a

variance schedule such that foreacht = 1, 2, -, T the transition density of the forward
t

process is q(Zt | Zt—l) = N(zt;ﬂ 1 — Btzt v Btlg). Define o = 1 - Btand &t =11 a. To sample

s=1

z, during training, rather than sampling Zslzs—l froms = 1 all the way up to s = t, we draw z,

directly from the marginal distribution,

a(zlz) = Nz \/Zt 7y (1 = @I 2)

Giventhatq(z,_|z,z) = N(z,_;u(z, z,),B1.)

~ Ao B o (l-a ) 1-«
for =y +t—= n —
or u(z, z,) -y Z, — Z, a dB -y

——B, = B, we choose to parameterize the

reverse transitions by

p,(zlx,_) = N(z; n(x),B,1,) forpu (x) = utz( )+ t(la“)zt,

o
t

where zO(xt) are the predicted C, coordinates obtained from xo(xt). We choose Bt according to a

linear variance schedule as in?** with parameters B, = 0.01and B = 0.07. We chose these

parameters such that signal remaining in X, (as quantified by &t) decayed slowly toward zero as

t approaches T=200 .

1.5 Details of forward and reverse diffusion on backbone residue rotations

We model the remaining two backbone atoms (N and C) with a diffusion process on rigid body
rotations that map an axis-aligned residue with idealized internal geometry (i.e. bond lengths
and angle) to the positions of these atoms relative to central C,. Specifically, for any backbone
atom coordinates Z,zZ_ and z, for a given residue we may apply a Gram-Schmidt process to

compute a 3x3 rotation matrix r with rows

rl = (Zc_an)/”Zc_an”’
o= (@, —2) - (zy—2) 1)/, —2) — (z,~2) -7l and
r. =r Xr

3 1 2"
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where - and x are the dot and cross-products, respectively. 3D backbone coordinates can then

be reconstructed by multiplication of idealized coordinates (with z*m at the origin, Z*c -z

cx

along the x-axis, and Z*N - z*m in the xy-plane) by R:

where T3 = [1, 1, 1]. Accordingly, modeling the coordinates of a triplet of backbone atoms is

equivalent to modeling the Ca coordinate z and the rotation matrix r.

However, modeling rotation matrices introduces challenges not addressed by ref ['°]; the space
of 3x3 rotation matrices (known as the special orthogonal group of dimension 3, or SO(3)) is a
compact Riemmanian manifold on which the typical Gaussian distribution is not well-defined
and the so the associated techniques of ['°] do not apply. To this end we adapt the approach of
['¥], who extend diffusion generative modeling to Riemannian manifolds. In brief, they build on
the continuous-time diffusion framework*® and define their forward corruption process as the
Brownian motion on the manifold of interest, and characterize the time-reversal of this process
through the Stein score of the noised data distribution at each t.

In the case of SO(3), the marginal distribution of a rotation matrix r, evolving according to

Brownian motion for time ¢ from an initial rotation r, is given by the /GS0O3 distribution®*°, and

we may write ro~ 1GS03(n = Ty e = t). The density of the 1GS0O3 distribution with respect to
the uniform distribution on SO(3) is given by

e - 2 sin((4++
16S03(ri 1, &) = f(w(ru); €), for flw; €) = 3 (2 + De T D (3)
=0

where p is 3x3 mean rotation matrix and w(r) denotes the angle of rotation in radians
associated with a rotation r (i.e. its length if written in the axis-angle parameterization). We
approximate the power series in equation (3) by truncating after 2000 terms. We formulate a
discrete-time forward noising by discretizing the Brownian motion, which provides:

2 2 2 .
€ =0 —0_) and marginally

“)

q(rt|rt_1) = IGSOS(rt;rt_

2
q(rt|r0) = IGSOS(rt;rO, € =0

t

2. . . . . .
where o, is avariance schedule for rotations. In particular, we set this variance schedule by

using a continuous time analogue of a linear  schedule in a variance exploding SDE*, defined
as

0, = t* B+ B~ B

min n
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We chose Bmin = 1.06 and Bmax = 1.77 so that the rotations are corrupted at a rate similar to

the forward process on translations. In contrast to the translations, which converge to a
Gaussian distribution as t increases, the rotations converge to the uniform distribution on SO(3).

To approximate the reverse transitions for the rotations, we appeal to De Bortoli et al'® (Theorem
1), which shows that (up to error from discretization of the continuous time process) the reverse

process transitions have the form,

ro o |x ~ exp{Art} r for Art~IGSO3(exp{(cst2 - Gt—12) -V log q(xt)}, Gtz - Gt—12)’ (4)

t—=1"t

where v log q(xt) denotes the “Stein score” of the forward process at time ¢, and exp{-}

denotes the exponential map to SO(3) from the Lie algebra of SO(3) (the space in which the
score is defined).

Equation 4 describes how one could sample from the reverse process using the IGSO(3)
distribution based on the score of the forward process. One could in principle learn this score
function directly by score matching training'®. However, we instead rely on an approximation that
directly leverages RoseTTAFold’s ability to produce denoised structures when trained according
to Algorithm 1. For a given t and r we note that we may write

Vi, logq(zs) = Eq [V, log q(xs | xo) | 24]
=Eq [Vr, logq(re [ To) | 2]
~ Vi, logq(re [ ro = 7o)
= V., logIGSO3(ry; 7o, 02), (5)
where the first line is known as the denoising score matching identity'®%, the second line

obtains from the conditional independence structure of the forward process, the third line is an
approximation that can be thought of as replacing q(r0|rt) with a point mass on the noiseless

rotation rAO predicted by RoseTTAFold, and the final line recognizes the approximation as the

tractable IGSO3 density. In particular,

V log IGS03(ri7,€") = V w(rr ) - ——log f(w; €| (6)

A
T
w=w(Tr")

_ % rlog(rr )/w(rr ") —log f(w; €|

u)zu)(rrA T)

where log(rrA T) is the logarithmic map from SO(3) to the Lie algebra of SO(3) [*"], w(rrA T) is the
angle of rotation associated with rrA T, and f is the IGSO3 density factor in equation (3).

r log(rrA T) /co(wf T) is a unit length perturbation in the direction of log(rrA T) applied in the tangent

space of SO(3) at r, and %log f(w, ez)|w_ o is a scaling of this direction. Notably, when

w(rr
computed with RFdiffusion, Vr log IGSOB(rt; rAO, otz) is rotationally equivariant with respect to X

t

Computation of this score approximation and our use of it in the reverse process is described in
Algorithm 2.
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We reasoned that approximation in equation (5) may be reasonably accurate for two reasons.
First, in the case of Gaussian diffusion probabilistic models where optimizing to convergence

would provide ZAO(Zt) = Eq[zo|xt] , this approximation holds exactly in the sense that

Eq [Vz log q(zt|zo)|xt] = VZ log q(zt|z0 = Qo(xt)) Though this does not hold with equality with the
IGSO(3), because SO(3) is a Riemannian manifold and is therefore locally Euclidean the
IGSO(3) closely resembles a Gaussian for small t. Second, again when t is near to zero, X, will

be close to an un-noised structure and, if the model is trained well, Q(Tolxt) will be concentrated
near 720. Finally, we note that this rule has beneficial qualitative behavior -- as with the Gaussian

score, the magnitude of v log q(rt|r0 = rAO(xt)) will grow roughly linearly with the distance

between rtand rAO . Consequently, this leads to larger steps when r, is farther from rAO.

In summary we approximate reverse transitions by pa(rt_1 | xt) = IGSOB(rH; r ,ctz — GHZ)
t—1

n 2 2 A 2 . A 2
, Where ro, = exp{(ot -0, )V’”t log IGSO3(rt; Ty O, )}rt with Vﬁ log IGSOB(rt; Ty O, )

computed as in Equation (6).

1.6 Self-Conditioning

Self-conditioning was introduced previously?® where it was shown to dramatically improve text
diffusion. We implement self-conditioning in the manner described in Chen et al*®, which we
review here.

For sampling in diffusion generative models without self-conditioning, once a denoising step X,
has been sampled the prediction of the denoised data from the previous step (

A

= pgo(xm)) is discarded. However, since each denoising step is typically small, the

0,prev
predictions ;EO(xt) can be similar, so much of the denoising computation must be repeated. By
contrast, with self-conditioning one saves the denoising predictions at each step and provides
them as an input to the denoising model at the next iteration, instead predicting X, as

Q(xt 920 prey). When training with self-conditioning, on 50% of examples one performs a usual

denoising step, setting 920 prev = 0 and computing a loss as L(xo, xAO(xt, 920 L= 0)). The other

50% of the time, one (1) simulates an additional forward noising step to obtain xt+1~q(xt+1|xt),

= 0),
backpropagating gradients only through the second denoising step. Training and sampling with
self-conditioning are described in Algorithms 1 and 3, respectively

pre

(2) computes X prev = x(xt' X pren = 0), and (3) computes a loss as L(xo, xO(xt, x

0,prev
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In RFdiffusion, we input 920 prev through the template structure feature and we input x as
coordinates to the 3D track of RF. Inputting x as coordinates, as opposed to the distogram and

anglegram used in the template structure feature, allows the network to keep the motif fixed in
coordinate space.

1.7 Symmetric diffusion

As discussed in the main text, generating oligomeric assemblies obeying desired point-group
symmetry constraints is a design goal. In what follows we describe how we have leveraged
RFdiffusion to design symmetric oligomers.

Point group symmetries may be represented by a finite collection of rotation matrices that form a
mathematical group with respect to matrix multiplication as the group operation®'. For example,

we may represent the cyclic symmetry group of order K by the set of rotation matrices that

(k/K)360°

rotate increments of (360/K)° about the z-axis, C, = {RZ = Analogous

heso
representations exist for all other point groups (including dihedral, tetrahedral, octahedral, and
icosahedral). Without loss of generality, we set the first rotation to be the identity R =1, We

represent an oligomer with K monomer subunits each with M residues by X = [xl, xK]

where each subunit k consists of the translations and rotations x* = ([zkl,..., sz], [rkl,... rkM]) :

Then, we say an oligomer obeys a point group symmetry 9t = {RI,..., RK} , if

X = [R1 * xl, R * xl] where R * x' = ([Rxll, Rle], [erl,..., erM]) denotes the rotation

of the monomer backbone structure by R.

Previous work has demonstrated some success generating designs with symmetry through
hallucination with the inclusion of penalty terms on the deviation of predicted structures from the
desired symmetry, but this work suffered from large computational cost (on the order of 1 GPU
day per design) and low success rates, presumably due to the inability to precisely control the
desired symmetry. We hypothesized that RFdiffusion by contrast could provide improved control
over symmetries in design by enforcing hard constraints during the reverse process.

In contrast to the hallucination approach, the desired symmetry is enforced from the beginning
of the design trajectory and preserved throughout (Algorithm 3). Although exact symmetry is
enforced through explicit symmetrization at each denoising step, we observe that RFdiffusion
provides predictions of the denoised oligomer structures that preserve the desired symmetry
nearly exactly, even in the first denoising steps (Fig. S4A). This property of denoised predictions
owes to the exact equivariance of RoseTTAFold with respect to global rotations and the
approximate equivariance with respect to permutation (i.e. relabeling) of chains. In particular, in
Section M.61l we provide a proposition that guarantees that rotation and permutation
equivariance of a neural network are sufficient conditions for maintenance of point group
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symmetries of the neural network’s output. In RoseTTAFold diffusion, exact rotation
equivariance is inherited from the SE(3)-transformer architecture used in the structure module of
RoseTTAFold*’. Permutation equivariance by contrast arises if the intermediate representations
and outputs for each residue are unaffected by the ordering of chains. This is nearly the case
with RF diffusion, with the exception that the Rose TTAFold pair representation contains
directional sequence distance feature inputs for each pair of residues, clipped between -32 and
32 residues away; since oligomers are presented to RoseTTAFold by incrementing the
sequence position index at the start of each chain*’, the sign of these features breaks exact
permutation symmetry. However, we find empirically that deviation from exact symmetry in
RFdiffusion predictions is minimal even at the early steps.

1.8 Proposition on rotation symmetry

We here provide a proposition that provides a mechanism by which predictions of denoised
structures maintain the desired symmetry at each step. Here, we consider functions

Folx, w X, ] 2 [y, o0 ¥, ] that transform K rigid objects.

Proposition 1: Consider any function F: [xl, xK] - [yl, .. y_| and point group symmetry

R = {R,,.. R,}. IfFis both

!

(1) rotation equivariant, that is F([Rx, ., Rx.]) = [Ry,, .. Ry ] for every rotation matrix

R and

(2) permutation equivariant, that is F([xcy ay % (K)]) = [y | for every

y Y
o(1) o(K)
permutation o,

then F is symmetry preserving. In particular for any x, F ([Rlx, RKx]) = [Rly RKy] for some

Y.

Notably Proposition 1 holds for any neural network satisfying the assumption on F above. We
now prove the proposition.

Proof:

We first establish some basic properties about permutations of point groups. First note that
every member Rk € 9t defines a permutation of 9t since {Rle, RkRz, RkRK} = . Let o,

denote the permutation associated with RleT € Jt. In particular, o, is the permutation such that
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T T
for each m, R y = (Rle )Rm. Notably, ck(k) = 1 because R"k = (Rle )Rk =R. Lastly, for

(m (k)

any permutation o, we let ¢ denote its inverse, the permutation such that o(c(k)) = k for every
k, and note that for bar R . (RleT)Rm.
k

Assume without loss of generality that F(Rlx, RKx)1 =Ry. To prove the proposition, it
suffices to show that for any k, F(Rx, ., R, x), =R y. Consider o, as defined above. We can
write

F(Rlx, .y RKx) = F(R(}k( X,y R

T T
b 6]{(K)x)6k(k) = F(RR IRx.., (RR IR X),

k
where the first equality follows from the permutation equivariance of F, and the second equality

follows from the definitions of o, and c_rk. Finally, by the rotation equivariance of F,

T T _ T T _
F((R R R X, (R.R IR X) =[RR IR Y, ., RR IRY =Ry
Therefore F(Rx, ., R, x), =Ry, as desired.

Section 2: Training RFdiffusion

Supplementary Section 1 described conceptually how RFdiffusion was trained and used for
unconditional generation of protein backbones. In this section we describe specific training
details of the initial RoseTTAFold2 architecture and its subsequent fine-tuning. We then
describe how we have leveraged RFdiffusion for generation subject to specific design criteria.

2.1 RoseTTAFold2 Architecture

RoseTTAFold2 (RF2) (referred to simply as RoseTTAFold throughout this paper) is an updated
version of the original Rose TTAFold network®*” with multiple architectural improvements: 1) use
of a three-track architecture with initial coordinates from a template structure, 2) use of biased
axial attention to update 2D pair features by considering geometric constraints between
residues inferred from the current 3D structure, 3) communication between 1D, 2D, and 3D
tracks through attention biasing, and 4) use of recycling that executes the network multiple
times with the updated input embeddings based on outputs from the previous cycle. RF2
contains two major types of architecture blocks: main three-track blocks and the final structure
refinement blocks. The 3-track blocks consist of layers of biased row and column attention over
the 1D and 2D features, SE(3)-equivariant layers® to update 3D coordinates, and layers to
communicate between 1D, 2D, and 3D features. The structure refinement block is based on
SE(3)-equivariant network which gives refined 3D coordinates based on given 1D and 2D
features.

2.2 RoseTTAFold2 Training
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RF2 was trained based on a mixture of datasets including 1) monomer/homo-oligomer
structures in the PDB, 2) hetero-oligomer structures in the PDB (date cutoff August 2nd, 2021),
3) AlphaFold2 structural models having pLDDT > 0.7, and 4) negative protein-protein
interaction examples generated by random pairing. The training examples were sampled from
each database with a ratio of 2:1:4:1. The model was trained using the masked language model
(MLM) loss, distogram (dist) prediction loss, FAPE loss, accuracy estimation loss, bond
geometry loss and van der Waals (vdW) energy loss. For the initial round of training, only the
first four loss terms were used with crop size 256. After 200 epochs of initial round training, we
performed fine-tuning with all the loss terms with crop size 384 for 100 epochs. The entire
training took ~4 weeks of training using 64 V100 GPUs on Microsoft Azure. The training details
are summarized in Table 3.

Table 3: Details for RoseTTAFold2 training

Initial training Fine-tuning
Crop size 256 384
Batch size 64 64

Loss function

3.0*Lossyy + 1.0*Loss s +
10.0*LOSSFAPE + 0.1 *Lossaccuracy

3.O*LOSSMLM + 1-0*Lossdist +
10.0*LOSSFAPE + 0-1*I—OSSaccuracy +
0.1*LosSpong + 0.1*LOSS,qpy

Learning rate &
scheduling

0.001

Linear warm-up for first 1000
optimization steps, then decay
learning rate by 0.95 after every
15000 optimization steps

0.0005

No warm-up. Decay learning rate by
0.95 after every 15000 optimization
steps

Examples per 25600 25600
epoch

Number of 200 100
epochs

2.3 RFdiffusion Training

RFdiffusion was trained on only the dataset of monomer structures in the PDB that was used for
RF2 training. 20% of examples shown to RFdiffusion contain no fixed motif — this is the
unconditional-generation task. The other 80% of examples shown to RFdiffusion contain a

contiguous motif where the true sequence and structure are provided to the model. RFdiffusion

is trained starting from the final RF2 weights. We train RFdiffusion using the hyperparameters in
Table 4 (distogram CCE loss was used for stability). Although the coordinate inputs and outputs
of RoseTTAFold are in units of Angstroms, we define the diffusion process in a downscaled
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space by dividing all coordinate values of X, and 920 before performing each diffusion step by a

factor of 4 (chosen empirically). Subsequent steps are scaled back up to Angstroms. We
reparametrize the “template confidence” feature in RF to input the timestep.

Table 4: Details for RFdiffusion training

Crop size

384

Pseudo-batch size

64

Loss function

0.5*L0SSans + 1.0*LosS,; + 1.0°L0OSS g

Learning rate

0.0005
No warm-up. Decay learning rate by 0.95 after every
10000 optimization steps

Examples per epoch

25600

Number of diffusion timesteps

200

Beta schedule

Linear interpolation between b, = 0.01 and b; = 0.07

Fraction of protein residues masked
(when motif is provided)

Randomly picked from a uniform distribution between
20% and 100%, inclusive

Probability of motif being contiguous | 0.5
or discontiguous

Probability of providing 0.5
self-conditioning information

Coordinate scaling 0.25

RFdiffusion trains to convergence when initialized from RF2 weights in ~5 epochs. Training

takes ~3 days on 8 NVIDIAA100 GPUs.

2.4 Conditional training for functional-site scaffolding

Our approach to scaffolding functional motifs with RFdiffusion follows [°] and treats motif
scaffolding as a conditional sampling problem. We partition the residues of a structure into the
motif and consider the remainder of the backbone as the scaffold that supports it. For a
structure with L residues, we let M denote the (potentially discontiguous) set of indices

corresponding to the motif and S be the remaining indices, such that the union of M and S is the
set of indicesuptoL(ie. M U S = {1,-, L}). We write x"" to denote the structure of the motif

residues and x"to be the scaffold residues such that we may write the whole (un-noised) protein
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structure as X, = [x M, xOS]. Our goal is to sample scaffold backbones from the conditional

0

distribution q(xos|x0M). To do this, we aim to learn the reversal of the forward noising process

M

applied only to scaffold residues, with the motif held fixed, p,(x,_‘lx”, x,") ~ q(x,_’Ix", x,"),

t

where q(xt_15|xts, xOM) is the conditional forward noising process described in Methods 1.4 and
1.5.

We build on previous work* demonstrating that RoseTTAFold may be trained to respect motif
constraints provided as inputs through the template structure input features through retraining.
Because the division of residues into motif and scaffold is specific to each design problem, we
desired to train RFdiffusion such that it could be used for any location of the motif within the
sequence. To this end we took an amortized training approach, wherein for each
motif-scaffolding training example we (1) begin with a pdb structure X (2) choose a random

division into “motif” and “scaffold” (x0 = [xOM, xOS]) following the masking strategy outlined in

Table 4, (3) apply noise to the scaffold to obtain xt5~q(xt5 | xos), and (4) compute a loss on the
RFdiffusion prediction QO([xOM, xts]) of x, =[x M, xOS]. In order to encourage RFdiffusion to not

0
move the motif, we set the time-step input for motif residues to t=0, and compute the loss on
both the motif and the scaffold. Because motif side-chain geometry is crucial for most
motif-scaffolding problems, we additionally provide the amino acid sequence and side chain
torsion angles for motif residues as inputs to RFdiffusion (provided through RoseTTAFold’s
template feature inputs). Overall this strategy is akin to the diffusion model inpainting training
and generation described by, who use randomly generated image masks [ref 9.

Generation of scaffolds conditional on a motif with RFdiffusion differs from unconditional
generation only in (1) the inclusion of noise-free motif backbone and sidechain structure in the
template inputs and (2) replacement of the motif backbone coordinates in X, with un-noised

motif coordinates at each step and (3) setting of the timestep for motif residues to 0.

2.5 Fine-tuning RF diffusion on protein complexes and with fold information

The version of RFdiffusion fine-tuned on protein complexes, is trained starting from the base
version of RFdiffusion trained for 5 epochs. The training task consists of monomer examples
(50%) and complex examples (50%). When the model is shown a complex example, only one
side of the complex is noised, the other side is kept fixed (this is in keeping with established PPI
design methods?® where the target protein is kept fixed). When the model is shown a complex
example the model is provided with the residue indices of 0-20% of the residues (“hotspot
residues”) in the interface on the fixed chain side (the interface is defined as all residues within
10 A CB-CB distance of another chain), to permit targeting of the designed binder at inference
time. In a separate model, also trained on protein complexes, during both complex and
monomer training the model is provided with secondary structure 50% of the time and
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(independently) block adjacency information 50% of the time for the noised region. The
junctions between blocks of secondary structure and their corresponding entries in the block
adjacency matrix are masked during training, such that at inference time, one does not need to
specify exact, per residue secondary structure and block adjacency matrices. Specifically,
0-75% of secondary structure (and corresponding adjacency, when provided), is masked, with
this masking occurring over junctions in secondary structure (mask length 1-8 residues).

2.6 Fine-tuning RFdiffusion on enzyme active site scaffolding

The version of RFdiffusion fine-tuned for enzyme active site scaffolding is trained starting from
the base version of RFdiffusion trained for 5 epochs. During fine-tuning 30% of tasks are from
the base model task set (Table 4) and the other 70% are the triple contact task, in which a
random set of 3 residues all >10 residues apart in sequence space but with pairwise CB-Cf
distances < 6 A is selected to form a model “active site”. These three residues are included in
the motif, and for each, there is a 50% chance of including one flanking residue. If no such triad
is found in the monomer (as is the case for approximately 23% of training PDBs), the task would
fall back to the base model training task. In addition, the motif-specific displacement loss is
upweighted by a factor of 10 to encourage the network to keep the motif fixed, compensating for
the fact that otherwise motif recapitulation would comprise a significantly lower portion of the
overall loss due to the much shorter motif length in this task. The network was fine-tuned for 5
epochs in this manner.

2.7 Guiding RFdiffusion inference with external potentials

In addition to the network’s inbuilt ability to condition on structural motifs, the inference process
can be steered by external potential functions to generate proteins which possess arbitrary
desired properties, such as the existence of contacts with another protein or a desired surface
concavity. Previous work has demonstrated that diffusion models can be made to sample
conditionally from Py(x,1¥) without retraining if given a classifier able to operate on noisy

samples, p(y|xt). In particular, p(y = 1|xt) may be understood as a predicted probability that an
example X, has a property of interest (or is in a given “class”) given only the noised observation

X In contrast to unguided generation, wherein one noisily moves in the direction Vx log pe(xt)

(which points toward 920), with guidance on instead follows Vxlog pe(xt) +V logp(y = 1|xt) in
the reverse step'“®. In the present work, we construct heuristic approximations of these
classification log probabilities P(xt) =~ logp(y = 1| xt) for two protein conditional generation

objectives, symmetric oligomer design (Fig. S4C) and enzyme design with concave pockets
(Fig. S5). We now describe the details of choices of P(xt)in these applications.

When designing symmetric oligomers, we employ an inter-chain and intra-chain contact
potential to promote the formation of contacts between subunits. Letting Z = [z e ZK] denote
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the C, coordinates in oligomer with K subunits and L residues in each subunit (so for each k,

. 3
z, = [Zk,l' - zk'L] with each z, € R) we set

2

P D= % Y (kK + 1k = Klw, ) Switch(llz,, = 2,.,11,)

1<kk'<sK 1< 1I'<L intra

intra

where wo and woo weight the inter-chain and intra-chain potentials and are setto 2 and 0.2

respectively to prioritize the formation of inter-subunit contacts while encouraging individual
subunits to be well-packed.

n

r—d;
-

Switch(r) = ———— is a switching function which smoothly transitions from 1 if two atoms are
0 )m

within contact range to 0 when they are out of range. We set the hyperparameters that control its
functional dependence on distanceas n = 6, m = 12, d0 = 8, and ro= 4, based on physical

intuition of the contact distances we would expect between interacting sidechains. It is sufficient
to bias the distribution at high t to promote contacts in the higher order structure, and
unnecessary to continue to do so at low t as the quaternary structure has already been
sufficiently determined, so we scale the potential by a guide-scale g(t):

Psym'(xt’ t) = g(t)PSym(xt), for g(t) = (%)2_

When designing enzymes, in addition to recapitulating the sidechain geometry of the active site,
a pocket must be formed which has shape complementarity to the substrate. This condition can
be captured effectively by a simple attractive-repulsive potential parameterized by the minimum

distance between enzyme alpha-carbons and substrate atoms. Denoting the coordinates of a
substrate with K atoms by s = {Sk}k=1K and the coordinates of alpha-carbons by z = [21""' ZL]’

we set:

2

2
P Z,S) =w Switch( min ||z — s -w Rep( mi
enzyme( ) attr[1<zl:<L (1SkSK ” l k||2 )] rep[1<zl<L p( 1<k<K
. — 0 — — —
where Rep(r; Ty p) = max(0, = ) and we set woo= 1, Wrep = 4, ro= 2.

0

The gradient of Rep(r; Ty p) decays smoothly from-1atr = 0toOatr = L penalizing

clashes between the protein backbone and the substrate. We do not use a guide scale with
, as the potential relates to fine-grained details of the structure which are not fully

enzyme

determined until late in the reverse diffusion process



Experimentally, the model is sufficiently receptive and robust to bespoke potentials based on
physical intuition that we were able to achieve our objectives of interface production in the case
of symmetric oligomer design and implicit substrate modeling in the case of enzyme design
without exhaustive hyperparameter tuning.

Section 3: In silico experimental methods

3.1 Unconditional benchmarking

To test RFdiffusion on unconditional generation of monomers (Fig. 1C-F), we generated 100
designs for lengths 70, 100, 200, 300, 400, 600, 800 and 1000 amino acids. For each
backbone, we generated 8 sequences with ProteinMPNN and subsequently predicted their
structures with AF2 (or ESMFold - Fig. S11). The best sequence (by alignment of the predicted
structure to the design model) was taken for each backbone. We benchmarked against the
recently-published RoseTTAFold Hallucination*. As some knowledge of how best to use
RoseTTAFold for Hallucination is required, these samples were generated by the respective
expert. ProteinMPNN was used to design sequences for all benchmarking designs. For
ProteinMPNN, a sampling temperature of 0.1 was used, and cysteines were omitted from the
designs (as these are often problematic for protein purification).

3.2 Conditional benchmarking

The full conditional benchmark is described in Table 1, and encompasses 25 design challenges
from six recent publications*52432-3* RFdiffusion was compared to RoseTTAFold Hallucination
and RFjoint Inpainting. While both Hallucination and Inpainting are able to generate sequences
directly, for the fairest comparison, we also redesigned the sequence with ProteinMPNN, and
took the best of 8 sequences per backbone. Both RFjoint Inpainting and RF Hallucination are
able to scaffold structure without sequence, so in cases where functional-site residues were not
required for function, these methods were permitted to redesign the sequence of the
non-functional residues, which is generally beneficial for design. Finally, as Hallucination
requires some expert knowledge and empirical hyperparameter tuning, some exploration of the
benchmark set was permitted, and these designs were generated by the respective expert.

For a number of comparisons made in the paper (Fig. S1, S2C-D), a smaller benchmark
encompassing a subset of unconditional and conditional benchmark problems described above
was used.

3.3 Assessing diversity of designs

Designs were assessed for their diversity both to each other, and to the PDB (PDB100 April 19,
2022), using the TM score®. In Fig. S1F, designs were clustered at a 0.6 pairwise TM score
cutoff.
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3.4 Assessing choice of losses

Previous work on using DDPMs for protein design® has used Frame Aligned Point Error (FAPE)
as the loss function. FAPE was introduced in AF2 and was also used to train RF2. FAPE is SE3
invariant but not invariant to reflections, this makes it an ideal loss for protein structure
prediction where the exact global orientation of the predicted structure is arbitrary, but chirality

within the structure is important. With a DDPM, however, ;0 must be in the same global frame

as x_since x and x_are interpolated between to generate x . We reasoned that, as FAPE is

SE3 invariant, a model trained with FAPE would not learn to make predictions in the same
global frame as the inputs. We tested this by comparing a model trained with FAPE to a model
trained with the C, and rotation squared distance losses described in Section 1.3. By contrast
these losses are not SE3 invariant.

We found that the model trained with FAPE was unable to perform unconditional generation; the
model was unable to preserve a global frame and this caused the denoising process to diverge
after repeatedly interpolating between coordinates in different frames. In the motif scaffolding

task, ;0 and x_can be aligned to one another using the fixed motif, this effectively eliminates the

global frame problem as any arbitrary SE3 action applied by the model can be reversed by this
motif-alignment step. In the motif-scaffolding task we found that the model trained with
displacement losses dramatically outperformed the model trained with FAPE (Fig S1A). We
attribute the performance difference to better agreement of the squared distance losses with the
objective of matching the reversal of the forward process, which thereby yields a model that
better matches the data distribution (see Sections 1.3-1.5).

3.5 Design of symmetric oligomers

To better understand RFdiffusion’s capacity for designing symmetric oligomers, we generated
backbones for the following groups: dihedral (D2, D3, D4, D5), cyclic (C3, C5, C6, C8, C10,
C12), tetrahedral, octahedral, and icosahedral. We tested both RFdiffusion’s ability to design
symmetry for these groups with and without a guiding potential function for inter- and intra-
chain contacts, weighting in all cases the intrachain contacts over the interchain. For dihedral,
cyclic, and tetrahedral symmetries, protomers had 60-110 AA per chain, and for a subset of the
cyclic symmetries (C3, C5, C6), additional models were designed with large protomers (150-400
AA per chain) to test RF diffusion’s ability to design unconditional yet large oligomers. The
octahedral and icosahedral models were designed by modeling the minimal number of subunits
(100-200 AA per protomer) required to capture all axes of symmetry (O: 4-, 3-, and 2-fold; I: 5-,
3-, and 2-fold).

Original backbones were filtered by sufficient oligomeric interfaces (determined by C,-C,
backbone distances between chains) to enrich for backbones with a higher likelihood for
assembly following design. Cyclic and D2 symmetries were filtered for backbones consisting of
protomers forming at least two distinct 10 residue interfaces, whereas all other symmetries
required at least three distinct 10 residue interfaces. Following filtering, all backbones were
redesigned with ProteinMPNN, and then sequences were validated by AF2 (for the cyclic and
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dihedral symmetries). Given the complexity and challenge these symmetries present, we
provided AF2 with an initial guess? and increased the number of recycles the model could use
in the predictions. Tetrahedra were predicted using RoseTTAFold, and octahedron and
icosahedron were predicted with AF2 along their C3 axes of symmetry only. Designs were
considered successful (success rates for cyclic and dihedral shown in Fig. S4) if the structure
predictions had a mean pLDDT > 80 and an RMSD between prediction and design model of <
2 A. This same filtering regime was also used for the cage symmetries, but applied to the C3
predictions (for octahedra and icosahedra), and the monomer predictions (for tetrahedra).

3.6 Design of p53 helix scaffolds

To design scaffolds able to hold the Mdm2-binding helix of p53, we used the version of
RFdiffusion fine-tuned on protein complexes (see Methods 2.5), and provided the network with
both the p53 helix and the whole Mdm2 protein structure from PDB: 1YCR. To encourage extra
contacts with the target protein, we used an external potential to encourage inter-chain contacts
(see Methods 2.7). No fold information was provided to the network in this case.

3.7 Design of symmetric nickel binding oligomers

To design the C4-symmetric Nickel binding proteins (Fig 3H,S6), we started from a set of
backbone dependent inverse rotamers*® sampled for pieces of ideal alpha-helix (¢ = -40°, y =
-60°) containing the Histidine rotamers in the middle, and an Alanine residue on either side of
the Histidine (three residues total per asymmetric unit going into the model). The rotamers
chosen were of probability 0.3502, 0.1207, 0.0647, 0.0474, 0.0469, and 0.0365. The 3-residue
inverse rotamers were then positioned relative to the Z-axis such that (A) the imidazole group
was perfectly vertical/flat with respect to the Z-axis, and (B) the NE2 atom of the imidazole
group was 2.3 Angstroms away from the Z-axis (a common coordination distance for
His-containing square-planar nickel coordinating sites in the MetalPDB®").

Once the 3-residue inverse rotamers were aligned with respect to the Z-axis via the above
procedure, the rotamers were symmetrized around the Z-axis and fed to the model as separate
chains, each with a fixed motif. 100 reverse diffusion trajectories were run for the full T=200
steps for all 7 symmetric motifs, with 50 residues designed on either side of the inverse rotamer
helix chunks in each chain (total complex length 412 residues). As in Methods section 2.7, an
intra-chain guiding potential was used during the trajectory with a weight of 1, an inter-chain
guiding potential with a weight of .06, and a global multiplicative factor of 2x. Half (50) the
designs per motif were designed such that the effect of the external potential decayed
quadratically during the trajectory, while the other half having potentials decay cubicly.
Importantly, multiple models from the training session which produced RFdiffusion were tested
to see which checkpoint could scaffold the sites most accurately, and pilot experiments
suggested the set of weights after the 8th epoch, rather than the 5th epoch (standard used for
this paper) should be used.
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Before sequence design with ProteinMPNN, RFdiffusion outputs were filtered to only allow
designs for which the backbone RMSD from the model < 1 A RMSD from the true motif. This
yielded 199 backbones, and ProteinMPNN was then used to perform symmetric sequence
design on all residues except the Histidines (including the original Alanines), with 16 sequences
per backbone. AF2 was then used to predict the structure of all designed sequences.

3.8 Design of protein binders to rigid targets

To test the ability of RFdiffusion to design de novo binders to rigid targets, we designed binders
to five targets: PD-L1 (PDB: 5045), IL7 Receptor a (PDB: 3DI3), Insulin Receptor (PDB: 4ZXB),
TrkA Receptor (PDB: 1TWW?7) and Flu Hemagglutinin (PDB: 5VLI). We generated designs both
with and without fold conditioning, with the folds used derived from scaffold sets typically used
for Rosetta-based protein binder design*. In all cases, we targeted binders, using input
“hotspot” residues, to a specific site on the target protein. In line with current best practice?®, we
tried using Rosetta FastRelax** before running a single ProteinMPNN, although we found that
this was not systematically helpful for design success rates. For the five design cases, we
generated several thousand designs. We classed a design as successful if it had AF2 pAE of
interaction between binder and target < 10 (this has been shown to be highly indicative of
design success), as well as RMSD between the designed binder and the AF2 prediction < 1A,
and AF2 pLDDT > 80. Success rates are reported in Fig. 4B, and were several orders of
magnitude higher than with traditional Rosetta binder design.

3.9 Design of helical peptide binders

Binders were designed to two helical peptides: Bim (DMRPEIWIAQELRRIGDEFNAYYARR,;
PDB: 6X80) and PTH (SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF; PDB: 1ET1).
External potentials were used to promote interactions between the binder and target (see
Methods 2.7). Note that for these designs, an earlier version of RFdiffusion was used. Briefly,
this network was trained with a coordinate scaling of 1/15, and without self-conditioning. It was
also trained with autoregressive sequence decoding over the final 40 diffusion steps. The model
was trained for 4 epochs.

3.10 Figures and statistics shown in the paper

Protein structures depicted in this paper were rendered in PyMOL®2, and graphs were plotted

with Matplotlib®® and Seaborn®. Note that for all boxplots displayed in the paper, for aesthetic

reasons, outliers are not displayed. Appropriate statistical tests were performed using SciPy®,
as indicated in figure legends.

Section 4: In vitro experimental methods

4.1 Plasmid construction

Symmetric oligomer designs were ordered as synthetic genes (eBlocks, Integrated DNA
Technologies) with compatible Bsal overhangs to the target cloning vector, LM0627 (ref [']) for
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Golden Gate assembly. LM0627 is a modified expression vector containing a Kanamycin
resistance gene and a ccdb lethal gene between Bsal cut sites to select out failed clones.
Subcloning into LM0627 results in the following product:
MSG-[protein]-GSGSHHWGSTHHHHHH, with the C-terminal SNAC cleavage tag and 6XHis
affinity tag respectively underlined. Helical peptide binders were ordered in a similar format,
except for the addition of adaptors (GGGSGGGGSASHMRS,

SSEISFCSEPPPSRRS) permitting cloning into the pETcon3 vector (as well as LM0627), to
permit both purification in E. coli and yeast surface display.

4.2 Protein expression and purification

For the oligomeric and protein binder expression screens, a previously reported protocol was
followed’, with some modifications as denoted. In short, Golden Gate subcloning reactions of
designs were carried out in 96-well PCR plates in 1uL volume. Reaction mixtures were then
transformed into a chemically competent expression strain (BL21(DE3)), and 1-hour outgrowths
were split directly into four 96-deep well plates containing 0.9-1.0mL of auto-induction media
(autoclaved TBII media supplemented with Kanamycin, 2mM MgSO4, 1X 5052) for a final total
volume of approximately 4mL. The following day (20-24 hrs later), cells were harvested and
lysed, and clarified lysates were applied directly to a 50uL bed of Ni-NTA agarose resin in a
96-well fritted plate equilibrated with a Tris wash buffer. After sample application and flow
through, the resin was thoroughly washed, and samples were eluted in 200uL of a Tris elution
buffer containing 300mM imidazole. For oligomers, 0.5 M EDTA was spiked into the eluates (10
mM final) to reduce self-association due to the 6XHis tag. All eluates were sterile filtered with a
96-well 0.22um filter plate (Agilent 203940-100) prior to size exclusion chromatography.

Protein designs were then screened via SEC using an AKTA FPLC outfitted with an
autosampler capable of running samples from a 96-well source plate. The symmetric oligomers
were run on a Superdex200 Increase 5/150 GL column (Cytiva 28990945) (10,000 to 400,000
Da separation range). For the cyclic and dihedral symmetric oligomers, a running buffer of 20
mM NaPhos pH 7.4, 100 mM NaCl was used. For the tetrahedral, octahedral, and icosahedral
oligomers, samples were run in 20 mM Tris pH 8, 50 mM NaCl, 100 mM Glycine. To improve
peak resolution, the SEC column was connected directly in line from the autosampler to the UV
detector. 0.25 mL fractions were collected from each run, and selected fractions were pooled for
further analysis (native mass spectrometry, negative stain EM, SDS-page).

Purification of helical peptide binders was performed similarly, except that the wash buffer
comprised 20 mM Tris pH 8, 100 mM NaCl, and SEC purification was performed on a 10/300
Superdex 75 column.

4.3 Negative-Stain EM sample preparation

De novo designed oligomeric proteins were diluted to 0.1mg/mL for negative stain. 3L of the
diluted complexes were immediately negatively stained after diluting using Gilder Grids overlaid
with a thin layer of carbon and 2% uranyl formate.



4.4 Negative-Stain EM data collection, processing, and validation

Data were collected on an Talos L120C 120kV electron microscope equipped with a CETA
camera. A total of ~150 images were collected per sample by using a random defocus range of
1.3-2.3 um, with a total exposure of between 30 and 50 e—/A2, with a pixel size of either 1.54 or
2.49 A/pixel. All data were automatically acquired using EPU (ThermoFisher Scientific). All data
processing was performed using CryoSPARC V4.0.3 (PMID: 28165473). The parameters of the
contrast transfer function (CTF) were estimated using Patch CTF, with minimal and maximal
fitting resolutions set to 40A and 8A, respectively. Particles were picked initially in a
reference-free manner using blob picker, followed by template picking using well-defined 2D
classes of intact oligomers. Particles were extracted after correcting for the effect of the CTF for
each micrograph with a box size of 80 pixels. Extracted particles were sorted by reference-free
2D classification. Given the small size of these particles, 2D classification was performed both in
the presence and absence of CTF correction, with the best parameters and resulting classes
selected for subsequent 3D ab initio reconstruction. 3D ab initio jobs for each RFdiffusion
construct were performed by sorting into 3-4 classes in the presence and absence of the
appropriate symmetry operator and compared. Resulting ab initio maps which exhibited a
striking degree of similarity to both the 2D class average projections and computational design
model were next rigid-body docked against the AlphaFold2 prediction model for further
validation. For HE0537, the ab initio map and corresponding particles which demonstrated
highest agreement to the design model were homogeneously refined in the presence of applied
symmetry, with a maximum alignment resolution set to 15A, followed by rigid-body docking
against the AF2 predictive model, similar to the other designs.

4.5 Yeast surface display screening of peptide binding

EBY100 S. cerevisiae were transformed with 50ng digested pETcon3 and 100ng insert DNA
following a protocol described previously*?2. EBY100 cultures were grown in C-Trp-Ura medium
supplemented with 2% (w/v) glucose (CTUG). For induction of expression, saturated cultures
were diluted into SGCAA medium supplemented with 0.2% (w/v) glucose and induced at 30°C
for 16-24h. Cells were washed with PBS supplemented with 1% (w/v) bovine serum albumin
(PBSF), and labeled for 40 minutes at room temperature with 10nM biotinylated peptide
(no-avidity conditions). After incubation, cells were washed and resuspended in PBSF and
sorted on an Attune NxT Flow Cytometer (Thermo Fisher Scientific).

4.6 Fluorescence polarization

Fluorescence polarization binding assays were carried out in 96-well plates (Corning 3686), with
two-fold serial dilution of designed peptide binders in the presence of 0.5nM TAMRA-labelled
peptide targets. Protein and peptide were diluted from their stock concentration into 20mM Tris
pH 8, 100mM NaCl, 0.1% v/v Tween 20. After incubating the peptide and binder for one hour at
room temperature, the fluorescence polarization was measured at the excitation and emission
wavelengths of the TAMRA dye (530/590nm), in a Synergy Neo2 multi-mode platereader.
Titrations were conducted in replicate, and the KD was fitted with SciPy®. Specifically, curves
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were fit to N observations of an observed signal, Signali, at titrated concentrations [Atot]i

according to the following equation:

A, ], 18, 1K)

conc' toti’ " tot”’

(B, !

Where [B,_]is the known total concentration of the binder, Baseline and Amplitude are free
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Signali = Baseline + Amplitude
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parameters, and the concentration of the bound state [AB] is computed as
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The unknown parameters ( K, Baseline and Amplitude) were fit using scipy.optimize.curve_fit, [Bt

]

ot
was additionally fit in the optimization, but only allowed to within 0.5 nM + 0. 1%.

4.7 Bio-layer Inferometry (BLI) Binding Experiments

BLI experiments were performed on an Octet Red96 (ForteBio) instrument, with streptavidin
coated tips (Sartorius Item no. 18-5019). Buffer comprised 1X HBS-EP+ buffer (Cytiva
BR100669) supplemented with 0.1% w/v bovine serum albumin. Tips were pre-incubated in
buffer for at least 10 minutes before use. Tips were then sequentially incubated in 50nM
biotinylated Bim peptide (loading, 500s), buffer (baseline, 150s), designed binder (association,
1200s) and buffer (dissociation, 600s). Due to the extremely slow dissociation of Bim from the
designed binders, it was not possible to calculate a precise Kb, but estimates suggest
significantly sub-nanomolar affinity.
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