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INTRODUCTION:Protein-protein interactionsplay
critical roles in biology, but the structures of
manyeukaryoticproteincomplexesareunknown,
and there are likely many interactions not yet
identified. High-throughput experimentalmeth-
ods such as yeast two-hybrid and affinity-
purificationmass spectrometry have been used
to identify interactions inmultiple organisms,
but there are inconsistencies between dif-
ferent datasets, and themethods do not provide
high-resolution structural information. Here,
we use deep learning methods to systematically
identify and build structures for the protein

complexes that mediate key processes in
eukaryotes.

RATIONALE: Interacting proteins often coevolve,
and in prokaryotes, evolutionary information
can be used to identify interactions on the
proteome scale at an accuracy higher than
that of experimental screens. Extending this
method to eukaryotes is complicated because
there are fewer genome sequences available,
resulting in weaker coevolutionary signals.
The deep learning methods RoseTTAFold and
AlphaFold, have a rich understanding of pro-

tein sequence-structure relationships, and so
could help overcome this limitation.

RESULTS: We developed a coevolution-guided
protein interaction identification pipeline that
incorporates a rapidly computable version of
RoseTTAFold with the slower but more ac-
curate AlphaFold to systematically evaluate
interactions between 8.3 million pairs of yeast
proteins. RoseTTAFold alone has comparable
performance in identifying protein-protein in-
teractions to that of large-scale experimental
methods; combination with AlphaFold in-
creases identification accuracy. In total, we
constructed models for 106 previously un-
identified assemblies and 806 that were struc-
turally uncharacterized.
These complexes provide rich insights into a

range of biological processes from transcription,
translation, and DNA repair to protein trans-
port andmodification. For example,Rad51plays
apivotal role inDNArepair throughhomologous
recombination, and mutations are associated
with Fanconi anemia and cancer in humans.
Rad55andRad57arepositive regulators ofRad51
assembly on single-stranded DNA. Our Rad55–
Rad57–Rad51 complex model suggests that
Rad55–Rad57 can bind at the 5' end of the
Rad51 single-stranded DNA filament and may
stabilize the filament conformation of Rad51.
Glycosylphosphatidylinositol transamidase
(GPI-T) is a pentameric enzyme complex that
catalyzes the attachment of GPI anchors to the
C terminus of proteins. GPI-T is structurally
uncharacterized, and mutations in subunits of
the complex have been implicated in neuro-
developmental disorders and cancer inhumans.
Our model of the five-protein assembly shows
that the previously identified catalytic dyad
is positioned adjacent to a channel formed
by three other subunits that could function in
C-terminal GPI-T signal peptide recognition.

CONCLUSION:Ourapproachextends the rangeof
large-scale deep learning–based structuremodel-
ing frommonomeric proteins to protein assem-
blies. Followingupon themanynew interactions
and complex structures should advance the
understanding of a wide range of eukaryotic
cellular processes and provide new targets for
therapeutic intervention. Our results herald a
new era of structural biology in which computa-
tionplays a fundamental role inboth interaction
discovery and structure determination.▪
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Protein-protein interactions play critical roles in biology, but the structures of many eukaryotic protein
complexes are unknown, and there are likely many interactions not yet identified. We take advantage
of advances in proteome-wide amino acid coevolution analysis and deep-learning–based structure
modeling to systematically identify and build accurate models of core eukaryotic protein complexes
within the Saccharomyces cerevisiae proteome. We use a combination of RoseTTAFold and AlphaFold to
screen through paired multiple sequence alignments for 8.3 million pairs of yeast proteins, identify
1505 likely to interact, and build structure models for 106 previously unidentified assemblies and
806 that have not been structurally characterized. These complexes, which have as many as five subunits,
play roles in almost all key processes in eukaryotic cells and provide broad insights into biological function.

Y
east two-hybrid (Y2H), affinity-purification
mass spectrometry (APMS), and other
high-throughput experimental approaches
have identifiedmany pairs of interacting
proteins in yeast and other organisms

(1–5), but there are discrepancies between sets
generated using the different methods and
considerable false-positive and false-negative
rates (6–8). Because residues at protein-protein
interfaces are expected to coevolve, the like-
lihood that any two proteins interact can be
assessed by identifying and aligning the or-
tholog sequences of the two proteins in many
different species, joining them to create paired
multiple sequence alignments (pMSAs), and
then determining the extent to which changes
in the sequences of orthologs for the first pro-
tein covary with ortholog sequence changes
for the second (9, 10). Such amino acid co-
evolution has been used to guide modeling of
complexes for cases in which the structures of
the partners are known (11, 12) and to sys-
tematically identify pairs of interacting pro-
teins in prokaryotes with an accuracy higher
than that of experimental screens (9). Recent

deep-learning–based advances in protein struc-
ture prediction (13, 14) have the potential to
increase the power of such approaches as they
now enable accurate modeling not only of
proteinmonomer structures but also protein
complexes (13).
We set out to combine proteome wide

coevolution-guided protein interaction iden-
tification with deep-learning–based protein
structure modeling to systematically identify
and determine the structures of eukaryotic
protein assemblies (Fig. 1A). We faced several
challenges in directly applying to eukaryotes
the statistical methods we had found effective
in identifying coevolving pairs in prokaryotes
(8). First, far fewer genome sequences are
available for eukaryotes than prokaryotes: The
average number of orthologous sequences
(excluding nearly identical copies with >95%
sequence identity) is on the order of 10,000
for bacterial proteins but 1000 for eukaryotic
proteins. Thus, multiple sequence alignments
for pairs of eukaryotic proteins contain fewer
diverse sequences, making it more difficult
for statistical methods to distinguish true

coevolutionary signal from the noise. Second,
eukaryotes in general have a larger number of
genes, making comprehensive pairwise anal-
ysis more computationally intensive and in-
creasing the background noise. Third, mRNA
splicing in eukaryotes further increases the
number of protein species, resulting in errors
in gene predictions and complicating sequence
alignments. Fourth, eukaryotes underwent sev-
eral rounds of genome duplications in multi-
ple lineages (15), and it can be difficult to
distinguish orthologs from paralogs, which
is important for detecting coevolutionary
signal because the protein interactions of
interest are likely to be conserved in orthologs
in other species but less so in paralogs.
To mitigate the first three challenges, we

chose to predict protein complexes for the
yeast Saccharomyces cerevisiae as the start-
ing point because there are a large number
of fungal genomes (16), the genome is rela-
tively small (6000 genes in total), and there
is relatively little mRNA splicing (17). Further-
more, because the interactome of yeast has
been extensively studied, there is a “gold stan-
dard” set (see materials and methods) of
known interactions to evaluate the accuracy
of predicted interactions and structures.
To distinguish orthologs from paralogs,

we started from OrthoDB (18), a hierarchical
catalog of orthologs across 1271 eukaryote ge-
nomes, and supplemented each orthologous
group with sequences from 4325 eukaryote
proteomes that we assembled from the Na-
tional Center for Biotechnology Information
(https://www.ncbi.nlm.nih.gov/genome) and
the Joint Genome Institute (19). Among these,
2026 are fungal proteomes spanning 14 phyla
(47 classes). We compared the sequences for
each protein in each of the additional 4325
proteomes against those of the most closely
related species in the OrthoDB database and
used the reciprocal best hit criterion (20) to
identify orthologs (fig. S1); these were then
added to the corresponding orthologous group.
A complication is that each species frequently
contains multiple proteins belonging to the
same orthologous group, leading to ambi-
guity in determining which protein should
be included. These multiple copies may rep-
resent alternatively spliced forms of the same
gene, parts of the same gene that were split
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into multiple pieces because of errors in gene
prediction, or recent gene expansions spe-
cific to certain lineages. We dealt with these
possibilities by keeping only the longest iso-
form of each gene, merging pieces of the same
gene, and selecting the copy with the highest
sequence identity to single-copy orthologs in
other species. For 4090 out of ~6000 yeast
proteins, we were able to assign a single-copy
yeast protein to orthologs in other species, and
we generated pMSAs for all 4090 × 4089/2 =
8,362,005 pairwise combinations of these pro-
teins (fig. S2). We focused on 4,286,433 pairs
with alignments containing over 200 sequences
to increase prediction accuracy and less than
1300 amino acids to accelerate computation
(fig. S3).
In a first set of calculations, we found that

even with the advantages of S. cerevisiae and

improved ortholog identification, the statisti-
cal method (direct coupling analysis, DCA) we
had used in our previous coevolution-guided
protein-protein interaction (PPI) screen in pro-
karyotes (9) [themore accurate GREMLIN (11)
method is too slow for this] couldnot effectively
distinguish a gold standard set of 768 yeast
protein pairs known to interact (5) (http://
interactome.dfci.harvard.edu/S_cerevisiae/)
from the much larger set (768,000 pairs) of
primarily noninteracting pairs (Fig. 1B, gray
curve, area under the curve: 0.016). Progress
required a more accurate and sensitive, but
still rapidly computable, method to evaluate
protein interactions based on pMSAs.
We explored the application of the deep-

learning–based structure prediction meth-
ods, RoseTTAFold (RF) andAlphaFold (AF), to
this problem. Even though RF was originally

trained on monomeric protein sequences
and structures, it can accurately predict the
structures of protein complexes given pMSAs
with a sufficient number of sequences (13).
We found that a lighter-weight (10.7 million
parameters) RF two-track model (figs. S4 and
S5) provided a good trade-off between com-
pute time and accuracy: The model requires
11 s (about 100 times faster than AF) to process
a pMSA of 1000 amino acids on a NVIDIA
TITAN RTX graphic processing unit, and it
can effectively distinguish gold standard PPIs
among much larger sets of randomly paired
proteins. The very short time required to ana-
lyze an individual pMSA made it possible to
process all 4.3 million pMSAs. This method
considerably outperformedDCA in distinguish-
ing gold standard interactions from random
pairs (Fig. 1B, blue curve, area under the curve:
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Fig. 1. Evaluation of protein interaction and structure prediction accuracy.
(A) The PPI screen pipeline. (B) Performance (precision at different levels of
recall) of different methods in picking out gold standard PPIs from the set
of 4.3 million pMSAs [precision: number of true positives above a cutoff divided
by the total number of pairs above this cutoff; recall: number of true positives above
cutoff divided by the total number of true positives (gold standard PPIs)]. Pairs
were ranked by the top coevolution score or contact probability between residue pairs.
DCA: direct coupling analysis. RF2t: top contact probability between residues
of two proteins by RF two-track model. RF2t++, optimized RF2t (see materials

and methods). RF2t++ predictions better than the cutoff shown in vertical black
line (RF2t++L in Fig. 1C) were processed with AF; recall of gold standard PPIs
at this cutoff is 29%, and precision is 23%. RF2t++ results with amore stringent cutoff
(red vertical line) are also shown in Fig. 1C (RF2t++H). (C) AF contact probability
ranking of complexes selected by RF2t++ in (B); complexes with scores above the
horizontal black line were selected for further analysis. (D) Number of high-scoring
(top contact probability >0.67) AF predictions in PPI sets from different sources.
(E) Distribution of percent of AF predicted interprotein contacts with predicted error
<8 Å found in contact (<8 Å) in closely related experimental structures.
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0.219), using the highest predicted contact
probability over all pairs of residues in the
two proteins as a measure of the propensity
for two proteins to interact (fig. S6). Perform-
ancewas further improved (Fig. 1B, green curve,
area under the curve: 0.248) by correcting over-
estimations of predicted contact probabilities
between the C-terminal residues of the first
protein and the N-terminal residues of the
second protein, and of predicted interactions
for a subset of proteins showing hub-like in-
teractions with many other proteins (see ma-
terials and methods and figs. S7 and S8). The
much better performance of RF than DCA
likely stems from the extensive information
on protein sequence-structure relationships
embedded in the RF deep neural network;
DCA, by contrast, operates solely on protein
sequences with no underlying protein struc-
ture model.
Wenext exploredwhetherAF residue-residue

contact predictions could further distinguish
interacting from noninteracting protein pairs.
Like RF, AF was trained on monomeric pro-
tein structures, but given the good results with
two-track RF on protein complexes and the
higher accuracy of AF [also a two-track net-
work followed by a three-dimensional (3D)
structure module] onmonomers, we reasoned
that it might similarly have higher accuracy
than RF on complexes; to enable modeling of
protein complexes using AF, we modified the
positional encoding in the AF script (seemate-
rials and methods). AF was too slow to be
applied to the entire set of 4.3 million pMSAs
[this would require 0.1 to 1 million graphics
processing unit (GPU) hours]; instead we
applied AF to the 5495 protein pairs with the
highest RF support (indicated by the black
vertical line in Fig. 1B). Using the highest AF
contact probability over all residue pairs as
a measure of interaction strength, we found
that the combination of RF followed by AF
provided excellent performance (Fig. 1C and
figs. S9 and S11). Almost all the gold standard
pairs were ranked higher than the negative
controls, allowing selection of a set of 715 can-
didate PPIs with an expected precision of 95%
at an AF contact probability cutoff of 0.67
(black horizontal line in Fig. 1C); we refer to
this RF plus AF procedure as the de novo PPI
screen, and the resulting set of predicted in-
teractions, the de novo PPI set, below.
Owing to the trade-off between compute

time and accuracy, and the necessity of setting
a stringent threshold to avoid large numbers
of false positives given the very large number
of total pairs, we were concerned that some
interacting proteins might not coevolve suffi-
ciently to be identified robustly in our all-versus-
all RF screen. Given the excellent performance
of AF in distinguishing gold standard inter-
actions among the RF filtered pairs, we also
applied AF to pMSAs for PPIs reported in the

literature, including those identified in high-
throughput experimental screens. Similar-
ly to our de novo PPI screen procedure, we
considered protein pairs with AF contact
probability larger than 0.67 to be confident
interacting partners. We found that 47% of
the gold standard PPIs were confidently pre-
dicted, with lower ratios (31 and 24%) for
candidate PPIs from the literature (http://
interactome.dfci.harvard.edu/S_cerevisiae/
download/LC_multiple.txt) (3) or supported
by low-throughput experiments according
to BIOGRID (21) (Fig. 1D). The ratio of con-
fidently predicted PPIs is even lower for
protein pairs identified by Y2H (18%) or
APMS (14%) screens (table S1), consistent
with the known larger fraction of false posi-
tives in large-scale experimental screens
(8, 22). The fast RF two-track model used in
the de novo screen has an accuracy compa-
rable to or better than that of the large-scale
experimental screens when assessed in this
way: With a high-stringency RF cutoff (in-
dicated by the red vertical line in Fig. 1B),
the fraction of confidently predicted pairs
among PPIs identified by RF is 32%, similar
to the accuracy of low-throughput experi-
ments; with a lower stringency cutoff (indi-
cated by the black vertical line in Fig. 1B), this
fraction becomes closer to that of the large-
scale experimental screens, but somewhat
fewer true PPIs aremissed thanwith the higher
cutoff (Fig. 1D).
In total, we identified 715 likely interacting

pairs from the “de novo RF→ AF” screen, and
1251 from the “pooled experimental sets →
AF” screen, of which 461 overlap, resulting
in a total of 1505 PPIs (see figs. S11 to S13 for
interface size and secondary-structure distri-
butions for the predicted complex structures).
Out of these, 699 have been structurally char-
acterized, 700 have some supporting exper-
imental data from literature and databases,
and 106 have not, to our knowledge, been
previously described. To evaluate the accu-
racy of the predicted 3D structure of pro-
tein complexes, we used as a benchmark the
699 pairs with experimental structures in the
Protein Data Bank (PDB). For 92% of these
pairs, at least 50% of confident (predicted
aligned error <8 Å) AF-predicted contacts
are present in the experimental structures
(Fig. 1E and fig. S14). The models do miss
many contacts observed in the experimental
structures, however, likely owing to lower
residue-residue coevolution (fig. S15).
With these benchmark results providing

confidence in the accuracy of the new com-
plex interaction predictions and 3D models
of the predicted complexes, we analyzed the
structure models for the 806 complexes for
which high-resolution structural information
was not available. We classified thesemodels
into groups on the basis of their biological

functions and provide examples of complexes
in each functional class in Figs. 2 to 4. A first
set of complexes are involved inmaintenance
and processing of genetic information: DNA
repair, mitosis and meiosis checkpoints, tran-
scription, and translation (Fig. 2). A second set
of complexes play roles in protein transloca-
tion, transport through the secretory pathway,
the cytoskeleton, and cell organelles (Fig. 3). A
third set of complexes are involved in metab-
olism (Fig. 4). Examples of protein complexes
in which proteins of unknown function are
predicted to interact with well-characterized
ones are shown in Fig. 4: These interactions
provide hints about the function of the un-
characterized proteins and could help identify
new components of previously characterized
assemblies. In cases where three or more pro-
teins were predicted tomutually interact, we
generated models of the full assemblies by
using as input a sequence alignment for the
entire complex (see materials and methods).
Examples of these larger assemblies are shown
in Fig. 5; in most cases, the pairwise inter-
actions are quite similar to those for the in-
dependently built binary complexes, but
simultaneous modeling of the full complex
has the advantage of allowing conformational
changes that could accompany full assembly.
It is not possible to analyze the functional

implications of all of the new complexes in a
single paper. Instead, as an illustration of the
insights that can be gained from these, we
focus on a few selected examples in the follow-
ing sections. To enable broader study of the
functional implications of the full set of mod-
els, we have made them available at https://
modelarchive.org/doi/10.5452/ma-bak-cepc
and additional information is provided in the
supplementary Excel file.

Complexes involved in DNA homologous
recombination and repair

The homologous recombination required for
accurate chromosome segregation duringmei-
osis is initiated by DNA double-strand breaks
made by Spo11 (23). Spo11 is essential for sex-
ual reproduction in most eukaryotes (24, 25),
but mechanistic insight has been limited by
a deficit of high-resolution structural infor-
mation. We predict the structures of com-
plexes of Spo11 with its essential partners
Ski8 and Rec102 (Fig. 2 and figs. S16 and
S17). The predicted Spo11–Ski8 structure is
supported by cross-linking and mutagene-
sis data (26, 27). Our model resembles a pre-
vious model based on the Ski3–Ski8 complex,
with Ski8 contacting a sequence in Ski3 that
is similar to the sequence QREIF380 in Spo11
(27, 28) (fig. S17A), but suggests a more ex-
tensive interaction surface than previously
appreciated (29, 30) (fig. S17, B and C). Rec102
was proposed to be a remote homolog of the
transducer domain of the Top6B subunit of
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archaeal topoisomerase VI (31), which couples
adenosine 5´-triphosphate–dependent dimer-
ization of Top6B subunits to DNA cleavage by
Top6A subunits (32). Our predicted Rec102–
Spo11 complex resembles the Top6A–Top6B

interface: a four-helix bundle consisting of
two C-terminal helices from Rec102 and two
helices from Spo11 (the first helix of the
winged helix domain (WHD) plus a more
N-terminally located helix) (fig. S17D). Ala-

nine substitutions in this portion of Rec102
disrupt interaction with Spo11 and blockmei-
otic recombination in vivo (27). The model
clarifies the Spo11 portion of this interface,
which was not well structured in previous

Humphreys et al., Science 374, eabm4805 (2021) 10 December 2021 4 of 12

Fig. 2. Protein complexes involved in transcription, translation, and DNA repair. Top predicted residue-residue contacts are indicated with bars. Pair color
indicates the method of identification: pairs from the “pooled experimental sets → AF” screen are in yellow and green, pairs from the “de novo RF → AF” screen are
in blue and light orange; and pairs present in both datasets are teal and pink. Full names of these proteins are in table S2.
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homology models (27, 31). Both Rec102 and
Top6B have long, helical arms that feed into
the Spo11 interface; our model predicts a dif-
ferent angle for this arm and contains a kink
that corresponds to a conserved sequence
motif EYPMVF192 in Saccharomyces that is

missing in both archaeal TopoVI and mam-
mals (fig. S17, D and E). Mutations in this re-
gion can suppress rec104 conditional alleles
(33), suggesting that this part of Rec102 is
important for integrating Rec104 function
into the Spo11 core complex.

The highly conservedRad51 protein, which is
central to DNA repair, carries out key reactions
during homologous recombination, andmuta-
tions in human paralogs are associated with
Fanconi anemia and multiple types of cancer
(34). Rad51 paralogs can be positive regulators

Humphreys et al., Science 374, eabm4805 (2021) 10 December 2021 5 of 12

Fig. 3. Protein complexes involved in molecule transport, membrane translocation, and mitochondria. Bars and coloring as in Fig. 2. Full names for
proteins are in table S3. Membrane-spanning regions are annotated on Vtc1-Vtc4 and Sed5-Sft2. Top left: model of Vtc1-Vtc4 complex, with superimposed crystal
structure (PDB: 3G3Q, chain A) of the VTC4 (bright yellow) with phosphate bound (red balls).

RESEARCH | RESEARCH ARTICLE
D

ow
nloaded from

 https://w
w

w
.science.org at U

niversity of W
ashington on June 01, 2022



of Rad51 activity (35); in yeast, the Rad51 para-
logsRad55 andRad57 forma stable homodimer
that accelerates assembly of Rad51 filaments on
single-stranded DNA (ssDNA) during homolo-
gous recombination through a transient inter-
action with Rad51 (36). The lack of structural

data for the Rad55–Rad57 complex and its in-
terface with Rad51 has limited mechanistic
understanding of this process. We generated
a model of the trimeric Rad55–Rad57–Rad51
complex,which in combinationwith the known
Rad51 filament structure (37), suggests that

Rad55–Rad57 binds at the 5′ end of the Rad51
filament where it could promote growth of
the Rad51 filament in a directional manner
(Fig. 5B and fig. S18).
Nucleotide excision repair (NER) requires

a search for lesions in DNA that is mediated

Humphreys et al., Science 374, eabm4805 (2021) 10 December 2021 6 of 12

Fig. 4. Protein complexes involved in metabolism, GPI anchor biosynthesis, or including a protein of unknown function. Coloring is as in Figs. 2 and 3.
Proteins annotated in the Uniprot database as uncharacterized proteins are denoted with an asterisk. Full names for these proteins are in table S4.
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by a conserved complex containing Rad4
(XPC—Xeriderma pigmentosumgroup C pro-
tein in humans), Rad23 (HR23B), and Rad33
(Centrin2) in yeast. The Rad4–Rad23–Rad33
complex is essential for global genome NER
and is the major player in initial damage rec-
ognition (38). Rad14 (XPA) is recruited at a
later stage and activates the helicase Rad3
(XPD) subunit of the general transcription

and DNA repair factor IIH complex (TFIIH,
consisting of Rad3, Ssl2, Ssl1, Tfb1, Tfb2,
Tfb4, and Tfb5) through the release of the
TFIIK (CAK) complex following interactions
with the TFIIH subunits Tfb5 (p8) and Ssl2
(XPB), and double-stranded DNA (39). The
structures of Rad14 that are currently availa-
ble only comprise the extended DNA binding
domain and lack the N and C terminus, where

the latter interacts with Tfb5. We generated
a model of the complex between full-length
Rad14 and Rad33 that resolves much of the
current structural ambiguity in this system
(Fig. 2 and fig S19B), shedding light on how
Rad14may be recruited to the Rad4–Rad23–
Rad33 complex. Placing this model into a
cryo–electron microscopy (EM) map com-
prisingXPA (Rad14) and TFIIH bound toDNA

Humphreys et al., Science 374, eabm4805 (2021) 10 December 2021 7 of 12

Fig. 5. Higher-order
protein complexes. (A) Top
predicted residue-residue
contacts for trimers are
indicated with bars.
Bar color corresponds to
the interacting protein pair;
protein 1:2 are blue, 1:3
are red, 2:3 are purple.
Full names of each protein
within the complex are in
table S5. (B) Model of
Rad55–Rad57–Rad51 and
cartoon depiction of place-
ment of this complex in
the larger Rad51 filament.
Additional information is in
fig. S18. (C) GARP complex
model constructed by
predicting structure
of central hetero-oligomeric
helical bundle, and super-
imposing models of individ-
ual components onto
this. 2D class average of
GARP complex with minor
adaptation (77); reprinted
by permission from Springer
Nature Customer Service
Center GmbH. Alternative
GARP models are in
fig. S24. (D) Rad33–
Rad14 complex model
superimposed onto previ-
ously determined TFIIH/
Rad4–Rad23–Rad33
complex structure (7k04).
See fig. S19 for additional
details. (E) GPI-T pentamer
model highlighting a
possible peptide substrate
recognition channel
adjacent to the catalytic
dyad. See fig. S27 for
additional details.
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(39) suggests how the Rad14 C terminus,
which fits into previously unmodeled density,
interacts with TFIIH. The long central helix
observed in the Centrin2 (Rad33) structure
(40) is kinked about 90° in our Rad33–Rad14
complexmodel (fig. S19B); both conformations
are feasible and are compatible for the inter-
action with Rad14. In a recent cryo-EM struc-
ture of the TFIIH/Rad4–Rad23–Rad33 initial
recognition complex (41), only the C- terminal
part of Rad33 was determined. Superposition
of Rad33 in the Rad33–Rad14 complex model
onto this structure (Fig. 5D) shows how Rad14
can interact with the Rad4–Rad23–Rad33
recognition complex (38, 42) while maintain-
ing the TFIIH interaction, bridging the steps
of initial damage recognition and damage
verification. Our model suggests that Rad14
and Rad4 can be present at the same time in
the repair cascade; cross-talk between these
important proteins could modulate down-
stream events.

Complexes involved in translation and
ribosome regulation

Throughout evolution, the eukaryotic machin-
ery for protein production has expanded in
size and complexity (43), which facilitated the
development of sophisticated mechanisms for
the regulation of gene expression at the post-
transcriptional level (44) and increased inte-
gration with the cellular environment (45).
The expanded complexity of the eukaryotic
translational machinery came at the cost of
a highly complex process for ribosome matu-
ration (46). We generatemodels of complexes
that had not been structurally characterized
previously that involve components of the
translation apparatus (Fig. 2 and fig. S20).
Two complexes, Rpl12B–Rmt2 and Rpl7A–
Fpr4, involving enzymes that introduce protein
modifications such as arginine methylations
or proline isomerization (47), provide insight
into mechanisms that expand the chemical
diversity of ribosomal proteins at functional
sites (48) and possibly regulate translation
(49). A complex between components of the
U3 ribosome-maturation factor and a protein
involved in the regulation of glycerol, Lcp5–
Sgd1 (50), could play a role in coupling trans-
lation with metabolism. A complex between
eukaryotic initiation factor 2B (eIF2B), an
auxiliary factor for eIF2 recycling after guano-
sine 5´-triphosphate hydrolysis, and transcrip-
tional factor regulator Dig2 could help couple
translation and transcription: The delivery of
the first aminoacyl-tRNA (Met-tRNAi

Met) is a
key event in eukaryotic translation regulation
by the GTPase eIF2 (51), and targeting eIF2
through its nucleotide exchanger eIF2B is
a basal mechanism of translation regulation.
This possible cross-talk between ribosome-
maturation pathways and metabolic sensors,
and translation initiation regulators such as

eIF2, with transcription factors suggests ex-
citing new avenues to further map the highly
integrated nature of translation within eu-
karyotic cells.

Complexes involving ubiquitin and small
ubiquitin-like modifier (SUMO) ligases

Reversible covalent modifications of proteins
with ubiquitin and SUMO modulate protein-
protein interactions, cellular localization, and
stability (52). SUMO E3 ligases facilitate SUMO
transfer, and Siz1, Siz2, Mms21, and Zip3 are
the known SUMO ligases in budding yeast
(52). Our model of the Siz2 andMms21 SUMO
ligase complex (fig. S21A) suggests that both
E3s could act jointly to modify DNA-associated
substrates, perhaps through the DNA bind-
ing SAP domain of Siz2 (53) or involving the
Mms21 (Nse2)–containing Smc5–6 complex,
which modulates DNA recombination, repli-
cation, and repair (54, 55). The Smc5–6 complex
contains another RING-finger E3 ligase–like
subunit, Nse1 (56), that interacts with Nse3
and Nse4. Our model of the yeast Nse1–Nse3–
Nse4 complex (fig. S21B) is similar to a structure
determined for the Xenopus laevis complex,
despite the sequences of the yeast andXenopus
proteins being too distant for similarity to be
detectable by BLAST.
SUMO-targeted ubiquitin ligases (STUbLs)

are ubiquitin ligases that recognize SUMO-
modified proteins. A STUbL consisting of the
Slx8 ubiquitin ligase and the associated pro-
tein Slx5 functions in proteasome-mediated
turnover of several proteins associated with
DNA replication, repair, and chromosome
structure (57–59). Our model of the Slx5-Slx8
complex (fig. S21C) provides insight into how
these two proteins may collectively recognize
their substrates. In addition, we generated a
lower-confidence but intriguing model of a
previously undescribed complex between Slx8
and Cue3 [coupling of ubiquitin conjugation
to endoplasmic reticulum (ER) degradation
protein 3] (fig. S21D), possibly linking ubiq-
uitination of substrates to protein degrada-
tion in ER.

Complexes involved in chromosome
segregation

The heterodecameric complex DASH/Dam1
(Dam1c) is composed of 10 proteins—Ask1,
Dad1, Dad2, Dad3, Dad4, Dam1, Duo1, Hsk3,
Spc19, and Spc34—which come together to
form a “T” shape and can further oligomer-
ize into rings (60, 61). During mitosis, these
heterodecamers strengthen the attachment
between kinetochores andmicrotubules (62)
by oligomerizing to form either partial or com-
plete rings around microtubules and further
contacting kinetochore components (63–65).
Microtubules are required for in vivo ring
formation, but a structure of the Dam1c ring
complex from Chaetomium thermophilum was

determined in the absence of microtubules
using monovalent salts (66). We generated
structure models of nine binary complexes
(Dad2–Ask1, Dad2–Hsk3, Dad2–Spc1, Dad4–
Hsk3, Dam1–Duo1, Duo1–Dad1, Spc19–Dad1,
Spc34–Duo1, and Spc34–Spc19) that encom-
pass several members of Dam1c (fig. S22).
These complexes are largely consistentwith the
Dam1c structure, suggesting that the findings
from the thermophile structure can likely be
extended to S. cerevisiae. We went beyond pre-
vious structural data by predicting the struc-
ture of a potential interdecamer interaction
between a loop on Spc19 and the N terminus
of Dad1, which could be important for ring
formation in vivo (66).

Complexes involved in molecule transport and
membrane trafficking

The small-membrane protein Ksh1 is essential
for growth and conserved across eukaryotes,
andplays anunknown role in protein secretion
(67). We predicted structures of complexes be-
tween Ksh1 and two membrane proteins re-
ported to form a complex: Yos1 and Yip1. This
complex also includes Yif1 and interacts with
Rab GTPases (68) (Fig. 3). These structures
suggest that Ksh1 is a fourth member of this
enigmatic complex that is essential to the
secretory pathway and explain how Ksh1 can
play a role in secretion despite its small size of
72 amino acids.
The vacuolar transporter chaperone (VTC)

is a five-subunit complex that synthesizes
polyphosphate to regulate cellular phosphate
concentrations (69). Structures are only known
for some soluble portions of this complex,
including the catalytic domain of the Vtc4
subunit (70). Our model of the previously
not structurally characterized Vtc1–Vtc4 sub-
complex suggests that the cytosolic active site
is positioned by the complex to feed the poly-
phosphate product through amembrane pore
into the lumen of the lysosome (Fig. 3).
The ESCRT-III complex is involved in a num-

ber of cellular membrane remodeling path-
ways, including receptor down-regulation,
membrane repair, and cell division (71, 72).
Our predicted interface between the Vps2 and
Vps24 subunits of the ESCRT-III complex re-
sembles the polymerization interface of a dif-
ferent ESCRT-III subunit, Snf7 (73), providing
insight into the roles of these previously un-
characterizedESCRT-III subunits andhighlight-
ing the generality of this mode of interaction
in ESCRT-III complexes. Notably, previously
unpublished mutations (fig. S23) in Vps24 that
prevent ESCRT function inmultivesicular body
sorting are located on the predicted inter-
face between Vps2 and Vps24, supporting our
model and the functional importance of the
Vps2–Vps24 interaction. Vps55 and Vps68
are conserved membrane proteins that are
important for endosomal cargo sorting; our
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predicted structure (Fig. 2) of their interac-
tion provides clues about the mechanism of
their function (74).
The GARP complex is amultisubunit tether-

ing complex (MTC) thatmediates docking and
fusion of vesicles with the Golgi apparatus (75).
Our approach generated models for binary
complexes involving the four GARP subunits,
and we further modeled the entire complex
(fig. S24A). In this model, the four subunits
assemble through a four-helix bundle. In each
of the three larger subunits, Vps52, Vps53,
and Vps54, C-terminal domains comprising
“CATCHR” folds emanate from the bundle.
This architecture resembles portions of the
cryo-EM structure of the Exocyst complex, a
distinct MTC that mediates fusion of vesicles
at the plasmamembrane (76), which possesses
two separate four-helix bundles organizing
its eight subunits. In our prediction, the
“CATCHR” domains appear to be somewhat
flexibly linked to the central four-helix bundle,
and hence we overlaid the structure predic-
tions for Vps52, Vps53, and Vps54, respec-
tively, onto the central four-helix bundle (Fig.
5C and fig. S24B). The resulting model has a
marked resemblance to previously published
2D classes (fig. S24C) from a negative-stain
EM analysis of the GARP complex (77).
These predictions will facilitate structure-
guided experiments to elucidate the mecha-
nism of MTC function.
Golgi-resident protein, Grh1, forms a tether-

ing complex with Uso1 and Bug1 that interacts
with the COPII coat protein complex, Sec23–
Sec24. The tether is thought to participate in
COPII vesicle capture (78, 79), but the mech-
anism remains unclear. The C terminus of Grh1
contains a predicted intrinsically disordered
region (IDR) with a net positively charged
cluster and a triple-proline motif (fig. S25, A
and B). Our model of the Sec23–Grh1 com-
plex contains an interface between the Sec23
gelsolin domain and the PPP motif of Grh1
(80), and an interface between the Grh1 IDR
and Sec23 involving a disorder-to-helical tran-
sition (fig. S25C). A similar multivalent inter-
face also drives interaction between Sec23 and
the COPII coat scaffolding protein, Sec31 (81).
Our model suggests that the combinatorial
multivalent interaction between Grh1 and
Sec23 may compete with the interaction be-
tween Sec31 and Sec23 to promote vesicle un-
coating; consistent with this model, Grh1 is
recruited to glutathione S-transferase (GST)–
Sec23, dependent on the IDR, and competes
for Sec31 binding (fig. S25D).
SNARE [solubleN-ethylmaleimide-sensitive

factor (NSF) attachment protein (SNAP) re-
ceptor] proteins drive intracellular membrane
fusion between transport vesicles and organ-
elles (82). Our predicted complex structure
between the SNARE Sed5 and the uncharac-
terized transmembrane protein Sft2 unex-

pectedly predicted an interaction between
transmembrane domains of the two proteins
(Fig. 3). SNARE localization is thought to occur
through interactions of cytoplasmic domains
with cytoplasmic sorting factors, but this pre-
diction, together with genetic evidence (83),
suggests that SNARE localization or func-
tion may be subject to additional mechanisms
through interactions with transmembrane
protein regulators. Membrane fusion requires
the formation of a four-helix bundle (called the
SNARE complex) between the vesicle SNARE
and the targetmembrane SNAREs (84, 85). The
bundle is formed by the SNARE motifs, which
are 60 to 70 amino acids with heptad repeats
and the ability to form coiled-coil structures.
Models of binary complexes of SNARE-motif–
containing proteins frequently differ from their
classic conformation in the SNARE four-helical
bundle (fig. S26A), probably because all four
chains are required to form the stable complex
(86). Indeed, modeling the four SNARE pro-
teins (Ufe1, Use1, Sec20, and Sec22) that are
known to mediate the fusion between Golgi-
derived retrograde transport vesicles with ER
(87) together resulted in a complex that re-
sembles a typical SNARE complex (84) (fig.
S26, B and C). This example highlights the
potential pitfalls of modeling only binary
complexes when the functional assembly in-
volves more than two chains.

GPI transamidase complex

Glycosylphosphatidylinositol transamidase
(GPI-T) is a pentameric enzyme complex of
unknown structure (88–90) that catalyzes the
attachment of GPI anchors to the C terminus
of specific substrate proteins, based on rec-
ognition of a C-terminal signal peptide (91).
GPI-T catalyzes the removal of this signal se-
quence, replacing it with a new amide bond to
an ethanolamine phosphate in the GPI anchor.
The five subunits of S. cerevisiaeGPI-T areGpi8
(which contains the catalytic active site), Gpi16,
Gaa1, Gpi17, and Gab1 (88, 92, 93). Our large-
scale modeling approach generated models for
the following binary complexes: Gpi8–Gpi17,
Gab1–Gaa1, Gab1–Gpi17, and Gaa1–Gpi16. We
subsequently modeled the full-length, pen-
tameric GPI-T in one shot, starting from the
sequences of all components (Fig. 5E). Sev-
eral features of this model are consistent
with previous characterization of this enzyme.
S. cerevisiae GPI-T can be purified as a core
heterotrimer, containing only Gpi8, Gpi16, and
Gaa1 (92); our GPI-T model confirms extensive
interactions between the soluble domains of
these three subunits. This model also recapit-
ulates the disulfide bond between Gpi8 (Cys85)
and Gpi16 (Cys202), previously characterized
for human GPI-T (94) [the existence of this
disulfide bond in yeast GPI-T has been called
into question (90)]. Gaa1 is essential for bind-
ing of the GPI anchor to GPI-T (95), and the

hydrophobic Gab1 is also predicted to partic-
ipate in anchor recognition (88). Our model
positions the transmembrane regions of Gaa1
and Gab1 against each other. The catalytic
dyad in Gpi8 (Cys199 and His157) faces these
transmembrane domains, and abuts a highly
conserved face of Gaa1, proposed to recog-
nize the GPI anchor glycans (96, 97). In our
model, the positions of these subunits are
consistent with binding of the GPI anchor
to position its modifying amine in the Gpi8
active site for catalysis. Gpi16 is immediately
adjacent to these interactions and is likely
involved in anchor recognition. The func-
tional role of Gpi17 has been elusive, but our
model now suggests that Gpi17, together with
Gpi8 and Gpi16, forms a recognition channel
for the C-terminal GPI-T signal peptide (fig.
S27) adjacent to the catalytic dyad (Fig 5E).
In vivo, GPI-T is expected to be a dimer of
pentamers, with dimerization occurring on one
face of the caspase-like Gpi8 subunit (92, 97, 98).
This decameric complex was too large for us
to model computationally; however, the pen-
tameric complex that we present here leaves
open the dimerization face of Gpi8 consistent
with probable dimerization. It also suggests
that Gaa1 and Gpi17 would participate in
dimerization of this enzyme. In humans, muta-
tions in GPI-T subunits are associated with
neurodevelopmental disorders (99). Each
subunit contributes to different cancer mech-
anisms, in some cases by perturbing GPI
anchoring of specific receptors and in others
by separating from GPI-T to alter disparate
signal transduction pathways (89). Now, with
a structural model in hand, these mecha-
nisms can be examined at a molecular level.

Limitations of the current method

Aswith any newmethod, it is important when
interpreting the results (our large set of pre-
dicted complex structures) to keep inmind the
limitations of the approach. First, our study is
not comprehensive, so conclusions should not
be drawn about absences; in particular, we
eliminated proteins that arose from recent
duplication owing to difficulty in identifying
orthologs in other organisms, and thus only
surveyed two-thirds of the entire yeast pro-
teome. Second, the approach likely misses
interactions restricted to a small set of or-
ganisms, or that vary rapidly during evolution,
owing toweaker coevolutionary signals. Third,
the approach likelyworks lesswell for transient
interactions that generally involve smaller and
weaker interfaces, which may be under lower
selective pressure, in particular those involv-
ing intrinsically disordered regions, which are
poorly represented in the PDB. Themajority of
known interactions identified by our approach
are likely obligate assemblies and involve
ordered structural elements. Fourth, interactions
between single hydrophobic or amphipathic
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helices, such as single transmembrane helices
or coiled coils, may be overpredicted (in ini-
tial studies of human complexes, interactions
solely between single-pass transmembrane
regions appear to be over-represented). Fifth,
and perhaps most important, for proteins that
form high-order obligate protein complexes,
binary complex models may be quite inaccu-
rate, as illustrated by the SNARE example.

Conclusion

Our approach extends the range of large-scale
deep-learning–based structure modeling from
monomeric proteins to protein assemblies. As
highlighted by the above examples, follow-
ing up on the many new complexes presented
here should advance understanding of a wide
range of eukaryotic cellular processes and
provide new targets for therapeutic interven-
tion. The methods can be extended directly
to large-scale mapping of interactions in the
human proteome, but considerablymore com-
pute time will be required given the much
larger total number of protein pairs, andmod-
els may be somewhat less accurate owing to
weaker coevolutionary signal for the subset of
human proteins specific to higher eukaryotes
and for the many closely related paralogs
arising from gene duplication. Investigating
interactions of individual proteins or subsets
of proteins— for example, deorphanization
of orphan receptors—should be immediately
accessible using our approach provided there
are sufficient sequence homologs. Training RF
and AF on protein complexes should further
improve performance of bothmethods (100),
particularly for protein pairswith fewer homo-
logs and/or weaker and more transient in-
teractions, and reduce the dependence on
ortholog identification. Together with the ad-
vances inmonomeric structure prediction, our
results herald a new era of structural biology
in which computation plays a fundamental
role in both interaction discovery and struc-
ture determination.

Methods

As described in detail in the supplementary
materials and methods, we developed a multi-
step bioinformatics and deep learning pipe-
line for identifying pairs of proteins likely to
interact andmodeling the 3D structures of the
corresponding protein complexes. The steps
of this pipeline are illustrated schematically in
Fig. 1A. First, comprehensive orthologous groups
of genes were generated and yeast genes were
mapped to these groups; second, multiple se-
quence alignments of orthologous sequences
were generated for each pair of yeast proteins;
third, contact probability was computed for
each protein pair using RoseTTAFold; and
fourth, interaction probability was reeval-
uated, and complex structures weremodeled
using AlphaFold. The experimental data-

guided PPI screening pipeline is very similar
except that in the third stage, instead of using
RoseTTAFold, we used experimental data
primarily derived from large-scale screens to
identify PPI candidates.
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Deep learning for protein interactions
The use of deep learning has revolutionized the field of protein modeling. Humphreys et al. combined this approach
with proteome-wide, coevolution-guided protein interaction identification to conduct a large-scale screen of protein-
protein interactions in yeast (see the Perspective by Pereira and Schwede). The authors generated predicted
interactions and accurate structures for complexes spanning key biological processes in Saccharomyces cerevisiae.
The complexes include larger protein assemblies such as trimers, tetramers, and pentamers and provide insights into
biological function. —VV
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