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The trRosetta (transform-restrained Rosetta) server is a web-based platform for fast and accurate protein structure
prediction, powered by deep learning and Rosetta. With the input of a protein’s amino acid sequence, a deep neural
network is first used to predict the inter-residue geometries, including distance and orientations. The predicted
geometries are then transformed as restraints to guide the structure prediction on the basis of direct energy minimization,
which is implemented under the framework of Rosetta. The trRosetta server distinguishes itself from other similar
structure prediction servers in terms of rapid and accurate de novo structure prediction. As an illustration, trRosetta was
applied to two Pfam families with unknown structures, for which the predicted de novo models were estimated to have
high accuracy. Nevertheless, to take advantage of homology modeling, homologous templates are used as additional
inputs to the network automatically. In general, it takes ~1 h to predict the final structure for a typical protein with ~300
amino acids, using a maximum of 10 CPU cores in parallel in our cluster system. To enable large-scale structure modeling,
a downloadable package of trRosetta with open-source codes is available as well. A detailed guidance for using the
package is also available in this protocol. The server and the package are available at https://yanglab.nankai.edu.cn/
trRosetta/ and https://yanglab.nankai.edu.cn/trRosetta/download/, respectively.

Introduction

In recent years, substantial progress has been made in protein structure prediction, especially in de
novo protein structure prediction, as witnessed by the critical assessment of protein structure pre-
diction (CASP) experiments1,2. This advance can be mostly attributed to the application of powerful
deep learning techniques. Deep learning is now becoming an indispensable component for improving
the accuracy of protein structure prediction.

A two-step approach is adopted in most of the deep learning–based protein structure prediction
methods. Deep learning is first used to predict inter-residue 2D contacts/distances, which are then
used as restraints for subsequent 3D structure prediction. The first representative approach is
RaptorX-Contact by Xu and colleagues, in which the deep residual network (ResNet) was successfully
applied to protein contact prediction3. As shown in the CASP12 experiment, the precision of pre-
dicted binary inter-residue contacts by RaptorX-Contact doubled compared with previous methods4.
The binary contact prediction was further extended to real distance prediction to include more
information5. The range of considered distances was divided into discrete bins, and the real distance
measurements were replaced with bin numbers. This allows the data to be formatted as a multiclass
classification problem so that a similar network in contact prediction can be applied. For example, in
trRosetta (transform-restrained Rosetta), the distance (2,20 Å) was divided into 36 distinct bins with a
bin size of 0.5 Å (ref. 6). DeepMind developed a similar system called AlphaFold1, which ranked at
the top in CASP137. Inspired by these successes, we proposed that these results could be further
improved by using inter-residue orientations as well as distance measurements. In trRosetta, these
geometries are converted into restraints to guide the energy minimization–based de novo modeling.
The template modeling score (TM-score)8 of the predicted structure models by trRosetta was shown
to be higher than AlphaFold1, even though trRosestta was trained with fewer computing resources6.

In CASP14, DeepMind’s AlphaFold2 took one more step forward by replacing almost all com-
ponents of AlphaFold1. It almost solved the single-chain-based protein structure prediction problem,
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achieving a median global distance test-total score (GDT-TS)9 of 92.4. According to the CASP14
meeting, this advance was mostly due to the application of end-to-end training with the attention-
based neural network (3D equivariant transformer), which took raw multiple sequence alignment as
input and produced the protein structure directly. The work of AlphaFold2 is regarded as one of the
milestones in protein structure prediction and is anticipated to ‘change everything’10. Recently,
DeepMind released the source code of AlphaFold2, which enables the public to have access to the
AlphaFold system11. On the basis of the success of AlphaFold2, we believe that more deep
learning–based methods will be developed in the future (e.g., the recent RoseTTAFold12).

In this protocol, we present the trRosetta server, one of the most popular web-based platforms for
rapid and accurate protein structure prediction. Since its release in 2020, we have received
>60,000 submissions by >7,000 users from >80 countries/regions. The standalone package has been
downloaded by >2,000 registered users. These data indicate that trRosetta has been widely applied in
the communities of structural biology, biochemistry and computational biology. We anticipate that
this protocol will help the communities make better use of the trRosetta system.

Development of the protocol
trRosetta was developed after CASP13, inspired by AlphaFold1 and other related works. The flow-
chart of the trRosetta algorithm is presented in Fig. 1a. The details about trRosetta have been
described elsewhere6. A brief overview is summarized here for the sake of completeness. The query
sequence is searched against the sequence database uniclust30_2018_08 by HHblits13 to generate a
multiple sequence alignment (MSA). A total of 526 1-site and 2-site feature channels are derived from
the MSA, which are fed into a deep neural network (Fig. 1b) to predict the inter-residue geometries,
including distance and orientations. Optional features from homologous templates (if available
according to HHsearch14) are used as additional inputs to the network. The predicted geometries are
then transformed into restraints to guide the structure prediction by direct energy minimization,
which is implemented under the Rosetta framework15. For the purpose of accelerating scientific
research for the protein structure prediction community and benefiting biologists, we established the
trRosetta server and released the source codes in a standalone package in 2020.

Updates made since the first release
A few updates were made after the first release to improve the performance.

MSA selection and MSA submission. It was shown that MSA selection is an efficient way of improving
the accuracy of the final structure models6. However, it takes much computational cost to generate
multiple MSAs iteratively. At the time of the server establishment, to save the time spent in MSA
generation, a single MSA was generated with a fixed e-value cutoff (i.e., 1) in HHblits13, which works
well for most targets. However, a more stringent e-value cutoff may be required for some targets to
remove noise. To keep a balance between speed and accuracy, a total of six MSAs are now considered:
two default MSAs at two e-value cutoffs (1 and 0.001) plus four filtered MSAs at coverage cutoffs of
75% and 50% of the default MSAs. Each of these MSAs is submitted to the network to predict the 2D
geometries. The one with the highest average probability of the top-predicted distances is selected as
the final MSA. In addition, an option is available for accepting MSAs prepared by the users, such as
those from Pfam16.

New network architecture. As shown in Fig. 1b, the central part of the network is a stack of 16 Res2Net
blocks17, which takes the input of an L×L×526 tensor. In each block, after a 1×1 convolution layer, the
feature maps are split into four subsets channel-wise, followed by an identity map and three dilated
3×3 convolution layers. Another 1×1 convolution layer is applied to combine the feature maps. The
output of the network consists of the inter-residue distance (d) and three orientations (φ, ω, θ).

Inclusion of template-based restraints. The original trRosetta server is fully based on de novo modeling.
However, for targets with detectable homologous structures in the Protein Data Bank (PDB) library18,
models built by template-based methods are usually more accurate than those built by de novo
modeling. To take advantage of homology modeling, an automated template detection by HHsearch14

was recently included to improve the accuracy. Homologous templates were detected for >70% of the
recent 9,181 job submissions. The templates may cover different regions of the query but have a large
overlap for most targets. A similar network was trained to combine features from homologous
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templates and MSA. Nevertheless, users who are interested in fully de novo modeling can select the
option without templates.

Applications of trRosetta
Protein structure prediction
The most popular application of the trRosetta server is to predict the structure models for targets of
interest. One of the key features in trRosetta is de novo modeling. Nevertheless, to enhance the
performance for targets with detectable homologous structures, the server automatically includes
homologous templates. Because trRosetta combines both de novo and template-based modeling
(TBM), it works well for a broad range of targets. For example, trRosetta was successfully applied to
build initial structure models in the cryo-electron microscopy–based structure determinations for the
human endoplasmic reticulum membrane protein complex19,20 and the endogenous human BAF
complex21. The trRosetta models were shown to fit well with the cryo-electron microscopy experi-
mental data for these targets. trRosetta was also used to build structure models for severe acute
respiratory syndrome coronavirus 2–related proteins, such as NSP122 and ORF4a23, which do not
have homologous structures in PDB. The predicted structure models can be used for further research,
such as structure-based function annotation, molecular docking and drug design.
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Fig. 1 | Overview of the trRosetta protocol. a, The flowchart of the trRosetta protocol. With a target sequence as input, an optimal MSA is generated
on the basis of the software HHblits. When homologous templates are found in the Protein Data Bank (PDB), they are fed into a deep neural network
together with the generated multiple sequence alignment (MSA) to predict the 2D inter-residue geometries, including distance (d) and three
orientations (θ, ω and φ). These geometries are converted into smoothed energy terms after reference correction, which are used as restraints to
guide the subsequent step of structure modeling. A two-step procedure is applied for the structure prediction. 30 coarse-grained models are first
generated with the quasi-Newton-based energy minimization. The low-energy models are then submitted to the procedure of a fast constrained
relaxation to generate the final structure models. b, The architecture of the deep neural network for inter-residue geometry prediction. With features
derived from the MSA, the multi-task learning network is used to predict the 2D inter-residue geometries. conv2d, 2D convolution layer; ELU,
exponential linear unit; InstanceNorm, instance normalization layer.
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Validation of designed proteins
Because of trRosetta’s de novo feature and efficiency, it can be applied to the problem of protein
design to validate the foldability of designed sequences. As demonstrated in our previous work6, with
a single sequence as input, trRosetta can build accurate structure models for designed proteins. This
suggests that trRosetta has implicitly learned the fundamental sequence-structure relationship. Based
on such observation, trRosetta was used to verify the possibility of a hallucinated sequence to fold into
a stable structure in trDesign24. A hallucinated sequence is a designed sequence that is obtained by
introducing random mutations progressively based on Monte Carlo simulations, starting from a
random sequence. The hypothesis is that if a designed protein is foldable, trRosetta should be able to
produce a reasonable structure model. Therefore, before performing the time-consuming wet-lab
experiments, it is advisable to validate the designed protein with trRosetta first. For a designed
protein, if the predicted structure model by trRosetta is in low confidence (e.g., with estimated
TM-score <0.5), it is likely that this design is not foldable, and no wet-lab experiments are
required.

Comparison between trRosetta and similar servers
Besides trRosetta, there are many other public servers for protein structure prediction. Table 1
presents a comparison between trRosetta and 17 other servers in terms of six features: modeling
approach, deep learning, confidence estimation, downloadable package, response time and TM-score.

Modeling approach
The servers can be clustered into three groups according to modeling approach: TBM, de novo
modeling and unified. For trRosetta, FALCON, MULTICOM and Robetta, both free modeling (FM)
and TBM are provided in a unified server, whereas others are either for de novo modeling or TBM.
Note that trRosetta has also been available as a module (TR) in the Robetta server since September
2020. Its major difference with the trRosetta server introduced in this protocol is additional rounds of

Table 1 | Comparison between the features of the trRosetta server and the major public servers for protein structure prediction

Type Server name RY DL CS PKG RT TM-score URL

Unified trRosetta6 2020 ✓ ✓ ✓ De novo: 1:11 with
template: 1:30

De novo: 0.8 with
template: 0.855

https://yanglab.nankai.edu.cn/trRosetta

FALCON34 2016 ✓ ✗ ✓ N/A N/A http://protein.ict.ac.cn/falcon2

MULTICOM35 2010 ✓ ✓ ✓ N/A N/A http://sysbio.rnet.missouri.edu/multicom_cluster
aRobetta36 2004 ✓ ✓ ✓ CM: 1:50 AB:

12:44 TR: 2:43
CM: 0.745 AB:
0.498 TR: 0.864

http://robetta.bakerlab.org

De novo GDFold37 2020 ✓ ✗ ✓ 4:47 0.641 http://structpred.life.tsinghua.edu.cn/amoeba
contact.html

btFold38 2020 ✓ ✗ ✗ 9:34 0.839 https://drug.ai.tencent.com/console/cn/tfold

DMPfold39 2019 ✓ ✓ ✓ 2:12 0.692 http://bioinf.cs.ucl.ac.uk/psipred

RaptorX-Contact5 2019 ✓ ✓ ✓ 18:55 0.786 http://raptorx.uchicago.edu/ContactMap

QUARK40 2012 ✗ ✗ ✗ N/A N/A https://zhanglab.ccmb.med.umich.edu/QUARK

TBM AWSEM-Suite41 2020 ✗ ✗ ✓ 1:51 0.178 https://awsem.rice.edu

GalaxyWEB42 2012 ✗ ✓ ✗ 3:30 0.731 http://galaxy.seoklab.org

RaptorX43 2012 ✗ ✓ ✓ 10:5 0.777 http://raptorx.uchicago.edu/StructPredV2/
predict

SPARKS-X44 2011 ✗ ✗ ✓ 71:21 0.622 https://sparks-lab.org/server/sparks-x

Phyre45 2009 ✗ ✓ ✗ 1:13 0.713 http://www.sbg.bio.ic.ac.uk/phyre2
cI-TASSER46 2008 ✓ ✓ ✓ 35:26 0.753 https://zhanglab.ccmb.med.umich.edu/I-TASSER

LOMETS47 2007 ✓ ✗ ✓ 140:42 0.788 https://zhanglab.ccmb.med.umich.edu/LOMETS

HHpred48 2005 ✗ ✗ ✓ 0:3 0.708 https://toolkit.tuebingen.mpg.de/tools/hhpred

SWISS-MODEL49 1997 ✗ ✓ ✗ 0:7 0.739 https://swissmodel.expasy.org

CS, confidence score estimation for the predicted model; DL, deep learning; PKG, downloadable package for running locally; RT (in the format of hours:minutes), average response time of the web
server, defined as the time interval between job submission and receiving the result email. (The average response time and the TM-score for each server are collected on the basis of job
submissions with 15 CAMEO targets.); RY, release year of the server. aRobetta has three modules: comparative modeling (CM), ab initio (AB) and trRosetta (TR). bFive targets were skipped
because of job failure or running for more than 7 d after job submission. cTwo targets were skipped because of running for more than 7 d after job submission.
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refinement, which improves the structure quality slightly at the expense of more running time (see the
response time and TM-score columns in Table 1).

Deep learning
Deep learning algorithms are applied in about half of the listed servers.

Confidence score estimation
10 servers provide confidence score estimation, which can guide the users to make better use of the
predicted models.

Downloadable version
More than half of the listed servers, including trRosetta, provide downloadable package to install
locally for large-scale applications.

Response time
To compare the speed and accuracy of the above-mentioned servers, we collected 15 targets from
CAMEO (between May 29, 2021 and June 5, 2021) and submitted them to those servers. Note that
the response time listed in Table 1 may include queueing time, depending on the availability of
computer resource from each individual laboratory. Because QUARK allows submissions only with
length <200 residues, and MULTICOM and FALCON jobs stay queuing/running for >7 d, no results
are available for these three servers.

TM-score
The TR module in Robetta has slightly higher TM-score than trRosetta, probably due to its additional
steps of refinement with more running time. Overall, with or without templates, trRosetta takes, on
average, <1.5 h per target to return the prediction results with an average TM-score over 0.8,
suggesting the advantage of trRosetta in both speed and accuracy in protein structure prediction.

Performance of trRosetta-based methods
Performance in CASP14
Previous benchmark tests suggested that trRosetta outperformed the top human group AlphaFold1
and the top server group Zhang-Server on CASP13’s 31 FM targets6 (Supplementary Table 1). On
CAMEO’s 131 hard targets (Supplementary Table 2), the trRosetta models had higher TM-score than
the models by the top Robetta server6.

In addition, we participated in the bind test of the CASP14 experiment with trRosetta-based
algorithm (group name: Yang-Server). Here, two kinds of scoring systems are used to rank the groups
in CASP14. The first one is based on the Z-scores of the raw GDT-TS scores9, which is adopted in the
official ranking. The raw GDT-TS scores for the predicted models of a target are first calculated and
are then converted into Z-scores by the following formula:

Z� scorei ¼ GDT� TSi � μ

σ
;i ¼ 1; 2; � � � ;N ð1Þ

where N is the number of predicted models (one by each method), and μ and σ are the mean and
standard deviation of the raw GDT-TS scores. The summed Z-scores over all targets are then used to
rank the participating groups. According to the official results released by the CASP organizers, Yang-
Server was 11th out of 47 server groups in the Z-score–based ranking. It was 5th after removing
method variants from the same laboratory. Intuitively, Z-score measures how far a prediction is from
the mean, but it does not indicate how accurate the predicted structure models are.

The second ranking is based on TM-score8, which ranges between 0 and 1. A TM-score >0.5
usually indicates a model with correctly predicted topology25. According to the assessment by Dr.
Zhang (https://zhanglab.ccmb.med.umich.edu/casp14), Yang-Server ranked in the top 5 (top 2 after
removing method variants form the same laboratory), with an average TM-score of 0.67. Figure 2a
(a zoomed version is available in Supplementary Fig. 1) shows the average TM-score of five unique
server groups on targets of different categories (58 TBM, 15 FM/TBM, 23 FM and 96 in total; see
Supplementary Table 3 for more details). A few examples from CASP14 are presented in Fig. 2b,c.
The first example is T1052, which was divided into three individual domains in the official evaluation.
Figure 2b shows that trRosetta performed well on these domains, with TM-scores of 0.942, 0.796 and
0.796 on domains D1, D2 and D3, respectively. In particular, our model for the third domain has the
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highest accuracy among all submitted server models. Another example is T1054 (Fig. 2c), which was
classified as a single-domain target in the official evaluation. As shown in the figure, it is in fact a two-
domain-like target, and the orientation between the two domains is correctly predicted by our
method, with a TM-score of 0.837.

Benefit of including homologous templates
Below, we discuss the improvement of using homologous templates in trRosetta based on an inde-
pendent dataset collected from the CAMEO experiment (from June 13, 2020 to September 5, 2020).
According to the classification in CAMEO, this dataset consists of 161 targets, including 31 easy, 99
medium and 31 hard targets (Supplementary Table 4). HHsearch was used to detect templates from a
library that was constructed before June 13, 2020. On the basis of the outputs from HHsearch, we
define a template as homologous to the query if the following conditions are satisfied: probability
>60%, E-value <0.001 and coverage >30%. With these criteria, homologous templates were detected
for 143 targets. For the remaining 18 targets (8 medium and 10 hard), we also tried to include the top
template in trRosetta. It turned out that there was no significant difference in the model quality
between using and not using templates for these 18 targets. However, for the 143 targets that have
homologous templates, the incorporation of templates improves the accuracy of both predicted
contacts and structure models. Specifically, the average precision of the top L predicted contacts
(sequence separation ≥12) and the average TM-score of the predicted models are shown in Fig. 3a,b,
respectively. It shows that the inclusion of homologous templates is beneficial for targets in all degrees
of difficulties, and the improvement on the easy targets is more significant. Indeed, when templates
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are used, trRosetta generates models with higher TM-score for 30/31 easy, 87/91 medium and 16/21
hard targets, according to a head-to-head comparison. Figure 3c presents the trRosetta models for the
CAMEO target 6LPA_A predicted without and with templates. By including homologous templates,
the TM-score of the predicted model for this target increased from 0.358 to 0.936.

Experimental design
This protocol contains two procedure sections. Procedure 1 describes how to use the online service of
trRosetta, and Procedure 2 presents detailed guidance on installing and running trRosetta locally.

MSA generation
The accuracy of the predicted distance and orientations depends on the quality of the input MSA. For
the trRosetta server, as introduced in Development of the protocol, multiple MSAs were generated by
searching HHblits13 against the sequence database uniclust30_2018_08, at different cutoffs of e-value
(0.001, 1) and coverage (50%, 75%). Note that this setting is independent of sequence length. The
MSA used for further 2D geometry prediction is selected by the average probability of top predicted
distances. As for the standalone version, users can generate MSAs similarly. For most targets, it is
enough to generate one MSA with default options in HHblits. However, when no significant hits are
returned, generating multiple MSAs with different tools and databases is recommended. For example,
it is also worth searching the metagenome sequence databases with hmmsearch26 to enrich the MSA
generation27,28.

Prediction of inter-residue 2D geometries
The inter-residue 2D geometries are predicted by a deep neural network. The input to this network
includes features extracted from the input MSA and optional features from homologous templates.
Unlike most other deep learning–based contact/distance methods, no other input (e.g., contact
predictions by third-party software) is required for the network. The current prediction is a consensus
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of five individual network models, making it very robust. Because this step is independent of the
subsequent step of structure realization, it is also feasible to use other methods to predict the 2D
geometries. Users can either further optimize the network adopted by trRosetta or design other deep
learning methods for the 2D geometry prediction. Improved prediction of geometries can definitely
lead to more accurate structure prediction. We continue to improve our method by developing new
network topologies and training strategies.

3D structure prediction
The 3D structure prediction process in trRosetta is based on energy minimization with constraints
derived from the predicted inter-residue distance and orientations. However, no steps of fragment
assembly are used in trRosetta, due to the following observations. The first is that fragment assembly
is very slow. The second is that lower modeling accuracy was obtained in our initial test of a contact-
assisted fragment assembly protocol (which can be seen as well from Table 1 for the AB module in the
Robetta server). In fact, as shown in our previous benchmark, structure prediction in trRosetta is
mostly driven by the predicted restraints6. By implementing direct energy minimization, trRosetta is
~1,000 times faster than the conventional Rosetta (internal estimation). A two-step procedure is
adopted in trRosetta as follows. First, 30 coarse-grained models (that contain only backbone atoms
and side-chain centers) are generated on the basis of constrained energy minimization with the
predicted inter-residue 2D geometries. The low-energy models are then relaxed to produce the final
full-atom models. This process is very fast and efficient. The corresponding scripts were released in
2020. As shown in the CASP14 Abstracts, many participating groups built their methods on the basis
of a similar procedure.

Confidence score of the predicted structure models
In our earlier research, the average probability of predicted top contacts and the average pairwise TM-
score between the top 10 non-constrained models correlate well with the accuracy of the final
models6. With the network update and the inclusion of templates, the correlation between the first
term (i.e., the average probability) and TM-score decreases. To give a reliable confidence estimation
for the final model, the probability is extended from contact to distance, in which more residue pairs
are considered. Linear regression is then applied to estimate the TM-score for the predicted structure
models. Figure 4a,b shows the relationship between the real TM-score and the estimated TM-score
for the trRosetta models built without/with templates on the 161/143 CAMEO targets mentioned
above. The Person’s correlation coefficients of the data shown in Fig. 4a,b are 0.85 and 0.73,
respectively.

Examples of structure prediction
Large-scale applications of the trRosetta algorithm are possible because of its advantage in both speed
and accuracy (see Fig. 4c for speed estimation). Recently, the trRosetta algorithm was applied to
predict the structures of proteins in the Pfam database. The predicted models are publicly available at
the Pfam and InterPro databases16. In Fig. 4d,e, we show the predicted structure models for two Pfam
families that do not have experimental structures yet. The first is for the Pfam family Tektin (Fig. 4d,
PF03148). According to the Pfam annotation, Tektin consists of several alpha-helical regions that are
predicted to form coiled coils. We built de novo structural models for this family by using the MSA
from Pfam. The predicted structure model shown in Fig. 4d is consistent with the description in
Pfam. The estimated TM-score for the predicted model is 0.75, which demonstrates that the model is
of high accuracy. The second example is for the Pfam family AfsA (Fig. 4e, PF03756). This family
consists of key enzymes in A-factor biosynthesis. According to the Pfam annotation, the structure for
this family has a hotdog fold. The predicted de novo model (Fig. 4e, with estimated TM-score >0.8)
does belong to the hotdog fold according to the results by a fast search against the PDB database with
the mTM-align server29. We also used the template-based modeling server Phyre2 to build structures
for this protein. The top-predicted model by Phyre2 has a TM-score of 0.55 with our de novo model,
indicating that this target is of medium difficulty.

Limitations and future development
There are a few limitations in trRosetta. First, it is a great challenge to determine the structure of
disordered proteins that lack stable structures. Similar to other structure prediction algorithms,
trRosetta does not work well for disordered proteins. Another limitation is the requirement for the
existence of a few sequence homologs to build a meaningful MSA. For proteins that do not have any
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sequence homologs in current sequence databases, the predicted structure models are usually of low
accuracy. For example, for the target T1064 from CASP14 (the ORF8 protein of severe acute
respiratory syndrome coronavirus 2), only eight (resp. 1) homologous sequences could be identified at
pairwise sequence identity 0.9 (resp. 0.5). This makes it very challenging to predict accurate models
for this target by trRosetta and other methods, including AlphaFold2 and RoseTTAFold. However,
we believe that this problem can be solved gradually by increasing sequence data. Searching against
the current metagenome databases can also partly address this issue. The last limitation is that the
server is only for monomer structure prediction. We are extending our approach for predicting
protein-protein complex structure.

Materials

Equipment for Procedure 1
● Computer: a personal computer with Internet access and a web browser
● Data: the amino acid sequence or a pre-generated MSA for a target protein of interest

Equipment for Procedure 2
● A personal computer (or a computer cluster) with Linux system (CentOS, RedHat and Ubuntu are
supported); a GPU, although not required, may be faster for running the neural network with graphics
processing unit (GPU) cards.

Required software and database for Procedure 2
To run trRosetta locally, users need to install the following third-party software and databases first.
● Python3 (available at https://www.python.org/downloads; already installed in most Linux systems)
● Tensorflow (available at https://pypi.org/project/tensorflow, version 1.13 or 1.14)
● PyRosetta3 (available at https://www.pyrosetta.org/downloads/legacy-pyrosetta3-download)
● Perl5 (available at https://www.perl.org; already installed in most Linux systems)
● HHsuite (available at https://github.com/soedinglab/HHsuite)
● HHsuite sequence profile database (available at http://wwwuser.gwdg.de/~compbiol/uniclust)
● HHsuite PDB profile database (optional; it is required only if structural templates are needed; available
at http://wwwuser.gwdg.de/~compbiol/data/hhsuite/databases/hhsuite_dbs/)
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● PDB structure databases (optional; they are required only if structural templates are needed; available
at https://yanglab.nankai.edu.cn/trRosetta/download/)

● Pre-trained network models (available at https://yanglab.nankai.edu.cn/trRosetta/benchmark/)When
these are in place, download the trRosetta package at https://yanglab.nankai.edu.cn/trRosetta/download
after a simple registration.

Procedure 1

Sequence submission ● Timing 2 min
1 Go to the trRosetta server homepage (https://yanglab.nankai.edu.cn/trRosetta).
2 Copy and paste your target sequence in FASTA format or an MSA in the section ‘Provide the

protein data (mandatory)’ (label 1 in Fig. 5). You can also upload the data file by clicking on the
‘Choose File’ button (label 2 in Fig. 5). Then specify the input type of your protein data (label 3 in
Fig. 5).
! CAUTION The trRosetta server builds models for proteins with length between 10 and 1,000
residues. Short proteins are known as short peptides, and they usually do not have stable structures
unless binding with other proteins. It is thus less meaningful to predict their structures
independently. The maximum length is 1,000 mainly because of the requirement for extensive
computing resources for big proteins.

3 (Optional) Provide your email address (label 4 in Fig. 5). A notification email will be mailed to the
specified email account upon job completion.
? TROUBLESHOOTING

4 (Optional) Provide your target name (label 5 in Fig. 5). The given name will be shown on the result
page. Otherwise, the target will be named ‘your_protein’ by default.

c CRITICAL STEP Providing a target name is recommended to differentiate between different jobs,
especially when the users have multiple submissions. This name will be provided in both the email
notification and the result page, by which the users can easily find their own submissions.

5 Specify whether to use templates when homologous templates are available for your target (label 6
in Fig. 5). If you do not want to use any PDB templates for some special purpose, such as
performing a benchmark test of the de novo prediction, please check the box ‘Do not use
templates’. By default, homologous templates (when detected) will be used in the modeling.
? TROUBLESHOOTING

6 Specify whether to keep your results private (label 7 in Fig. 5). By default, the modeling results are
available to the public. If you want to keep your job private, please check the box ‘Keep my results
private’. A key will be assigned right after your submission to access the results.

7 To submit the job, please click on the ‘Submit’ button (label 8 in Fig. 5). A confirmation of the
submission will be mailed to the user if an email address was specified in Step 3.
? TROUBLESHOOTING

Job monitoring ● Timing depends on protein size (~1 h for a protein with ~300 amino
acids)
8 Check the web page displaying the job ID and the URL links for tracking the job status and the

modeling results upon submission. If the user chooses to keep the results private in Step 6, there
will be two accessible links. Check the results by either clicking the first encrypted link with the
assigned password, or visit the result page directly by clicking on the second link. There will be only
one link if the ‘Keep my results private’ box in Step 6 was not checked.

c CRITICAL STEP If you forget your password, you can email us with the job ID. The password will
be sent to you manually. To avoid this issue, we recommend bookmarking the result page right
after your submission.

9 The URL link in Step 8 points to a new job-monitoring page that is reloaded every minute. This
page shows the job status, with the current stage highlighted in red color, and an estimated time for
completion. The estimated time is based on Fig. 4c, which displays the relationship between the
sequence length and the running time for all jobs submitted to the server in December 2020. It
usually takes ~1 h to fold a protein with 300 amino acids. The prediction process is divided into
eight steps from queuing in our job management system to the final stage of job completion. Either
keep the page open or bookmark this page to check the results later. Once the job is done, this
page will automatically display all the modeling results. At the same time, a notification email
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with instructions for accessing the result page will be sent to the user if an email address was
provided in Step 3.
? TROUBLESHOOTING

Analyzing the results ● Timing 5 min
10 Upon job completion, a tarball file including the key modeling results is provided for download at

the top of the result page (label 1 in Fig. 6). Save the results locally, because the prediction results
will be removed in 1 month to save computer space.

11 View the ‘Predicted Structure Models’ section.
● On the left-hand side of this section (label 2 in Fig. 6), the top-scoring model is visualized in a
rainbow cartoon (from the N to the C terminus) by using the software 3Dmol30. Users can
download this structure by clicking on the link provided under the visualized structure.

Fig. 5 | The trRosetta homepage for job submission. To submit a job, users should input the amino acid sequence or an MSA of the target protein by
using label 1 or 2. The input format (single sequence or MSA) can be specified by label 3. Users can provide an email address and target name for
tracking the modeling status with labels 4 and 5. When homologous templates are identified in PDB, they are automatically included in the modeling to
improve accuracy. However, users can turn this function off by selecting the option ‘Do not use templates’ (label 6). By default, the job results are
available to the public. Please select the option ‘Keep my results private’ (label 7) to protect the results, by which a key will be assigned to access the
modeling results. The job can be submitted by clicking on the ‘Submit’ button (label 8).
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● An estimated TM-score of this model is also provided (label 3 in Fig. 6). On the right-hand side,
there is a summary of predicted models.

● The confidence level (i.e., very low, low, medium, high or very high; label 4 in Fig. 6), which is
based on the estimated TM-score, and the way that the models are built (i.e., either de novo or
with the use of templates; label 5 in Fig. 6) are displayed.

● In addition, other lower-ranked models (label 6 in Fig. 6), the multiple sequence alignment
(label 7 in Fig. 6) and predicted inter-residue distance and orientations (label 8 in Fig. 6) can be
downloaded separately.
? TROUBLESHOOTING

12 View the ‘Predicted 2D Information’ section.
● This section visualizes the predicted 2D geometries, including the binary contacts (label 9 in
Fig. 6), real distances (label 10 in Fig. 6) and orientations (ω, θ and φ; label 11 in Fig. 6). Detailed
explanations for the 2D geometries can be found in Supplementary Fig. 2.

● The contact map presents the contacting probability for all residue pairs. The binary contact is a
simplified representation of the real distance. Two residues are in contact if the distance between
their C-β atoms (C-α for glycine) is <8 Å.

● The distance map lists the predicted distance (between 4 and 20 Å) for all residue pairs.
● The ranges for the orientations ω, θ and φ are (−180°, 180°), (−180°, 180°) and (0°, 180°),
respectively. Note that the orientation maps usually show similar patterns with the distance map
because they are limited only to those residue pairs with distance <20 Å.

Fig. 6 | The result page for an example target (PDB ID: 6X61). This page is divided into three sections. The first section visualizes the predicted top
structure model in a rainbow cartoon. A brief summary is also given, including the confidence score of the model, the modeling method (de novo or
templates used), links for downloading lower-ranked models, MSA and predicted inter-residue distance and orientations (the definitions are available
in Supplementary Fig. 2). The second section shows the images of the predicted contact/distance and orientation maps. The last section lists the
templates used in the modeling. When no templates are used, this section shows only the predicted 1D information (secondary structure and
disorder).
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13 View the predicted 1D information. A three-state secondary structure prediction predicted by
PSSpred31 is displayed under the target sequence, where ‘H’ stands for alpha α-helix, ‘S’ stands for
β-strand and ‘C’ stands for coil. Disorder prediction by DISOPRED32 is also provided, which consists
of two states: disorder (D) and order (.). If the model is based on de novo prediction, the above-
mentioned results will be displayed as a separation section (‘Predicted 1D information’). Otherwise, it
will be included on the top of the section ‘Templates used by trRosetta’ (label 13 in Fig. 6).

14 View the ‘Templates used by trRosetta’ section. This section exists only if homologous templates are
detected. The database used for template detection is shown on the top (label 12 in Fig. 6) A template
is defined as ‘homologous’ if the probability (denoted by the ‘Confidence’ column in this section)is
>0.6, the E-value is <0.001 and the coverage is >30%. For each template, there is a link to its entry in
the PDB library (label 14 in Fig. 6). Other detailed results such as alignment coverage, sequence
identity, Z-score and alignment are also displayed. In addition, homology models generated by
MODELLER33 using the query-template alignments are available for download in this section
(label 15 in Fig. 6).

Procedure 2

MSA generation ● Timing 7 min
1 Prepare your target sequence in FASTA format (denoted by ‘seq.fasta’). The path of the FASTA file is

denoted by $data_dir. Create a working directory and change the current directory to it. Then copy
the sequence file to this directory.

» mkdir -p example
» cd example
» cp $data_dir/seq.fasta.

2 Run HHblits to generate an MSA (denoted by ‘seq.a3m’) for your target sequence.

»python $tr_dir/generate_msa.py -i seq.fasta -o seq.a3m -hhbin $hhsuite_
dir/bin -hhdb $hhdb_dir/$hhdb

Here $tr_dir, $hhsuite_dir refer to the paths of the trRosetta and the HHsuite packages, respectively.
$hhdb_dir is the path of the corresponding HHsuite database, and $hhdb is the database name. Two
optional arguments are provided in this script, i.e., ‘-evalue’ for statistical significance cutoff (default:
0.001) and ‘-cpu’ for the number of CPUs to use (default: 2).
? TROUBLESHOOTING

(Optional) Template detection ● Timing 2 min
3 Run HHsearch to detect homologous templates.

» python $tr_dir/search_templates.py -i seq.a3m -o temp.npz –hhbin
$hhsuite_dir/bin -hhdb $hhdb_dir/$hhdb -pdb_db $pdb_dir

The output template information is saved in a file in NPZ format (denoted by ‘temp.npz’). Here
$pdb_dir is the path of the single-chain PDB database, and other variables are the same as those
described in Step 2. Note that homologous templates are defined as those with HHsearch probability
>60%, E-value <0.001 and coverage >30%. If no templates satisfy this condition, a warning message
will be reported by the script. In this case, please proceed to the next step of de novo prediction.
? TROUBLESHOOTING

Inter-residue geometry prediction ● Timing 8 min (de novo), 13 min (with templates)
4 Predict the inter-residue distance and orientations.

» python $tr_dir/predict.py -i seq.a3m -o seq.npz -mdir $m_dir

The default mode is de novo prediction, which takes only an MSA file as input (denoted by
‘seq.a3m’) and produces an NPZ file (denoted by ‘seq.npz’) containing the predicted distance and
orientations. Here, $m_dir refers to the directory of the pre-trained model.
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In addition, when homologous templates are detected in Step 3, they can be incorporated into the
network by using the option ‘-temp_npz’.

» python $tr_dir/predict.py -i seq.a3m -o seq.npz -mdir $m_dir -temp_npz
temp.npz

Three more optional arguments are available, including ‘-cont’ for saving predicted contacts in CASP
format, ‘-gpu’ to specify the GPU card to use (default: −1; i.e., does not use GPU) and ‘-cpu’ for
specifying the number of CPU cores to use (default: 2).

Structure prediction ● Timing 25 min
5 Generate structure models. The script ‘trRosetta.py’ takes the sequence file and the file of the predicted

distance and orientation as inputs and produces one model (denoted by ‘model.pdb’) in a single run.

»python $tr_dir/trRosetta.py -npz seq.npz -fasta seq.fasta -o model.pdb

Note that this command generates only one model with default arguments. More optional arguments
for this script are explained in Box 1. In most cases, this default running is enough when the predicted
distance and orientations are in high confidence (e.g, with an average probability of top-predicted
distances higher than 0.3, which can be calculated by the script top_prob.py). However, when the
confidence is lower, it may be helpful to run this script multiple times to generate multiple models with
different options and select the top models on the basis of the energy scores (the last score of the line
starting with ‘pose’ in the output structure file). To this end, a script named ‘run_trRosetta.py’ is
provided to generate multiple models.

» python $tr_dir/run_trRosetta.py -npz seq.npz -fasta seq.fasta

Three more options can be customized by the users, including ‘-n’ for the number of output models
(default: 1), ‘-cpu’ for the number of CPU cores to be used in parallel (default: 2) and ‘-orient’ for
using orientation restraints or not (default: True). The predicted structure models will be named as
model1.pdb, model2.pdb, etc., depending on the value specified for the option ‘-n’.
? TROUBLESHOOTING

Result analysis ● Timing 5 min
6 Convert the predicted distance distribution into real-valued distance and visualize the predicted

contact and distance maps.

» python $tr_dir/npz_2_dist.py seq.npz seq

Here, ‘seq’ is the prefix of the output files. When the native structure of the query is available, the
script ‘pdb2npz.py’ can be used to calculate and visualize the inter-residue distance and orientations
from the input of a PDB structure file. Users can compare the predicted and the native inter-residue
geometries to check the difference manually.

» python $tr_dir/pdb2npz.py -f native.pdb

Box 1 | Optional arguments of ‘trRosetta.py’

● -pd The lower bound of probability for using distance and orientation restraints (the range is between 0 and 1;
default: 0.05).

● -m The way of using restraints, which are divided into three groups according to sequence separation s: short
range (s < 12), medium range (12 ≤ s < 24) and long range (s ≥ 24). Values: 0, 1, 2 (default: 2). 0: short-range,
medium-range and long-range restraints are added progressively. 1: Short- and medium-range restraints are
added together at first, and then long-range restraints. 2: All restraints are used together.

● -orient True (default) or False. Orientation restraints are used or not.
● -fastrelax True (default) or False. FastRelax is applied or not to generate full-atomic models.
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7 Check the confidence of the top-predicted model. After running the scripts in Step 5, the estimated
TM-score for the top-predicted model is available in the file ‘cscore.txt’.

Troubleshooting

Troubleshooting advice for Procedures 1 and 2 can be found in Tables 2 and 3, respectively.

Table 2 | Troubleshooting table for the web server

Step Problem Possible reason Solution

3, 7, 9 No email notification was received
although an email address was
provided during submission

Because of the restriction of Google usage in
mainland China, the server may fail to send
emails to gmail and gmail-related accounts

Change your email address or just
bookmark the result page and check
modeling results later

5, 11 Models are built by de novo modeling
although you chose to use homologous
templates during submission

No homologous templates were detected for
your target protein

Just check the results of de novo modeling.
trRosetta can also build high-quality
models for proteins with no homologous
templates

7 Error: You have 20 jobs already
submitted, which are pending/running

Because of limited computational resource,
we can currently allow at most 20 pending/
running jobs per user. Submissions using the
same email address or from the same IP
address are considered as being submitted
by the same user

Please wait until your jobs are finished.
New jobs can be submitted once the
running jobs are done

Error: Your submission was tagged
as spam

On the basis of our manual supervision, some
emails and IP addresses are marked as spam
to prevent flooding the server

Please contact us if this is wrong

11 Warning: 30.9% of your sequence is
predicted disordered (check the last
section). The reliability for disordered
regions is low in general

The target protein contains a large proportion
of disordered regions and/or is an
intrinsically disordered protein

Remove long disordered regions and
submit the new sequence again

Single-chain models were returned for
a submitted multi-chain target

Multi-chain protein structure prediction is
not available. Once a multi-chain target is
submitted, trRosetta will build models only
for the first chain by default

Split multi-chain proteins into single-chain
sequences and submit them separately.
The complex structure may be obtained on
the basis of molecular docking by using
other software such as HDOCK50, with the
trRosetta models as input

The estimated TM-score for the
predicted model is low

There are a few possible reasons for this. The
target protein may contain disordered
regions and/or is a disordered protein, the
target protein may contain multiple domains
or the generated MSA by trRosetta may not
be optimal

The following efforts may be spent to
improve the model quality. Remove
disordered regions from the sequence and
submit the new sequence to the server, try
domain parsing for multi-domain proteins
or generate your customized MSA and
submit the MSA to the server again

Table 3 | Troubleshooting table for the standalone package

Step Problem Possible reason Solution

2 No homologous sequences
are found

There are several possible reasons for this
problem. The parameters used for HHblits are
too stringent, the searched database lacks
homologous sequences for your target protein
or HHblits does not work well for your target
protein

The following attempts may be made to
generate better MSA. Try running HHblits with
different parameters (e.g., e-value or coverage
cutoff) or different databases (e.g.,
metagenome). Try generating MSA by using
other software, such as hmmsearch26

3 No homologous PDB templates
are found

The target protein does not have homologous
templates, or HHsearch does not work well for
your target

Try the de novo prediction, because trRosetta
can also generate high-quality structure models
for proteins without homologous templates

5 The predicted structure models
are different from the one from
the server

The MSAs are different
Because of a random effect, the model built by
‘trRosetta.py’ may be different in different runs

Try the MSA provided by the server
Try the script ‘run_trRosetta.py’ with the option
‘-n’ to generate more models
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Timing

Procedure 1
Steps 1–7, sequence submission: 2 min
Steps 8 and 9, job monitoring: depends on protein size (it takes ~1 h for a protein with ~300
amino acids)
Steps 10–14, analyzing results: 5 min

Procedure 2
Steps 1 and 2, MSA generation: ~7 min for a protein with ~300 amino acids
Step 3, template detection: ~2 min for a protein with ~300 amino acids
Step 4, inter-residue geometry prediction: ~8 min (de novo) and ~13 min (with templates) for a protein
with ~300 amino acids
Step 5, structure prediction: ~25 min for a protein with ~300 amino acids
Steps 6 and 7, result analysis: 5 min

Anticipated results

Procedure 1
The trRosetta server provides prediction results in two forms: a tarball file for download and a
web page displaying the modeling results. The tarball file includes five structure models and other
major results listed on the result page. The result page consists of the following sections as illustrated
in Fig. 6:
1 Five predicted structure models. The first model is visualized, and its estimated TM-score is

provided.
2 Predicted 2D information, including the inter-residue distance and orientations.
3 Predicted 1D information, including the secondary structure and disordered residues.
4 Templates used by trRosetta (when applicable), including the PDB ID, confidence, coverage,

sequence identity, query-template alignment and the corresponding MODELLER model.

Procedure 2
The trRosetta standalone version mainly provides the following 2D and 3D prediction results:
1 Predicted inter-residue geometries in NPZ format.
2 Predicted structure models in PDB format.

A few related results, such as visualization of the predicted distance and contact maps, and the
confidence estimation for the predicted model are also available.

Data availability
The example input and output files can be downloaded from https://yanglab.nankai.edu.cn/trRosetta.

Code availability
The trRosetta server and the standalone package are freely available at https://yanglab.nankai.edu.cn/
trRosetta.

References

1. Moult, J., Fidelis, K., Kryshtafovych, A., Schwede, T. & Tramontano, A. Critical assessment of methods of
protein structure prediction (CASP)-Round XII. Proteins 86, 7–15 (2018).

2. Kryshtafovych, A., Schwede, T., Topf, M., Fidelis, K. & Moult, J. Critical assessment of methods of protein
structure prediction (CASP)-Round XIII. Proteins 87, 1011–1020 (2019).

3. Wang, S., Sun, S., Li, Z., Zhang, R. & Xu, J. Accurate de novo prediction of protein contact map by ultra-deep
learning model. PLoS Comput. Biol. 13, e1005324 (2017).

4. Schaarschmidt, J., Monastyrskyy, B., Kryshtafovych, A. & Bonvin, A. Assessment of contact predictions in
CASP12: co-evolution and deep learning coming of age. Proteins 86, 51–66 (2018).

5. Xu, J. Distance-based protein folding powered by deep learning. Proc. Natl Acad. Sci. USA 116, 16856 (2019).
6. Yang, J. et al. Improved protein structure prediction using predicted interresidue orientations. Proc. Natl

Acad. Sci. USA 117, 1496–1503 (2020).
7. Senior, A. W. et al. Improved protein structure prediction using potentials from deep learning. Nature 577,

706–710 (2020).

NATURE PROTOCOLS PROTOCOL

NATURE PROTOCOLS | VOL 16 |DECEMBER 2021 | 5634–5651 |www.nature.com/nprot 5649

https://yanglab.nankai.edu.cn/trRosetta
https://yanglab.nankai.edu.cn/trRosetta
https://yanglab.nankai.edu.cn/trRosetta
www.nature.com/nprot


8. Zhang, Y. & Skolnick, J. Scoring function for automated assessment of protein structure template quality.
Proteins 57, 702–710 (2004).

9. Zemla, A. LGA: a method for finding 3D similarities in protein structures. Nucleic Acids Res. 31, 3370–3374
(2003).

10. Callaway, E. ‘It will change everything’: DeepMind’s AI makes gigantic leap in solving protein structures.
Nature 588, 203–204 (2020).

11. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589
(2021).

12. Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network.
Science 373, 871–876 (2021).

13. Remmert, M., Biegert, A., Hauser, A. & Söding, J. HHblits: lightning-fast iterative protein sequence searching
by HMM-HMM alignment. Nat. Methods 9, 173–175 (2012).

14. Söding, J. Protein homology detection by HMM–HMM comparison. Bioinformatics 21, 951–960 (2004).
15. Rohl, C. A., Strauss, C. E., Misura, K. M. & Baker, D. Protein structure prediction using Rosetta. Methods

Enzymol. 383, 66–93 (2004).
16. Mistry, J. et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 49, D412–D419 (2021).
17. Gao, S. H. et al. Res2Net: a new multi-scale backbone architecture. IEEE Trans. Pattern Anal. Mach. Intell. 43,

652–662 (2021).
18. Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).
19. Pleiner, T. et al. Structural basis for membrane insertion by the human ER membrane protein complex.

Science 369, 433–436 (2020).
20. O’Donnell, J. P. et al. The architecture of EMC reveals a path for membrane protein insertion. Elife 9, e57887

(2020).
21. Mashtalir, N. et al. A structural model of the endogenous human BAF complex informs disease mechanisms.

Cell 183, 802–817.e24 (2020).
22. Banerjee, A. K. et al. SARS-CoV-2 disrupts splicing, translation, and protein trafficking to suppress host

defenses. Cell 183, 1325–1339.e21 (2020).
23. Gordon, D. E. et al. Comparative host-coronavirus protein interaction networks reveal pan-viral disease

mechanisms. Science 370, eabe9403 (2020).
24. Anishchenko, I., Chidyausiku, T. M., Ovchinnikov, S., Pellock, S. J. & Baker, D. De novo protein design by

deep network hallucination. Preprint at https://doi.org/10.1101/2020.07.22.211482 (2020).
25. Xu, J. & Zhang, Y. How significant is a protein structure similarity with TM-score = 0.5? Bioinformatics 26,

889–895 (2010).
26. Eddy, S. R. Profile hidden Markov models. Bioinformatics 14, 755–763 (1998).
27. Ovchinnikov, S. et al. Protein structure determination using metagenome sequence data. Science 355,

294–298 (2017).
28. Wu, Q. et al. Protein contact prediction using metagenome sequence data and residual neural networks.

Bioinformatics 36, 41–48 (2020).
29. Dong, R., Pan, S., Peng, Z., Zhang, Y. & Yang, J. mTM-align: a server for fast protein structure database

search and multiple protein structure alignment. Nucleic Acids Res. 46, W380–W386 (2018).
30. Rego, N. & Koes, D. 3Dmol.js: molecular visualization with WebGL. Bioinformatics 31, 1322–1324 (2014).
31. Yang, J. et al. The I-TASSER Suite: protein structure and function prediction. Nat. Methods 12, 7–8 (2015).
32. Ward, J. J., McGuffin, L. J., Bryson, K., Buxton, B. F. & Jones, D. T. The DISOPRED server for the prediction

of protein disorder. Bioinformatics 20, 2138–2139 (2004).
33. Webb, B. & Sali, A. Protein structure modeling with MODELLER. in Protein Structure Prediction (ed. Kihara,

D.) 1–15 (Springer, 2014).
34. Ju, F. et al. CopulaNet: learning residue co-evolution directly from multiple sequence alignment for protein

structure prediction. Nat. Commun. 12, 2535 (2021).
35. Wang, Z., Eickholt, J. & Cheng, J. MULTICOM: a multi-level combination approach to protein structure

prediction and its assessments in CASP8. Bioinformatics 26, 882–888 (2010).
36. Kim, D. E., Chivian, D. & Baker, D. Protein structure prediction and analysis using the Robetta server.

Nucleic Acids Res. 32, W526–W531 (2004).
37. Mao, W., Ding, W., Xing, Y. & Gong, H. AmoebaContact and GDFold as a pipeline for rapid de novo protein

structure prediction. Nat. Mach. Intell. 2, 25–33 (2020).
38. Zheng, L. et al. Combining deep learning enhanced hybrid potential energy for template-based modelling.

CASP14 Abstracts https://predictioncenter.org/casp14/doc/CASP14_Abstracts.pdf (2020).
39. Greener, J. G., Kandathil, S. M. & Jones, D. T. Deep learning extends de novo protein modelling coverage of

genomes using iteratively predicted structural constraints. Nat. Commun. 10, 3977 (2019).
40. Xu, D. & Zhang, Y. Ab initio protein structure assembly using continuous structure fragments and optimized

knowledge-based force field. Proteins 80, 1715–1735 (2012).
41. Jin, S. et al. AWSEM-Suite: a protein structure prediction server based on template-guided, coevolutionary-

enhanced optimized folding landscapes. Nucleic Acids Res. 48(W1), W25–W30 (2020).
42. Ko, J., Park, H., Heo, L. & Seok, C. GalaxyWEB server for protein structure prediction and refinement.

Nucleic Acids Res. 40, W294–W297 (2012).
43. Källberg, M. et al. Template-based protein structure modeling using the RaptorX web server. Nat. Protoc. 7,

1511–1522 (2012).

PROTOCOL NATURE PROTOCOLS

5650 NATURE PROTOCOLS | VOL 16 |DECEMBER 2021 | 5634–5651 |www.nature.com/nprot

https://doi.org/10.1101/2020.07.22.211482
https://predictioncenter.org/casp14/doc/CASP14_Abstracts.pdf
www.nature.com/nprot


44. Yang, Y., Faraggi, E., Zhao, H. & Zhou, Y. Improving protein fold recognition and template-based modeling
by employing probabilistic-based matching between predicted one-dimensional structural properties of query
and corresponding native properties of templates. Bioinformatics 27, 2076–2082 (2011).

45. Kelley, L. A. & Sternberg, M. J. E. Protein structure prediction on the Web: a case study using the Phyre
server. Nat. Protoc. 4, 363–371 (2009).

46. Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9, 40 (2008).
47. Wu, S. & Zhang, Y. LOMETS: a local meta-threading-server for protein structure prediction. Nucleic Acids

Res. 35, 3375–3382 (2007).
48. Söding, J., Biegert, A. & Lupas, A. N. The HHpred interactive server for protein homology detection and

structure prediction. Nucleic Acids Res. 33, W244–W248 (2005).
49. Guex, N. & Peitsch, M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative

protein modeling. Electrophoresis 18, 2714–2723 (1997).
50. Yan, Y., Tao, H., He, J. & Huang, S.-Y. The HDOCK server for integrated protein–protein docking.

Nat. Protoc. 15, 1829–1852 (2020).

Acknowledgements
This work was supported by the National Natural Science Foundation of China (NSFC 11871290 and 61873185), Fok Ying-Tong
Education Foundation (161003) and KLMDASR.

Author contributions
J.Y. conceived and supervised the project. Z.D., H.S., W.W., L.Y., H.W., Z.P. and J.Y. designed and performed the experiments.
Z.D., J.Y., I.A. and D.B. wrote the manuscript. All authors revised the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41596-021-00628-9.

Correspondence and requests for materials should be addressed to Jianyi Yang.

Peer review information Nature Protocols thanks Julia Leman and the other, anonymous, reviewer(s) for their contribution to the peer
review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 19 January 2021; Accepted: 31 August 2021;
Published online: 10 November 2021

Related links
Key reference using this protocol
Yang, J. et al. Proc. Natl Acad. Sci. USA 117, 1496–1503 (2020): https://www.pnas.org/content/117/3/1496

NATURE PROTOCOLS PROTOCOL

NATURE PROTOCOLS | VOL 16 |DECEMBER 2021 | 5634–5651 |www.nature.com/nprot 5651

https://doi.org/10.1038/s41596-021-00628-9
http://www.nature.com/reprints
https://www.pnas.org/content/117/3/1496
www.nature.com/nprot

	The trRosetta server for fast and accurate protein structure prediction
	The trRosetta (transform-restrained Rosetta) server is a web-based platform for fast and accurate protein structure prediction, powered by deep learning and Rosetta. With the input of a protein&#x02019;s amino acid sequence, a deep neural network is first
	Introduction
	Development of the protocol
	Updates made since the first release
	MSA selection and MSA submission
	New network architecture
	Inclusion of template-based restraints
	Applications of trRosetta
	Protein structure prediction
	Validation of designed proteins
	Comparison between trRosetta and similar servers
	Modeling approach
	Deep learning
	Confidence score estimation
	Downloadable version
	Response time
	TM-score
	Performance of trRosetta-based methods
	Performance in CASP14
	Benefit of including homologous templates
	Experimental design
	MSA generation
	Prediction of inter-residue 2D geometries
	3D structure prediction
	Confidence score of the predicted structure models
	Examples of structure prediction
	Limitations and future development

	Materials
	Equipment for Procedure 1
	Equipment for Procedure 2
	Required software and database for Procedure 2

	Procedure 1
	Sequence submission
	Job monitoring
	Analyzing the results

	Procedure 2
	MSA generation
	(Optional) Template detection
	Inter-residue geometry prediction
	Structure prediction
	Result analysis

	Troubleshooting
	Timing
	Procedure 1
	Procedure 2

	Anticipated results
	Procedure 1
	Procedure 2
	References
	References

	References
	ACKNOWLEDGMENTS




