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Deep learning and protein structure modeling
Deep learning has transformed protein structure modeling. Here we relate AlphaFold and RoseTTAFold to classical 
physically based approaches to protein structure prediction, and discuss the many areas of structural biology that 
are likely to be affected by further advances in deep learning.
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Up until recently, computational 
structural biology—the prediction 
and design of biomolecular 

structures, dynamics and interactions—
was based almost entirely on physically 
based models. Such models use force 
fields and energy functions that describe 
atomic interactions in biomolecules as the 
sum of terms representing non-covalent 
van der Waals, electrostatic and hydrogen 
bonding interactions along with covalent 
interactions between bonded atoms. 
Solvation interactions are modeled 
through either the explicit incorporation 
of water molecules or implicit models 
that average over their possible positions. 
The hundreds of parameters of these 
models cannot be collectively obtained 
from first-principles quantum mechanics 
(QM)-based calculations. Instead, various 
approaches have been developed over the 
years to obtain them from small-molecule 
experimental or QM data and/or protein 
data1–4. These force fields have been used 
to simulate macromolecular motion using 
molecular dynamics (MD) simulation and 
to predict and design protein structures 
using biomolecular modeling software such 
as Rosetta5.

A major challenge for these methods 
has been the very large size of protein 
conformational space. Molecular 
dynamics approaches are typically 
limited to simulation times of less than 
a millisecond, and hence, for all but the 
smallest proteins, sample only the region 
around the starting structure. Monte Carlo 
(MC)-based structure prediction methods 
such as Rosetta that seek to identify the 
lowest energy state of the protein chain 
struggle with larger proteins, for which the 
conformational space becomes extremely 
large. A second challenge has been the 
accuracy of the force fields; the simulation 
of dynamics and prediction of structure 
are only as accurate as the description of 
the physics embedded in the force field. 
Supplementation with structural constraints 
derived from amino acid sequence 
covariation during evolution has increased 
the size and complexity of the structures 

that can be predicted using Rosetta and 
related approaches.

Very recently, deep learning methods 
such as RoseTTAFold6 and AlphaFold7 
have achieved structure prediction 
accuracies far beyond that obtained with 
classical force-field-based models. These 
methods have millions of parameters, in 
contrast to the hundreds of parameters 
of classical approaches, and make no 
assumptions about the functional form of 
the interactions between atoms (such as 
Coulomb’s law for electrostatic interactions). 
Unlike the energy-function-based 
classical approaches, the new methods 
learn millions of parameters directly by 
training the networks to generate correct 
three-dimensional structures from input 
amino acid sequences over sets of tens of 
thousands of experimentally determined 
protein structures. Despite these differences, 
the new methods do have an interesting 
resemblance to classical physical simulation 
(more than the first generation of less 
accurate convolutional-network-based deep 

learning methods for structure prediction): 
they iteratively update a representation of 
the structure, generating a trajectory that, 
in favorable cases, converges on the correct 
structure. These updates can be viewed 
as very sophisticated ‘moves’ analogous 
to those in a molecular simulation, but 
involving more concerted structural 
changes with magnitude adapting to the 
likely distance from the correct structure. 
The updates are based on the current 
representation of the structure, and unlike 
the moves in MD or MC trajectories, are 
directly optimized by the deep learning 
training procedure such that repeated 
updates result in accurate final structures. 
These smart structure updates help 
overcome the two challenges of classic 
molecular simulation described in the 
previous paragraph: global optimization is 
possible even in very large spaces if moves 
are almost always in the direction of the 
optimum (not the case for a classic MD or 
MC trajectory) and become very small when 
this is reached.
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Fig. 1 | RoseTTAFold accurately predicts structures of de-novo-designed proteins from their amino 
acid sequences. a, The structures of designed proteins (orange) are accurately predicted using 
single-sequence information. The structures of naturally occurring proteins (blue) are less ideal, 
and are not accurately predicted by either AlphaFold or RoseTTAFold from single sequences (at 
least 30 homologous sequences are generally required). b, Examples of RoseTTAFold models for 
de-novo-designed proteins: α/β topology (PDB ID 1QYS), all-α topology (PDB ID 5CWF) and all-β 
topology (PDB IDs 6E5C and 6CZI). Experimental structures are on the left and the RoseTTAFold 
models are on the right. r.m.s.d., root mean squared deviation.
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RoseTTAFold and AlphaFold are trained 
to predict structure not from single amino 
acid sequences, but from alignments of 
many homologous sequences, and they 
learn to extract rich structural information 
from these evolutionary data. However, 
the training of the models using extensive 
evolutionary information does not mean 
that such information is absolutely required 
for structure inference. RoseTTAFold 
very accurately predicts the structures of 
de-novo-designed proteins from single 
amino acid sequences (Fig. 1), indicating that 
it contains a sufficiently rich understanding 
of protein sequence–structure relationships 
to make evolutionary information 
unnecessary for such simple systems.

Although the recent advances in protein 
structure prediction are quite notable, this 
is just the beginning of the impact of deep 
learning on structural biology. The areas 
likely to be most immediately affected are 
protein interaction and assembly modeling, 
protein design and small-molecule drug 
discovery. Although the RoseTTAFold and 
AlphaFold papers were published only a few 
months ago, these methods have already 
started to have an impact on research in  
this field8–13.

The combination of RoseTTAFold 
and AlphaFold can predict the structure 
of protein–protein complexes more 
accurately than either method alone, and 
we have used this approach to carry out 
full proteome-scale prediction of protein–
protein interactions, which has resulted in 
models of core eukaryotic protein complexes 
that provide rich insights into biological 
function11. AlphaFold has been recently 
optimized for complex prediction12. Efforts 
are underway to develop deep learning 
approaches related to AlphaFold and 
RoseTTAFold that take as input not only 
the sequences of the proteins to be modeled, 
but also cryoelectron microscopy (cryo-EM) 
data to enable accurate modeling of large 
complexes from lower-resolution data. 
More generally, deep learning should greatly 
enhance the quality of models that can be 
built from limited experimental data.

On the protein design side, encouraged 
by the high accuracy of RoseTTAFold for 
predicting structures of de-novo-designed 
proteins (Fig. 1), we have inverted deep 
learning structure prediction networks to 
“hallucinate” a wide range of new proteins 
whose structures have been confirmed by 
X-ray crystallography and NMR14. This 
approach has been extended to design 
proteins scaffolding functional sites for 
catalysis and binding15. A second approach 
to protein function design uses an extended 
version of RoseTTAFold trained to recover 
sequences from structures in addition to 
structures from sequences in a manner 
analogous to the use of language models to 
complete sentences when given only the first 
few words: starting from the sequence and 
structure of a minimalist functional site, the 
model generates the sequence and structure 
of a full protein containing that site13. 
De novo protein design with the classical 
Rosetta method has resulted in the creation 
of new therapeutics16 and vaccines17 that 
have shown promise in animal trials and 
are currently in human clinical trials. We 
anticipate that incorporating deep learning 
approaches will enhance the already 
very rapid rate of progress in this field, 
considerably increasing the complexity of 
the proteins that can be designed.

The potential for deep learning in 
structural biology is enormous. What are 
the challenges ahead? First and foremost, 
deep learning methods require large and 
information-rich datasets for accurate model 
training. The success of RoseTTAFold and 
AlphaFold derives from the many tens 
of thousands of protein structures, each 
containing information on the atomic 
coordinates of thousands of atoms and 
millions of atom–atom pairwise interactions, 
solved by structural biologists over the past 
50 years. For some of the most exciting areas 
of application, such as drug discovery, the 
available datasets (protein–small molecule 
complexes) are much smaller, and many are 
not publicly available. There are similarly  
far fewer data for designs with unnatural 
amino acids and non-protein backbones.  

In these areas, the most powerful approaches 
may combine deep learning with physically 
based models such as Rosetta which, at least 
at present, are more readily generalizable 
to problems for which limited training data 
exist. If we have learned anything from 
the rapid advances in the past few years, 
however, it is that predictions of the rate of 
progress in computational structural biology 
are much less accurate than the predictions 
of the models themselves; the next few years 
should be exciting indeed! ❐
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