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Anchor extension: a structure-guided approach to
design cyclic peptides targeting enzyme active sites
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Per Jr. Greisen1,10, David W. Christianson 2 & David Baker 1✉

Despite recent success in computational design of structured cyclic peptides, de novo design

of cyclic peptides that bind to any protein functional site remains difficult. To address this

challenge, we develop a computational “anchor extension” methodology for targeting protein

interfaces by extending a peptide chain around a non-canonical amino acid residue anchor.

To test our approach using a well characterized model system, we design cyclic peptides that

inhibit histone deacetylases 2 and 6 (HDAC2 and HDAC6) with enhanced potency compared

to the original anchor (IC50 values of 9.1 and 4.4 nM for the best binders compared to 5.4 and

0.6 µM for the anchor, respectively). The HDAC6 inhibitor is among the most potent

reported so far. These results highlight the potential for de novo design of high-affinity

protein-peptide interfaces, as well as the challenges that remain.
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Peptides are emerging as a promising class of therapeutics
with the potential to bind protein surfaces that are difficult
to target using small molecules1–8. Cyclic peptides have

been of particular interest due to their tunable rigidity, stability,
and pharmacokinetics properties4,9. Library-based peptide dis-
covery methods have been used to obtain molecules that bind to
protein interfaces with high affinity4,10,11, with considerable
progress in terms of library size (currently up to 1014), and ability
to incorporate a variety of different amino acids12–16 and cycli-
zation chemistries17–19. Due to limitations in synthesis, however,
sampling the entirety of the chemical space is rarely possible and
these libraries are limited to a subset of amino acids, often guided
by the biochemical properties of the protein surface of interest.

Structure-based design of cyclic peptide binders has been more
challenging. Most current peptide binder design methods take
advantage of one or more co-crystal structures of the target pro-
tein with a protein binding partner, and generate binders by sta-
bilizing or scaffolding the interacting structural elements20–24, or
mimicking25 or enhancing the binding interface by amino acid
substitions26. The requirement for a co-crystal structure with a
binding partner limits the application of these methods because
for many target proteins no such structure is available. In addi-
tion, most protein-protein interactions involve considerable
buried surface area; the peptides can only span a portion of this
surface and hence generally have diminished binding affinity
compared to the original binding partner. Restricting to known
binding partners also significantly decreases the range of targe-
table surfaces.

In this paper we present a general computational approach for
de novo design of cyclic peptides that bind to a target protein
surface with high affinity. The three-dimensional structure of the
target surface is needed for this approach and can be derived from
an experimentally determined or computationally predicted
protein structure. This method takes advantage of a functional
group from a molecule known to bind to the target surface of
interest which serves as an anchor, around which a cyclic peptide
is built using the generalized kinematic loop closure method in
Rosetta software. We generate macrocyclic scaffolds that place
this anchor in a binding-competent orientation and enhance its
binding to the target by providing additional interactions intro-
duced during computational design. We call this strategy anchor
extension.

Results
Choice of target protein and anchor residue. We chose Histone
deacetlyase (HDACs) as model targets to test our approach
because of the wealth of structural data available for these
enzymes, the simplicity of testing binding through enzymatic
inhibition, and the relative ease of growing crystals of HDACs
which facilitates structural characterization of new designs. We
focused our design efforts on HDAC2. In addition to its ther-
apeutic relevance27,28, HDAC2 exemplifies two of the major
challenges facing binder design: First, it has a relatively polar
surface (Supplementary Fig. 1a), making it a good test system for
designing binders for hydrated surfaces. Second, HDAC2 belongs
to a protein superfamily with 11 members, many of which share
high structural homology29,30 (Fig. 1a, Supplementary Fig. 1b);
thus, being able to selectively bind to only HDAC2 present a
challenge for computational design of selectivity.

The HDACs are particularly well suited as paradigm systems
for the development of our anchor-extension approach. Smaller
peptides or peptide-like inhibitors, such as the marine depsipep-
tide Largazole (Fig. 1b), exhibit a range of affinities and
selectivities against various HDAC isozymes. Many of these
compounds were originally found in nature and in their

unmodified forms bind with IC50 values in the mid-nanomolar
range or better, often to class I HDACs, with varying selectivities
(Supplementary Table 1)31,32. We sought to determine whether
computational methods can achieve similar or better inhibition
than these natural products.

To design cyclic-peptide inhibitors of HDAC2, we chose a non-
canonical amino acid, 2S-2-amino-7-sulfanylheptanoic acid
(SHA), as the anchor. SHA can coordinate to the zinc ion in
the active site of HDACs. The choice of SHA was inspired by
natural product Largazole (Fig. 1b)33, one of the most potent
naturally occurring HDAC inhibitors (1.2 nM for HDAC1, ~3 nM
for HDAC2 and HDAC3, and 4.6 nM for HDAC6)34. SHA alone
can inhibit class I (HDACs 1,2,3, and 8) and class IIb (HDAC6)
HDACs with low micro-molar to high nano-molar affinities
(Supplementary Table 2). Different conformations of the SHA
anchor were sampled in the HDAC2 pocket using molecular
dynamics simulations and served as starting points for design.

Docking pre-existing scaffolds. Our first computational method
(design method 1) started with docking structured cyclic-peptide
scaffolds onto SHA and re-designing the residues in the interface
to improve binding. These scaffolds were selected from two
peptides with known structure in the Protein Data Bank (PDB):
3AVL-chain C and 3EOV-chain C, as well as a library of 200
previously generated computationally designed35 structured
cyclic-peptides of 7-10 residues length. These peptides were
docked onto different conformations of SHA embedded in the
HDAC2 active site by rigid body superposition. We selected
docked poses without clashes between the macrocycle backbone
and HDAC2, and then redesigned the peptide sidechains using
Rosetta combinatorial sequence optimization to maximize pre-
dicted affinity for the HDAC2. Designs were ranked based on
shape complementarity between the peptide and the protein
pocket, calculated ΔΔG of binding, and number of contacts
between peptide and protein (see Methods for more details).
From a library of tens of thousands of designed peptides, 100 with
the best interface metrics were selected for energy landscape
characterization. Tens of thousands of conformers were generated
for each of the 100 peptides, their energies were evaluated, and
those designs for which the designed target structure had the
lowest energy were selected for downstream analysis. From the
previous pool, five peptides with the greatest in silico predicted
affinities were tested for HDAC2 inhibition in vitro, the best of
which (des1.1.0, Fig. 2a) demonstrated an IC50 value of 289 nM
(Fig. 2b, Supplementary Table 2).

The crystal structure of this design in complex with HDAC2
revealed two distinct binding modes and peptide conformations
in the three protein chains of the asymmetric unit, suggesting
flexibility of the peptide as well as presence of iso-energetic
binding conformations (Supplementary Fig. 2a). In two of the
protein chains of the asymmetric unit (chains B and C), the
peptide conformation was very similar to the design model
(Fig. 2c), but the observed binding mode to HDAC2 differed from
that of the design model (Fig. 2d). This binding orientation
interacts with several water molecules through backbone-
mediated hydrogen bonds (Fig. 2e, and Supplementary Fig. 3a).
Rosetta-guided mutational scanning successfully stabilized the
binding mode observed in the crystal structure (confirmed by
structures of variants Lys4→Glu and Pro3→hydroxy-Pro,
Supplementary Fig. 2b and Supplementary Figs. 3b–c) but failed
to significantly improve affinity or selectivity (Supplementary
Tables 2 and 3).

Stabilizing the binding orientation by including water mole-
cules and an additional anchor. Design method 1 highlighted the
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limitation of using a small (~200) library of pre-designed scaf-
folds for obtaining high affinity binders: with this small a library,
the best fit solutions are not likely to have high shape com-
plementary and make optimal interactions with the target. To
circumvent this problem, in design round 2, we built up mac-
rocyclic scaffolds de novo inside the protein pocket to increase
shape complementarity between the peptide and the HDAC2
pocket, and to make additional favorable interactions between the
peptide backbone atoms and HDAC2. We also incorporated a
Trp residue as an additional anchor that lays flat on a hydro-
phobic surface close to the active site (Fig. 3a), and mimics an
aromatic ring observed in the same position in several small
molecule inhibitors of HDACs (Supplementary Fig. 4a). Finally,
since in the des1.1.0 crystal structure, the peptide interacts with
two water molecules at the pocket of HDAC2, also present in a
majority of HDAC2 crystal structures (Supplementary Fig. 4b),
and displacing such tightly bound water is likely energetically
unfavorable36, we decided to explicitly include them in the design
calculations and bias backbone sampling to start from

conformations that interact with structured waters at the HDAC2
interface (Fig. 3b).

The macrocycle chain was extended from the SHA-Trp dimer,
and the conformational space of closed macrocycles harboring
these two residues was explored using generalized kinematic loop
closure35. Cyclic-peptide backbone and side-chains were opti-
mized for increased predicted binding affinity and for stabilizing
the binding competent conformation. As with method 1, out of
tens of thousands of generated conformations, around 100 with
best interface metrics were selected for conformational sampling
analysis. Conformational sampling suggests that peptides
designed with this method populate a wide range of conforma-
tions in the unbound state (Supplementary Fig. 5), thus we
selected five peptides for experimental testing based on their in
silico predicted affinities. The best tested peptide, des2.1.0 had an
IC50 value of 49.3 nM (Supplementary Table 2), a four-fold
improvement over method 1. The other peptides from this
method that were tested experimentally had IC50 values in the
low micro-molar to high nano-molar range. We hypothesize that
the observed lower affinities are due in part to the flexibility of
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Fig. 1 Anchor extension based design of macrocycles targeting HDAC2. a Top left: Overlay of crystal structures of several HDACs showing the secondary
structure elements adjacent to the active site (box on left) and their RMSD to HDAC2 (H1=HDAC1, H3=HDAC3, H4=HDAC4, H6=HDAC6, H7=
HDAC7, H8=HDAC8). RMSD is calculated over the conserved secondary structure elements shown in the figure. Number of atoms in the aligned region
is mentioned in the table. HDAC2 (green, PDB ID: 5IWG), HDAC4 (cyan, PDB ID: 2VQO), HDAC6 (magenta, PDB ID: 6R0K), HDAC7 (yellow, PDB ID:
3C0Z), HDAC8 (orange, PDB ID: 3SFF). All structures shown here are human variants except HDAC6 (shown by an asterisk), which is the homolog from
Danio rerio. The inset on top right shows the overlay of the active site residues of HDAC2 (green) and HDAC6 (magenta). The residues coordinating the
active site Zn (gray sphere) are shown in sticks. b Schematic representation of anchor-extension approach. The SHA (2S-2-amino-7-sulfanylheptanoic
acid) anchor was inspired by the long tail of the HDAC-binding small molecule Largazole and modeled in HDAC2 pocket. A double bond in Largazole
(green box) was replaced by a single bond in SHA to allow synthesis. Low-energy bound conformations were sampled using molecular dynamics
simulations and served as starting points for designing new macrocycle binders.
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these peptides, suggested by our computational conformational
sampling (Supplementary Fig. 5), and the unfavorable loss of
conformational entropy upon binding. This lower propensity to
sample the designed competent conformation compared to
designs from round 1 is potentially due to the constraints
imposed by forcing the backbone to interact with water
molecules.

To improve the affinity of des2.1.0, we mutated a D-Lys7
residue adjacent to a hydrophobic pocket in des2.1.0 to D-Met.
The new des2.1.1 (Fig. 3c) had an improved IC50 value of 16 nM
for HDAC2 (Fig. 3d, Supplementary Table 2). The crystal
structure of des2.1.1 matches the designed orientation for the two
anchor residues, SHA and Trp, with the position of the water
molecules retained (Fig. 3e, Supplementary Fig. 3d). While the
electron density map for SHA and Trp are well resolved and
match the designed model, the rest of the molecule appears to be
in a conformation different from the solution structure obtained
by NMR (Fig. 3f) and the designed model; however, the electron
density is too weak or absent, and the thermal B-factors are too
high, for those residues to enable a meaningful comparison. This
flexibility is consistent with the observation of multiple states
during conformational sampling (Fig. 3g).

Anchor neighborhood sampling and identification of high
potency binders. While the above design methodologies result in
macrocycles with modest affinities (methods 1 and 2) and correct
binding orientation (method 2), these did not achieve selectivity
over HDAC6 or IC50 values in low nM range. Inspection of the

designed macrocycles in complex with HDAC2 suggested that
most lacked sufficient hydrophobic contacts with the target
interface to achieve high-affinity binding. The available scaffolds
in method 1 and the backbone motif used in method 2 did not
facilitate such interactions due to their shape and orientation, and
the highly polar nature of HDAC2 pocket.

To overcome this challenge, we focused the anchor extension
backbone generation towards making interactions with small
hydrophobic patches around the active site (Supplementary
Fig. 4c). To do so, we first sampled different possible
conformations of SHA in the HDAC2 pocket to generate
diversity in binding orientations. Next, the two residues directly
adjacent to SHA were extensively sampled to find backbones that
promote hydrophobic contacts to the protein surface using two
parallel approaches, as described in the next two paragraphs.

In design method 3, we sampled the torsional space of these
two residues using a grid-based search over all possible degrees of
phi and psi (30˚ grids). After generating a library of backbones,
the residue adjacent to SHA at each backbone torsion was
mutated to all possible canonical amino acids (L chirality if φ < 0
and D chirality if φ > 0) and the shape complementarity and ΔΔG
of binding were calculated for each mutation (Fig. 4a). The best
scoring results from the grid-based sampling converged on a
small number of residues and torsions, in particular for the
residue after SHA (Supplementary Fig. 6). The solutions with best
interface metrics were then extended into cyclic peptides by
optimizing the torsions and amino acid sequence of the
remaining residues as in method 2 through simultaneous

Fig. 2 Crystal structure of des1.1.0 has the designed monomer structure but adopts a different binding orientation. a Chemical structure of des1.1.0. b
des1.1.0 inhibits HDAC2 with an IC50 of 289 nM (Source Data are provided as a Source Data file). c Overlay of the designed peptide model des1.1.0 (dark
gray) with the crystal structure (light gray). Some sidechains are removed for clarity. SHA anchor is shown in orange. d Overlay of des1.1.0 binding mode in
original computational design (dark gray) and crystal structure (light gray) shows a clear rotation around SHA—Zn2+ axis in the binding pocket. e Crystal
structure of des1.1.0 (PDB ID: 6WHO) shows several water-mediated interactions at the interface. Water molecules are shown as green spheres.
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Fig. 3 Design method 2 results in peptides that bind in predicted mode by taking advantage of an additional anchor and including waters. a Schematic
of design method 2: anchors are extended, and the new peptide chain is closed inside the protein pocket. b In this round of designs, a Trp residue was
added as an anchor in addition to SHA, and the backbone orientation of SHA and the preceding residue were fixed to orient two structural waters at the
interface. c Chemical structure of des2.1.1. d des2.1.1 has an IC50 value of 16.3 nM against HDAC2 and slight preference for HDAC6 over HDAC2 (Source
Data are provided as a Source Data file). e Crystal structure of des2.1.1 (PDB ID: 6WI3, light gray) shows a conformation consistent with the designed
model for SHA, Trp, and waters at the interface; however, the rest of the peptide shows higher flexibility. The original model is shown in dark gray. f The
binding-competent backbone conformation from the crystal structure (light gray) is different from the NMR structure of the peptide in solution (dark gray),
suggesting a conformational change upon binding. Both of these structures differ from the design model. The sidechains, except for Trp are removed for
clarity. g The flexibility of des2.1.1 is consistent with conformational sampling results, suggesting that this peptide can sample a number of different
conformational states far from the designed model (Source Data are provided as a Source Data file).
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backbone sampling and Monte Carlo sequence design to favor
binding interactions, including non-canonical amino acids. A list
of noncanonical amino acids explored is provided in Supple-
mentary Fig. 7. Except the SHA anchor, all positions were varied
during the sidechain assignment due to the substantial backbone
movement allowed in these approaches.

In design method 4, we biased backbone generation to favor
more hydrophobic contacts by carrying out large-scale stochastic
sampling of the two residues directly adjacent to the SHA anchor

followed by sequence optimization and energy minimization. In
contrast to the grid-based approach in method 3, stochastic
sampling joint with minimization and sequence optimization
generates lower energy conformations with finer torsional
diversity which can increase the likelihood of identifying
favorable contacts. The 3mer peptides with best interface metrics
were then extended to a final size of 7–9 residues and cyclic
backbones were generated by sampling torsional space of these
added residues. The peptide sequence was then optimized to

a 

B
ac

kb
o

n
e 

g
eo

m
et

ry
 

Amino acid 

b c d 

D-Arg8 

Phe2 

Asp7 

e 

g 

h f 

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23609-8

6 NATURE COMMUNICATIONS |         (2021) 12:3384 | https://doi.org/10.1038/s41467-021-23609-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


improve shape complementarity and calculated ΔΔG of binding
between peptide and protein.

The macrocycles generated using design methods 3 and 4 on
average had better shape complementarity with the binding
pocket compared to those from previous rounds (Supplementary
Fig. 8). We sampled around 100,000 peptides from both methods.
100 designs with the best shape complementarity and ΔΔG of
binding were selected for downstream conformational sampling
analysis, as described before. 13 out of the 22 peptides tested had
IC50 values of less than 100 nM (Supplementary Table 4); the best
binders had similar sequences (Supplementary Table 2) and were
all from design round 3. Further mutations around this sequence
to enhance interactions to HDAC2 or stabilize the designed
binding conformation did not improve experimental binding
affinity (Supplementary Table 5). The best binder, des3.3.0
(Fig. 4b, c) had an IC50 value of 9.1 nM for HDAC2 (Fig. 4d,
Supplementary Table 2). One of the peptides, des3.3.2, achieved
3-fold selectivity over HDAC6, an order of magnitude improve-
ment in selectivity over the original SHA anchor (Supplementary
Table 2). Designs from round 4 had moderate potency for
HDAC2, similar to round 1 designs (Supplementary Table 2).
However, they all showed selectivity for HDAC6.

Efforts to crystalize des3.3.0 were not successful. However, we
obtained a crystal structure of des4.3.1 (Fig. 4e) with zebrafish
(Danio rerio) HDAC6 at 1.7 Å resolution (Supplementary Fig. 3e).
This peptide inhibits human HDAC6 with an IC50 value of 17.1
nM (Fig. 4f), 88-fold more potently than HDAC2. The binding
orientation of the peptide is similar to the design model, but the
structure of the peptide is very different (Fig. 4g). In particular, D-
Arg8 occupies the negative phi region of the Ramachandran map
(φ= 166° in the design and -46° in the crystal structure). If the D-
Arg is replaced by L-Arg during conformational sampling, the
lowest energy structures are very close to the crystal structure
(Supplementary Fig. 9). The newly adopted conformation is
complementary in shape to the contour of the active site (Fig. 4h,
Supplementary Fig. 3e) and stabilized by several backbone-
backbone hydrogen bonds and n→ π* interactions37. The
peptide also forms both direct and water-mediated hydrogen
bonding interactions with residues in the outer active site cleft of
HDAC6 (Fig. 4h, Supplementary Fig. 3e). Notably Ser531 of
HDAC6 donates a hydrogen bond to the carboxylate group of
Asp7 and accepts a hydrogen bond from the backbone amide of
SHA; Ser531 similarly accepts a hydrogen bond from the
backbone amide of bound acetyl-lysine HDAC substrates38.
Mutation of Asp7 to Ala did not result in a significant change in
IC50 for HDAC6 or HDAC2 (Supplementary Table 6), while
mutation of D-Arg8→D-Ser raised the IC50 10-fold, suggesting
an essential role for this residue (Supplementary Table 6),
possibly due to its complementarity to the negative electrostatic
surface potential of HDAC6 in this region (Supplementary

Fig. 10). HDAC6 was not the target in the computational design
calculations, and it is unclear whether the binding mode of the
peptide to HDAC2 would be similar or different from that
observed in the HDAC6 structure.

Insights from crystal structures. The cyclic-peptides in this
study are among the largest active site-targeted ligands that have
been co-crystallized with any HDAC to date. Previously studied
HDAC-cyclic peptide complexes include HDAC8 complexes with
Largazole and Trapoxin A, and the HDAC6 complex with HC
Toxin, each a tetrapeptide that interacts with specificity deter-
minants in the enzyme active site33,38,39.

In all the crystal structures we obtained, the thiol functional
group of SHA coordinates the catalytic Zn2+ ion with a Zn2+– S
separation of 2.3 Å in a distorted tetrahedral geometry
reminiscent of that observed for the inhibitor Largazole
(Supplementary Fig. 3)33. Binding of these peptides is enhanced
by additional interactions to HDAC. Some of these interactions
are observed in the crystal structure of shorter tetrapetides, but
there are also additional interactions due to the larger size of our
designed peptides. For example, Ser531 in the HDAC6 active site
accepts a hydrogen bond from the backbone NH group of the
zinc-bound epoxyketone residue of HC Toxin, just as Ser531
accepts a hydrogen bond from the backbone NH group of
substrate acetyllysine38. Similarly, Ser531 accepts a hydrogen
bond from the backbone NH group of the zinc-bound anchor
residue SHA; but in addition it forms water-mediated hydrogen
bond interactions with main chain or side chain atoms at the
mouth of the active site (Supplementary Fig. 3).

The crystal structure of HDAC1 complexed with a linear
heptapeptide has been reported at 3.3 Å resolution, but solvent
molecules are not modeled at this low resolution40. Our high-
resolution crystal structures of HDAC2 and HDAC6 complexed
with the large designed peptide ligands provide detailed clues
regarding how these enzymes can interact with their protein
substrates through direct and water-mediated hydrogen bond
interactions.

Out of 5 HDAC2:cyclic-peptide crystal structures obtained,
three had the same binding orientation and engaged the same
residues at the protein-peptide interface as designed. In
the des1.1.0:HDAC2 co-crystal structure, the dominant binding
mode in the crystal (chains B and C) has considerably better
predicted affinity than the original design model with the same
peptide structure (Supplementary Table 7, Fig. 5a). Thus, the lack
of structure recapitulation in this case was due to insufficient
sampling—our original design calculations were not extensive
enough to identify this lower energy alternative state. We found
that a large-scale parallel docking algorithm which allows
movements of side-chains and backbone of the peptide and
nearby protein residues can reproduce the overall peptide

Fig. 4 Design methods 3 and 4 generate cyclic peptides with higher shape complementarity to the binding pocket and better overall potencies. a
Schematic description of methods 3 and 4: the anchor is extended one residue before and after, and for each residue, backbone torsions are sampled. For
each backbone geometry, the interface metrics are calculated for different amino acid substitutions for that residue. Inset: Example of ΔΔG distribution for
a single residue position for different backbone geometries and amino acid choices. Backbone phi/psi distribution were sampled on 30˚ grids (each row is a
different phi/psi bin), and the free energy of HDAC binding computed for different amino acid possibilities (y axis). ΔΔGs are indicated in colors from light
yellow (most favorable) to dark blue (most unfavorable). The best combinations of torsion and amino acid are then used for extension of the peptide
sequence, closure, and design. b Chemical structure of des3.3.0 and c its computational model at the HDAC2 interface. d des3.3.0 has an IC50 of 9.1 nM for
HDAC2 and 12 nM for HDAC6 (Source Data are provided as a Source Data file). e Chemical structure of des4.3.1. f des4.3.1 inhibits HDAC6 with an IC50

value of 17 nM, 88 times better than its potency for HDAC2 (Source Data are provided as a Source Data file). g Crystal structure of bound des4.3.1 (PDB
ID: 6WSJ, light gray) is different from the designed model (dark gray). D-Arg8 (shown as sticks) adopts a negative phi torsion, a geometry more consistent
with L-Arg. h Crystal structure of des4.3.1 (PDB ID: 6WSJ) complexed with HDAC6. The HDAC6 structure shows minimal change upon binding (RMSD of
0.17 Å for 302 Cα atoms compared with the apo-structure, PDB ID: 5EEM). The non-interacting residues are shown as lines and their side-chains are
omitted for clarity. Water molecules are shown as green spheres.
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behavior in the binding pocket for this design (Fig. 5b). While
encouraging, the resolution of this docking method is not high
enough to capture the exact binding orientation and is
computationally very expensive; these are clear areas for
improvement.

Discrepancies between designed and experimental binding
mode have been observed in other peptide- and protein-binder
design studies41,42, and are likely in part responsible for the
limited binding affinities obtained using current computational
methods42,43.

Discussion
Our anchor extension protocol shows promise for the de novo
design of cyclic peptides capable of binding with nanomolar
affinity to a protein surface of choice. The iteratively improved
computational design protocols yielded HDAC2 and HDAC6
binders with affinities on par with many of the most potent
inhibitors44,45. Our calculations include all 20 amino acids, their
chiral variants and approximately 20 non-canonical amino acids
(Supplementary Fig. 7) (a total of >1013 possibilities), and the

high affinity peptide ligands described here were obtained by
testing fewer than 50 peptides in vitro. These results indicate the
power of the computational methods in narrowing down the
space of potential peptide sequences to test experimentally. The
correct orientation of SHA anchor in all crystal structures
obtained in this study and the enhanced affinity of nearly all our
tested peptides compared to this anchor further validates our
approach. Out of 39 tested peptides (Supplementary Table 4), 30
have IC50 values better than 1 µM, and 17 have IC50 values of 100
nM or better (Fig. 5c, Supplementary Tables 2 and 4). Although
selectivity is an important area for future work, des4.2.0, which is
one of the most potent HDAC6 inhibitors reported (small
molecule- or peptide-based, Supplementary Tables 1 and 8),
shows that this class of molecules can be selective.

Our results also highlight remaining challenges for accurate
and robust computational design of cyclic-peptide binders. In our
previous work focused on ordered macrocycle design35, the
design calculations were entirely focused on maximizing the
accuracy and stability of the monomeric designed structures. The
additional requirement of harboring a high-affinity binding site
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Fig. 5 Improvements in scoring, structure sampling, and binding orientation sampling should increase design binding affinity and selectivity. a
Conformational sampling of des1.1.0 (Source Data are provided as a Source Data file). Inset: Overlay of the crystal structure (gray) and the best scoring
model (green). The CA atom of the SHA anchor is shown as sphere for reference. b Overlay of predicted binding orientation from our large-scale parallel
docking (dark gray) with crystal structure (light gray) of des1.1.0 shows that docking can accurately predict orientation of key residues at the interface. c
Despite improvement of the IC50 values over the original SHA anchor (pink square), most designs follow the same trend as SHA; binding slightly more
tightly to HDAC6 over HDAC2. Different colors show results of designs from different methods (blue=method 1, orange = method 2, green = method 3,
purple = method 4). TSA (Trichostatin A, red diamond), a pan-HDAC inhibitor, is shown as a control. d Comparison of computational conformational
sampling for a structured (gray) and a functional (purple) macrocycle shows a much deeper energy gap for structured macrocycle compared to the
functional macrocycle (Source Data are provided as a Source Data file).
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constrains both the sequence and the structure of parts of the
macrocycle and makes precise control over structure more chal-
lenging, and hence the designed structures were not always at the
global free energy minima for the designed sequence (Fig. 5d); the
constraints associated with incorporation of binding functionality
reduce control over structure. This conformational flexibility also
adds to the entropic cost of binding, a potential contributor to
reduced affinity and lack of selectivity46–49.

One solution for this problem is to sample a still larger number
of possible macrocyclic conformations to identify those that
satisfy both binding and structural criteria. Incorporating non-
canonical amino acids with strong torsional preferences and
cross-linking chemistries could help stabilize the designed bind-
ing conformation, compensating for the fact that a subset of
residues must be optimized for binding rather than for folding to
the desired structure. Faster and more accurate algorithms for
computational sampling and energy evaluation to screen possible
binding orientations will be important for confirming that the
designed binding mode is indeed the lowest energy state. Taking
into account the conformational ensemble of peptides (sampled
using Rosetta35 or MD-based methods50,51) when calculating
binding rather than one single conformation could also be useful.
Accurate energy calculations will likely have to consider struc-
tured water molecules36,52–54 and flexibility of loops around the
pocket55–57 (reported previously for HDACs58, also observed in
our MD simulations, Supplementary Fig. 11). With improve-
ments in both sampling methods and energy evaluation, and
incorporation of a negative design strategy to increase within
family selectivity, our anchor extension approach should enable
the computational design of de novo peptides that can target
“undruggable” surfaces with high affinity and selectivity.

Methods
Computational studies
Preparation of proteins. HDAC2 protein was obtained from PDB ID 5IWG ligated
with BRD4884. Chain A of the protein was used as the HDAC2 template. All
cofactors and water molecules were removed except the Zinc ion in the active site.
The protein was then relaxed using the command below:

<path-to-Rosetta >/main/bin/relax.default.linuxgccrelease
-relax:constrain_relax_to_start_coords -relax:coord_
constrain_sidechains -relax:ramp_constraints false -score:
weights ref2015.wts -ex1 -ex2 -use_input_sc -flip_HNQ -no_optH
false -auto_setup_metals true -s <input_pdb>

For structure with water motif, used in design method 2, we added the flag
-ignore_waters false.

SHA parameterization and conformational sampling. The SHA anchor by exam-
ining the x-ray crystal structure of Largazole bound to HDAC8 (PDB ID 3RQD).
Since Fmoc-protected amino acid building-blocks with alkane side-chains of this
sort were much more readily available from commercial suppliers than were the
equivalent building blocks with the double bond intact, we decided to omit the
double bond. To allow SHA to be modeled in Rosetta, we built the SHA anchor
with L-chirality using the Avogadro software, appending N-acetyl and C-
methylamide groups to emulate the context of a longer peptide. We energy-
minimized the structure with the MMFF94 molecular mechanics force field,
removed N- and C-capping groups, and converted the structure to Rosetta’s
params file format using the molfile_to_params.py script included with the
software. We used the lysine main-chain potential for energetic calculations within
Rosetta. Different conformations of SHA in HDAC2 pocket were sampled using
molecular dynamics simulations with AMBER force field.

Peptide backbone generation. The first step in design is to generate the peptide in
the pocket. For design method 1, a library of computational and few natural cyclic-
peptides were docked onto different conformations of SHA anchor. The docking
was performed using a python script that simply transforms the C, N, O, CA, and
CB atoms of each peptide residue onto the corresponding atoms in SHA. This
method is provided in supplementary data file 1, Method1 folder. The docked
conformations were then relaxed using Rosetta FastRelax and those with
minimal clashes were further carried out for design.

For design methods 2 the peptide chain was extended using
PeptideStubMover and then closed conformations were sampled using
GeneralizedKIC mover in Rosetta. The scripts are provided in supplementary
data file 1.

For design methods 3 and 4, residues on two ends of SHA were sampled using a
pyrosetta script provided in supplementary data file 1. The results were analyzed
using python pandas and residues and orientations that had the best interface
metrics (high shape complementarity and low ΔΔG) were selected for extension. A
pyrosetta wrapper for GeneralizedKIC mover was developed in order to facilitate
sampling different peptide sizes.

Peptide design and selection. Extended peptides were then designed using Rosetta’s
FastDesign mover59. The details of design were slightly different for different
methods; details of each script is provided in the supplementary data file 1. The
designed peptides were then filtered based on their total Rosetta score, shape
complementarity, ΔΔG of binding, and contacts at interface. The analysis was
performed using python pandas. For each design method, the designs in the top 1%
of all these metrics were chosen for further analysis (approximately 100 designs in a
total pool of 50,000-100,000). The threshold for each metric depended on the
distribution of scores for each method. However, we employed a hard cut-off of
shape complementarity >0.65 and calculated ΔΔG without repacking <−10 for all
the designs.

Selected designed models were then visually inspected and those with minimum
number of buried unsatisfied hydrogen bond donors and acceptors were selected
for computational conformational sampling, or folding analysis. The folding
analysis was performed using simple_cycpep_predict app in Rosetta as
described before35. Below you may find a command to run such analysis:

<path_to_rosetta_binary > /simple_cycpep_predict.
default.linuxgccrelease \

-nstruct 10000 \
-cyclic_peptide:sequence_file seq.txt \
-in:file:native native.pdb \
-out:file:silent output.silent \
-cyclic_peptide:genkic_closure_attempts 250 \
-cyclic_peptide:genkic_min_solution_count 1 \
-score:symmetric_gly_tables true \
-cyclic_peptide:default_rama_sampling_table flat_symm_

pro_ramatable \
-cyclic_peptide:use_rama_filter true \
-cyclic_peptide:rama_cutoff 3.0 \
-cyclic_peptide:min_genkic_hbonds 2 \
-cyclic_peptide:min_final_hbonds 2 \
-mute all \
-unmute protocols.cyclic_peptide_predict
Where seq.txt is the 3-Letter amino acid sequence of the peptide separated by

space and native.pdb is the designed conformation.
Peptides with better folding metrics (those that sampled near the binding

conformation) were then selected based on score vs rmsd plot and moved forward
for synthesis. Due to difficulties in finding peptides that sampled near the binding
conformation in method 2, we selected peptides based on their interface metrics.

Parallel docking was performed using the pyrosetta.distributed suite and Dask
parallel computing60, using the environment settings provided in extended data.
Details of running the docking and analysis are provided in a Jupyter notebook.

Visualization and figures were generated using the PyMOL Molecular Graphics
System, Version 2.3.0 Schrödinger, LLC. The electrostatic surface potentials were
generated using APBS PyMol plugin with default settings61.

Peptide synthesis and purification. SHA was synthesized by Wuxi AppTech. All
peptides were synthesized using standard Fmoc solid phase peptide synthesis pro-
tocols using a CEM Liberty Blue peptide synthesizer with microwave-assisted
coupling and deprotection steps. Peptides containing a L-aspartate or L-glutamate
were synthesized on a preloaded Fmoc-L-Asp(Wang resin LL)-ODmab or Fmoc-L-
Glu(Wang resin LL)-ODmab resin, where the acidic side-chain of the amino acid is
tethered to the resin, and were cyclized on-bead by a standard coupling reaction
following deprotection of the C-terminal -ODmab protecting group with 2% (v/v)
hydrazine monohydrate in dimethylformamide (DMF). All other peptides were
synthesized with the C-terminus tethered to Cl-TCP(Cl) ProTide resin from CEM,
cleaved from the resin with 1% (v/v) TFA in dichloromethane (DCM), and cyclized
by a solution-phase coupling reaction prior to the final total deprotection. Crude
peptides were purified based on mass via reverse phase HPLC using a Waters
AutoPurify HPLC/MS system in line with a SQD2 mass spectrometer. Peptides were
typically purified via a water (0.1% formic acid) and acetonitrile (0.085% formic
acid) gradient at 2%/min on an XBridge Prep C18 10 um, 19 × 150mm column.
Masses and purities were assessed via electrospray ionization mass spectrometry
during and subsequent to purification on an SQD2 mass spectrometer. Due to
epimerization during cyclization, for some peptides two major peaks with correct
mass was obtained. For such peptides, both peaks were collected and tested. LC/MS
data for the peptides for which HDAC inhibition assays were performed are shown
in Supplementary Fig. 12. Source Data are provided as Supplementary Data 2.
Sequences of all peptides tested are provided in the Supplementary Data file 2.

HDAC inhibition assay. Initial IC50 values were estimated using HDAC fluoro-
genic assay kits from BPS Biosciences (HDAC2, HDAC4, and HDAC6) following
the protocol described in the kit. All the measures were performed in duplicates or
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triplicates. These measurements were done either on full range of concentrations
(1:10 dilution from 1 µM to 100 pM) or on two concentrations only (20 nM and
200 nM) as an estimate of the range. At this stage, the IC50 value of the peptide was
roughly estimated (reported in Supplementary Table 4) and on the promising hits,
full IC50 measurements for HDACs were performed by Reaction Biology Cor-
porations as described below (Values reported in Supplementary Tables 2 and 4).
Since no binding was observed to HDAC4, we did not perform full assay on
HDAC4. Similarly, because no binding to HDACs 5,7,9,11 was observed for our
SHA anchor, further binding analysis for these HDACs was not performed. Source
Data are provided as a Source Data file.

The assay was performed using 50 μM fluorogenic peptide from p53 residues
379-382 [RHKK(Ac)AMC] in a base reaction buffer of 50mM Tris-HCl at pH 8.0,
137mM NaCl, 2.7 mM KCl, 1 mM MgCl2, and freshly added 1 mg/ml BSA and 1%
DMSO. Peptides were first dissolved in DMSO and then added to the reaction
mixture with the enzyme using acoustic technique, enough to reach the desired
concentration for that assay point. Peptide concentrations were calculated based on
mass of lyophilized peptide and its molecular weight. The substrate was then added
and incubated for 1 hour at 30 °C in a sealed container. After the incubation,
developer was added to stop the reaction and develop color. Kinetic measurements
were then performed for 20min with Envision with 5 min intervals (Ex/Em= 360/
460 nm). The endpoint after plateau was taken for IC50 measurement. To calculate
IC50, the % activity data are fit to the following equation in GraphPad Prism (Eq. 1).

Y ¼ Bottomþ Top� Bottom
� �

1þ 10ðlog IC50ð Þ�XÞ*HillSlope
ð1Þ

where bottom is constrained to equal 0, and Top is constrained to be less than 120.
In cases where duplicate measures are used, average data is reported in the main

text or Supplementary Tables.

Structural studies
NMR spectroscopy. We used a Bruker (Billerica, MA) AVANCE III-800 NMR spec-
trometer that was equipped with a cryo-probehead to collect NMR spectra. Peptide
concentrations of around 1.8mM were used for collecting 1D and 2D 1H NMR
spectra. The lyophilized peptides were dissolved in 90% H2O:10% D2O solutions. To
collect Total correlated spectroscopy (TOCSY) spectra, we used a mixing time of 120
ms applied with Bruker’s mlevesgpph pulse sequence. A 250ms mixing time using
Bruker’s noesyesgpph pulse sequence was used to collect 2D 1H−1H nuclear Over-
hauser effect spectroscopy (NOESY) spectra. The TOCSY and NOESY peaks were
assigned using the Sparky NMR package. NMR data are available in Supplementary
Table 9 and Supplementary Fig. 13.

Crystallography

Protein purification and crystallization
Protein of human HDAC2 was produced following the procedure described in Bressi
et al.62. The full length, C-terminally His-tagged protein is expressed in insect cells and
purified by affinity and size exclusion chromatography. After initial purification, a C-
terminally truncated sample is generated by treatment with trypsin for 1 h at 25 °C. The
addition of 1 mM PMSF is used to terminate the reaction, followed by a final purification
by gel filtration chromatography and concentration to 12 mg/ml.
For crystallization of HDAC2, a 12 mg/ml protein sample was incubated with 1 mM tool
compound (SHA) on ice for 1 hour. Experiments were conducted utilizing Takeda
California’s automated nanovolume crystallization platform, in which 50 nl of protein
solution was mixed with an equal volume of reservoir solution containing 40% (v/v)
PEG600 and 100 mM CHES (pH 9.5). The preformed HDAC2 crystals were used in
subsequent soaking experiments by incubation for 48 hours in a stabilizing solution
containing 10 mM of synthetic peptide. Crystals were subsequently harvested in a cryo-
loop and frozen directly in liquid nitrogen.
HDAC6 catalytic domain 2 from Danio rerio (zebrafish; henceforth designated simply as
“HDAC6”), as encoded in the His6-MBP-TEV-HDAC6-pET28a(+) vector, was recom-
binantly expressed in Escherichia coli BL21(DE3) cells and purified as described63. The
HDAC6–design4.3.1 complex was cocrystallized using the sitting drop vapor diffusion
method at 4 °C. Briefly, a 100 nL drop of protein solution [10 mg/mL HDAC6, 5 0 mM 4-
(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) (pH 7.5), 100 mM KCl, 5%
glycerol (v/v), 1 mM tris(2-carboxyethyl)phosphine (TCEP), and 2 mM design4.3.1 was
combined with a 100 nL drop of precipitant solution [0.2 M ammonium chloride and
20% polyethylene glycol (PEG) 3350 (w/v)] and equilibrated against 80 μL of precipitant
solution in the crystallization well reservoir. Rod-shaped crystals appeared within 4 days.
Ethylene glycol (30% v/v) was added to the drop prior to crystal harvesting and flash
cooling for data collection.

Data collection
Data collection from crystals of HDAC2 complexes was performed with synchrotron
radiation at both the Advanced Light Source (ALS) BL-5.0.3, and the Advanced Photon
Source (APS), 21ID-F. All crystals belonged to space group P212121 with cell dimensions
closely related to the following, a = 92.20 Å, b = 97.0 Å and c= 139.1 Å, α = β= γ = 90°.
X-ray intensities and data reduction were evaluated by using the HKL2000 package64.

HDAC6 X-ray diffraction data were collected at the Highly Automated Macromolecular
Crystallography (AMX) beamline 17-ID-1 at the National Synchrotron Light Source II,
Brookhaven National Laboratory (Upton, NY). Crystals of the HDAC6–design4.3.1 com-
plex diffracted X-rays to 1.7 Å resolution. Data were indexed and integrated using
iMosflm65 and scaled using Aimless66 in the CCP4 program suite67.

Refinement
Crystal structures of HDAC2 complexes were determined by molecular replacement
using PDB 4LXZ as an initial search model with Phaser in the CCP4 Suite67. Model
building and refinements were carried out using Phenix68 and COOT69 and models were
manually corrected. After building the initial model, the peptide and solvent molecules
were added. Phenix.refine was used for the final. Assessment and analysis of stereo-
chemical parameters of the final model was done with Molprobity70. Data collection and
refinement statistics are listed in Supplementary Table 10.
For the HDAC6–design4.3.1 complex, the initial electron density map was phased by
molecular replacement using the program Phaser;71 the atomic coordinates of unli-
ganded HDAC6 (PDB 5EEM38) were used as a search model for rotation and translation
function calculations. The interactive graphics program Coot69 was used to build and
manipulate the atomic model of the HDAC6–design4.3.1 complex, and refinement was
performed using Phenix68. The atomic coordinates of design4.3.1 were built into the
electron density map during the later stages of refinement. The final model was evaluated
using MolProbity72. All data collection and refinement statistics are recorded in Sup-
plementary Table 10.

MD simulations. Molecular Dynamics simulations of proteins HDAC10, HDAC3,
HDAC6 and HDAC8 were performed using the Amber99SB-ILDN forcefield73

with GROMACS 2016.174. Each protein was solvated in a dodecahedron box of
explicit TIP3P75 water and neutralized with sodium ions. Each solvated and
neutralized system was energy-minimized by steepest descent minimization.
Equilibration of each system was performed for 1 ns under the NPT ensemble,
where the pressure was coupled with the Berendsen barostat76 to 1 atm, and the
temperature was set to 310 K using the velocity-rescaling thermostat77. During the
equilibration, position restraints (force of 1000 kJ mol-1 nm-1) were applied to
heavy atoms. After equilibration, for each protein, 5 simulations of 100 ns were
performed in the NVT ensemble, with periodic boundary conditions. A 10 Å cutoff
was used for van der Waals and short-range electrostatic interactions. The Particle-
Mesh Ewald (PME) summation method was used for long-range electrostatic
interactions78. Verlet cut-off scheme was used79. Covalent bonds were constrained
using the LINCS algorithm80. The integration time-step was 2 fs.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All the structures presented here are deposited in PDB with accession codes 6WHN,
6WHO, 6WHQ, 6WHZ, 6WI3, 6JSW. The raw data for HDAC inhibition assays
(presented in Figs. 2–5 and Supplementary Table 2) are available as a supplementary data
file. All relevant data are available from the authors upon request. Source data are
provided with this paper.

Code availability
Conformational sampling was done with the Rosetta simple_cycpep_predict
application and peptide design was carried out with the rosetta_scripts
application, both of which are included in the Rosetta software suite. The Rosetta
software suite is available free of charge to academic users and can be downloaded from
http://www.rosettacommons.org. Instructions and inputs for running these applications,
and all other data and coding necessary to support the results and conclusion are
provided in extended data files 1. Additionally, the code used for design and instructions
on how to run can be found in Peptide_HDACBinders folder in our github repository
(https://github.com/ParisaH-Lab/publications.git).
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