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ABSTRACT: Accurate and rapid calculation of protein-small molecule
interaction free energies is critical for computational drug discovery.
Because of the large chemical space spanned by drug-like molecules,
classical force fields contain thousands of parameters describing atom-pair
distance and torsional preferences; each parameter is typically optimized
independently on simple representative molecules. Here, we describe a
new approach in which small molecule force field parameters are jointly
optimized guided by the rich source of information contained within
thousands of available small molecule crystal structures. We optimize
parameters by requiring that the experimentally determined molecular
lattice arrangements have lower energy than all alternative lattice arrangements. Thousands of independent crystal lattice-prediction
simulations were run on each of 1386 small molecule crystal structures, and energy function parameters of an implicit solvent energy
model were optimized, so native crystal lattice arrangements had the lowest energy. The resulting energy model was implemented in
Rosetta, together with a rapid genetic algorithm docking method employing grid-based scoring and receptor flexibility. The success
rate of bound structure recapitulation in cross-docking on 1112 complexes was improved by more than 10% over previously
published methods, with solutions within <1 Å in over half of the cases. Our results demonstrate that small molecule crystal
structures are a rich source of information for guiding molecular force field development, and the improved Rosetta energy function
should increase accuracy in a wide range of small molecule structure prediction and design studies.

■ INTRODUCTION
Classical force field parameterization based on liquid
thermodynamic data and quantum chemistry typically
proceeds by fitting different subsets of parameters on different
subsets of representative molecules independently.1−4 A
challenge with this approach is the transferability of the
resulting model to systems not included in the parameter-
ization set.5,6 For example, bond torsional parameters are often
obtained by computing the energies of a set of conformations
of test molecules with quantum chemistry and then subtracting
the electrostatic and van der Waals contributions. However,
the resulting fitted function is highly dependent on the
molecules selected for training. Using such a model to evaluate
the energetics with different flanking chemical groups often
yields inaccurate results.7−9 Roos et al.3 showed that this issue
could be resolved by expanding to hundreds of thousands of
parameter fits to reproduce quantum chemistry calculations on
many thousands of small molecules. We hypothesized that a
balanced and transferable energy model involving far few
parameters could be learned, by utilizing the many thousands
of crystal structures of small molecules, which span a large
diversity of chemical space.10,11 Since these crystal structures
form spontaneously, the majority of these must be very low
free energy states12 (polymorphs determined by kinetic
reasons generally have <1 kcal/mol energy differences13,14)
and hence, the sum of the intra- and interatomic interaction

energies must be low compared to almost all alternative
packing arrangements and conformations of the molecule in
the majority of cases.15,16

The key steps in our approach are (a) generation of large
numbers of alternative “decoy” lattice packing and conforma-
tional arrangements of a set of small molecules with known
crystal structures and (b) simultaneous optimization of a large
set of force field parameters such that the experimentally
observed crystal structures have lower energies than all of the
alternative states. The advantages of this approach are that
parameters are obtained directly from structural data on
molecules10,17 that are generally larger and more similar to
drug-like compounds than the simple model compounds
traditionally used for QM calculations. Moreover, as the energy
of a crystal involves tradeoffs between different forces, this
approach should yield a balanced force field which can (for
instance) accurately model the subtle interplay between
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deviations from bonded geometry minima and optimization of
nonbonded interactions.
The consideration of both experimentally observed crystal

structures and large numbers of alternative decoy structures is
an advance over previous approaches in which potentials of
mean force (PMF) are learned only from the observed
structure.16

■ METHODS AND MATERIALS
Overview of the Approach. We sought to develop and

evaluate a generalized force field for drug discovery using a
three-step procedure: (i) first, generation of large numbers of
small molecule “decoy” lattices, (ii) second, optimization of a
force field to discriminate native lattices from among these
decoys, and (iii) third, evaluation of the force field in small
molecule docking experiments. We first generated alternative
packing arrangements for small molecules using a diverse set of
1386 small molecule crystal lattice structures from the
Cambridge Structural Database (CSD)10,17 (870 for training
and 516 for testing), by adapting the Rosetta symmetry
docking machinery18 to sample space groups, lattice
parameters, and rigid-body and internal conformation of
each small molecule (Figure 1a). We simultaneously fit 175
nonbonded parameters for a generalized implicit solvent force

field with 57 atom types (Table S1) plus 269 parameters for a
torsion model conditioned on both constituent atom types and
bond types.8 The 444 free parameters were optimized to
maximize the energy gap between the experimentally observed
lattice and the sampled alternative arrangements and to fit
small molecule thermodynamic and protein−ligand complex
structural data simultaneously (Figure 1b) using the Simplex-
search-based dualOptE algorithm.19 Nine iterations of
parameter optimization (with each iteration consisting of
300−500 rounds of Simplex optimization involved) followed
by crystal lattice regeneration were carried out; the final energy
model is referred to as RosettaGenFF. RosettaGenFF was then
tested on ligand docking benchmark sets using the newly
developed docking tool Rosetta GALigandDock. In the
following sections, we describe the crystal lattice prediction
protocol to generate training data, the energy model and
parameter optimization procedure, and the ligand docking
method and dataset, in more detail.

Crystal Structure Prediction Protocol. We developed a
lattice-docking protocol to sample small molecules in various
crystallographic space groups. To handle space groups with
mirror symmetries, Rosetta’s symmetry machinery20 was
extended to allow mirror symmetry operations. For each
space group, we expose as degrees of freedom (DOFs) the

Figure 1. Force field optimization using small molecule crystal structures. (a) Structure perturbation operations in Monte Carlo conformational
search used for small molecule crystal structure prediction. Random space group assignment is done at the start of each simulation, followed by 50
cycles of interspersed lattice parameter and intramolecular perturbation followed by minimization over all DOF. (b) Schematic overview of iterative
parameter optimization procedure integrating small molecule crystal structure prediction, the KL divergence of sampled dihedral angle and distance
distributions compared to reference distributions derived from ∼4000 small molecule crystal structures, ligand−protein docked pose discrimination
tests on 215 complexes each containing hundreds of pre-sampled conformations,30 and agreement with experimental hydration free energy for 643
small molecules.31 At every iteration, new force field parameters are obtained by simplex optimization using dualOptE,19 atom type classification
logic is updated as necessary, and new low energy decoy lattice structures are generated. (c) Comparison of performance against generalized Amber
force field (GAFF1), decomposed by functional groups (left) or by interaction types across symmetry units (right). Statistics are collected from all
molecules containing corresponding features and hence individual molecules can be counted multiple times.
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internal coordinates of the asymmetric unit, the rigid-body
orientation of the molecule, and the dimensions of the lattice
(Figure 1a). The symmetry machinery in Rosetta allows these
DOFs to be sampled as well as minimized while maintaining
the overall symmetry of the system.
Each run of structure prediction is carried out by running

Metropolis Monte Carlo with minimization (MCM) search. At
the beginning, the cell volume is selected such that the crystal
has 80−120% occupancy. Then, each lattice angle is assigned
between 60 and 120°. Finally, unit cell lengths are assigned
randomly for all but one dimension which determines the
chosen volume. This process is repeated until the longest to
shortest cell length has a ratio of <5:1. The input ligand
conformation is also randomized by uniformly sampling all
rotatable dihedral angles and rigid body placements in the
lattice. Starting from this initial lattice, perturbation of one of
the following sets of DOFs is attempted (Figure 1a) at each
MCM cycle: (i) translation or rotation of the molecule, (ii) a
single dihedral angle in the molecule, and (iii) all lattice
lengths or angles. Perturbation magnitudes are randomly
selected from normal distributions with standard deviations of
0.5 Å/2.5°/5.0°, for translation/rotation/dihedral angles of
ligands, respectively, and (0.5*sgmultiplicity) Å for lattice
dimensions, where sgmultiplicity tries to capture the number of
symmetric operators along each axis in a given space group and
is generally larger for space groups with higher symmetry.
Lattice angles are sampled by allowing the random axis moves
to modify the crystal axis direction as well as its magnitude.
Subsequent minimization is made simultaneously on all DOFs,
and the Metropolis criterion is applied. The lowest energy
conformation after 50 cycles is returned.
Training and validation sets of crystal structures were

collected from the Cambridge Structural Database (CSD)10,17

satisfying the following conditions: (i) has one molecule per
asymmetric unit; (ii) has >99% occupancy by the molecule;
(iii) is composed of only the elements H, C, N, O, S, P, F, Cl,
Br, and I; and (iv) has at least three and at most twelve
rotatable bonds. We first curated an extended training set
consisting of ∼4000 molecules and used for deriving torsion
and distance statistics (Figure 1b). 870 molecules in the set
were taken to generate decoys for training. The somewhat
modest size of the training set is due to the intensive
computational requirements of the “lattice discrimination test”
used in parameter optimization (∼50 CPU hours with 870
molecules, which is run several thousand times through the
entire optimization process). Incorporating more molecules,
coupled with an improved parameter optimization technique,
should clearly benefit learning a more robust generalizable
parameter set in the future. A separate validation set of 516
molecules was later collected from the CSD (independent of
the extended training set) with the same conditions mentioned
above. For each small molecule crystal lattice, thousands of
structures are generated by repeating independent MCM
structure predictions starting from random assignments of
space group and ligand conformation. Initial ligand con-
formations were selected among a pool of maximum 10
structures sampled by “confab” mode in openbabel.21 The
space group is randomly assigned among a list of most
commonly observed ones in the extended training set
according to the chirality of the molecule: P121/c1, P121/n1,
P1̅, C12/c1, Pbca, Pna21, C1c1, Pbcn, Pca21, Pccn, and P112 for
achiral molecules and P212121, P1211, C121, and P21212 for
chiral molecules. In addition to these “decoy” structures, near-

native conformations were added to the conformation pool by
running the same protocol without initial randomization. A
total of >1000 de novo predictions and >100 native
perturbations were made for each molecule. An example
command line for performing crystal lattice prediction can be
found in Supporting Information.

RosettaGenFF. The energy model presented in this study,
hereafter referred as RosettaGenFF, integrates two distinct
“submodels.” The first is the previously developed Rosetta
protein energy model,19,22 which is applied to any of the 20
canonical amino acids; more details can be found in previous
works.19,22,23

Nonprotein molecules and their interactions with canonical
amino acids are described by a set of generic energy terms
developed in this study

E E E E

E E

generalized Lennard Jones Coulomb hydrogen bond

implicit solvation generic torsion

= + +

+ +

‐ ‐

‐ ‐ (1)

with atomic parameters defined for Lennard-Jones (LJ) and
implicit solvation following the generic atom types (see below
and also Table S1). As the partial charges used in Coulomb
energy calculations have more molecular properties than
atomic properties, we obtain them for each compound using
AM1-BCC calculations24 and keep them fixed during model
fitting. The anisotropic implicit solvation model is described in
ref 22. The functional forms of these terms are shared between
the protein and generic submodels. An exception is for
describing torsion preference: in the protein energy model, for
LJ and Coulombic interactions, three or fewer bonds apart are
ignored to avoid overlap with statistical torsion potentials,
while in the generic energy model, only interactions one or two
bonds apart are ignored.

Generic Atom Types. Our general strategy for assigning a
distinct generalized atom type to each ligand atom is inspired
by the OPLS-AA force field.25 We consider 35 common and
unique functional groups containing at least one O, N, S, and P
in organic molecules listed in Table S1. When the atom does
not belong to any of these functional groups, more general
atom types are assigned by looking at the element type and
hybridization state (similar to Tripos force field26). Then, the
atom type is further specified based on the number of
hydrogens attached in order to take into account variations in
the desolvation penalty, a unique aspect associated with the
implicit solvation energy model.19,22,23 The initial nonbonded
parameters were determined by considering the “best
matching” atom in Rosetta’s protein energy model,19,23

followed by manual corrections on 9 LJ parameters to better
reproduce experimental bulk liquid properties.27 Note that
atom types and their definitions were refined in between
rounds of parameter optimization. The final list is given in
Table S1.

Generalized Torsion Term. Our generalized torsion energy
model follows the Karplus model, representing torsion
potentials as a series of cosine functions up to 4th order for
an improved description of weakly conjugated systems.28

Coefficients are assigned based on the atom types of the four
constituent atoms and the bond order of the central bond.
These parameters are optimized through the following
procedure. First, the number of torsion occurrences is counted
in the extended training set of small molecule crystal structures
(see Dataset below). Torsion types observed at least 50 times
were assigned unique torsion coefficients, yielding 150 torsion
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types. The remaining torsions are handled by atom-type
grouping, with a total of 65 additional torsion classes. With 4th
order expansion of the Karplus equation, there are a total of
860 (=215 × 4) parameters. We further reduce this parameter
set to 269 by restricting the coefficient order based on
chemical intuition (e.g. torsions with strong preferences to
planar conformations may only have nonzero first- and second-
order coefficients). The initial parameter set for optimization
was brought from the best matching torsion in the OPLS-AA
force field.25

Parameter Optimization. Energy parameters were
optimized by iteratively applying dualOptE19 primarily to
maximize the energy gap between near-native and decoy
lattices (Figure 1b). First, crystal lattice conformations were
generated using the previously described lattice sampling
method. Then, dualOptE was run for 400−700 cycles of
Nelder-Mead simplex minimization,29 obtaining an optimal
parameter set for the given atom type definition logic and
decoy sets. The objective function used in dualOptE is
represented as a weighted sum of metrics measuring
performance on several specific tasks listed below. The number
of parameters optimized at each dualOptE run ranged from
100 to 150, reduced from the 444 total parameters (269
torsional, 114 LJ, 57 solvation, and 4 hydrogen-bonding weight
parameters) by grouping or subsampling parameters for
efficiency. Finally, atom-type classification logic was updated
by visually inspecting the failures originating from mistyping.
This procedurefrom decoy generation to parameter
optimizationwas iterated 9 times until atom typing logic
converged.
A first phase of optimization (the “condensed phase”) was

carried out for the first 6 iterations. Here, LJ, hydrogen
bonding, and torsion parameters are optimized considering
two tasks: lattice discrimination test and atomic geometry
matching (individual tasks are described below). During this
phase, the solvation term was turned off, and electrostatics and
hydrogen bonding terms were upweighted to their strength in
a dielectric media with an electrostatic permittivity of 2.0. A
second phase (the “solvent phase”) was carried out for the final
three iterations, beginning with parameters from the end of the
condensed phase. Individual solvation and LJ parameters
together with a global weight controlling torsional energies
were optimized simultaneously. Two additional tasks consid-
ering solvation energies were added to the overall optimization
objective function (Figure 1b): ligand pose discrimination and
hydration free energy recapitulation. These two tasks were
critical for balancing components in the energy model. The
ligand pose discrimination task ensures (a) a detailed atomic-
level balance between desolvation and other nonbonded
interactions and (b) a balance between the protein and
generalized energy models. The hydration free energy
recapitulation task regularizes solvation parameters in the
same type of data as in the protein energetic model.19

The lattice discrimination task measures how well a given
energy function parameterization discriminates near-native
lattice conformations against alternate “decoy” conformations
for a set of 870 small molecules. Discriminative power is
measured by Boltzmann probability metric, which measures
the average probability of selecting near-native conforma-
tions19 with variable definitions of “near-natives” of crystal
root-mean-square deviation (rmsd) of 1, 2, 4, and 6 Å. The
temperature factor (kbT) is defined as 0.1 times the gap
between 5 percentile and 95 percentile energy values. Crystal

rmsd is measured considering the asymmetric unit and all
symmetry mates within 12 Å. Two values are computed and
averaged: (i) the Boltzmann probability for a set of 100
preselected conformations (native and nonnative) which are
only scored, and (ii) the Boltzmann probability for a set of 20
preselected conformations that are minimized with the current
energy parameters. These decoys are selected at the beginning
of dualOptE with the initial parameter set and always included
at least one sub-Angstrom structure with the lowest energy.
The atomic geometry matching task measures the Kull-

back−Leibler (KL) divergence in the distribution of atomic
geometries (nonbonded distances and torsion angles) optimal
for an energy parameter set against statistics collected from the
extended training set of ∼4000 small molecules. Atomic
geometry optimal for a parameter set is collected from
minimized structures of predicted crystals (see lattice
discrimination task above) individually for each type of atomic
distance and torsion angle.
The ligand pose discrimination task measures the Boltzmann

probability of selecting a near-native ligand pose against a pool
of presampled protein−ligand complexes. The presampled
complex set comprises both false and near-native poses for 215
various complexes,30 in which (i) no target receptors overlap
with any of the target receptors in our ligand-docking
benchmarks (sequence identity threshold of 90%) and (ii)
maximum ligand Tanimoto coefficient <0.4 to any of
benchmark target ligands. At the beginning of a dualOptE
run, 30 conformations with the lowest energy (including at
least one with ligand rmsd < 1 Å with the lowest energy) are
chosen for each complex. At each cycle of dualOptE, each
complex is minimized with the current energy parameterization
(fixing the receptor conformation for efficiency), and
receptor−ligand interface scores are collected. The Boltzmann
probability is measured using the same criteria as in the lattice
discrimination task.
The hydration free energy recapitulation task measures how

well a solvation parameter set recapitulates experimental
hydration free energy values of various small molecules,
using a dataset of 643 small molecules.31 The hydration free
energy of a molecule (dGhyd) is approximated by a summation
of polar (dGpolar) and nonpolar (dGnonpolar) contributions to
the total solvation-free energy, each of which is estimated as

G G Gd d , d SA
i

ipolar

natoms

free, nonpolar∑α β= =
(2)

where the dGfree,i values are the atomic parameters in our
implicit solvation model (eq 1, detailed description can be
found in ref 22), SA is the surface area of the molecule, and α
and β are weighting factors on each term. These weighing
factors are determined by the least-square-fit of this equation
to experimental free energy values of amino-acid analogues32

by taking dGfree,i values determined for protein atom types. The
net agreement is measured as the sum of absolute errors in
calculated values (in kcal/mol) over these 643 molecules. With
this simple linear model fitting scheme, parameter determi-
nation is completed in minutes at each optimization cycle.
Finally, we validated the parameters on a list of

thermodynamic liquid properties (density and heat-of-vapor-
ization) shown in Figure S6.

GALigandDock: A Genetic Algorithm-Based Ligand
Docking Method in Rosetta. We developed a new small
molecule docking tool within Rosetta, GALigandDock, that
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enables fully automated on-the-fly sampling of both the
receptor and ligand conformational space. This docking tool
iteratively evolves a pool of protein/ligand complex con-
formations against RosettaGenFF. It makes use of several key
features broadly utilized in the ligand docking field: a motif-
guided search for initial ligand placements, genetic algorithm
optimization, and a grid-based energy precomputation.
Overview of the Docking Method. GALigandDock accepts

a single complex structure as the input and searches for a pool
of structures optimal for our generalized energy model through
a genetic algorithm. While its basic algorithm adopts broadly
accepted ideas in the ligand docking field, several unique
features are also utilized. Only DOFs describing the ligand
conformation (including six rigid body DOFs and DOFs
describing rotatable torsions) are encoded into genes. If
receptor flexibility is used, additional precomputation of the
energy values of flexible parts is carried out; those “implicit”
DOFs are optimized on-the-fly in their internal coordinates for
every structure generated during the genetic algorithm. The

protocol starts with optimizing receptor side chains and their
protonation states at the apo-state (except for self-docking).
Then, a subset of the initial pool was generated by the motif-
guided ligand conformation search (see below) portion of
which varying between 50 and 70% depending on the number
of possible motif match combinations (more the higher
portion) and the rest from randomized genes.
At every iteration in the genetic algorithm, a gene undergoes

either mutation (20% chance) or crossover (80% chance) with
a randomly selected gene. For every generated conformation,
receptor side-chains are optimized by a Monte Carlo (MC)
search in a discrete rotameric space followed by a quasi-
Newton minimization in all torsions including those in the
ligand, repeating this twice by first ramping the LJ repulsion
scale from 0.1 at the first cycle to 1.0 at the second cycle.
Flexible ring torsion sampling also follows this logic with the
bond length and angle terms to ensure ring closure. Both MC
and minimization are efficiently carried out using a 3D grid
representation of energy (see below). In the 10,000 steps of

Figure 2. Improved force field leads to more accurate small molecule pose predictions. (a) Schematic description of Rosetta GALigandDock
protocol. Graphical illustrations of steps highlighted in colors are shown in insets with corresponding colors (details in Methods). (b) Self-docking
results using RosettaGenFF and GALigandDock compared to the best reported results using state-of-the-art docking tools brought from
literature47−49 tested on the Astex diverse set.35 Success rates as assessed by ligand rmsd < 1 and <2 Å are shown in solid and patterned bars
respectively. Note that total docking time per ligand for the methods in comparison took ∼10 times shorter (a few minutes) according to the refs
47−49. “v.GAFF″ stands for GALigandDock runs using GAFF instead of RosettaGenFF. (c) Success rates using energy parameters from different
stages of optimization; preopt, pre-optimized version; round1.3, after 3rd iteration; round1.6, after 6th iteration; round2.1, after first iteration of
solvation parameter optimization (7th iteration in total); RosettaGenFF, the final parameter set. (d−g) Examples of structures with highly accurate
docked ligand poses. Ligand models are colored in gold for RosettaGenFF, in magenta for GAFF, and cyan for RosettaGenFF with the torsion term
replaced with ChemPLP used in GOLD,50 respectively. (d) A high accuracy prediction with ligand rmsd of 0.2 Å for a molecule with 12 rotatable
internal torsions. (e) An example showing the importance of balance between torsion angle preference and non-bonded interactions, 1t40. Right
panels, ligand internal energy profiles as a function of χ1 and χ2 torsions are shown for different energy functions. The torsion angles in the
predicted pose are indicated by arrows using the color scheme of (d−g), the values in the crystal structure are indicated by black arrows. (f) An
example highlighting the importance of orientation-dependent hydrogen bonding term, 1uou. RosettaGenFF prefers a ligand pose with rich
hydrogen bonding (rmsd 0.3 Å) while GAFF prefers one with more solvent exposure (rmsd 5.4 Å). (g) An example of the benefit provided by
orientation-dependent water-bridging energy term (detailed algorithm described in ref 22). Crystal water depicted in the red sphere is not modeled
explicitly in docking simulation, but still the water-bridging term gives a bonus when virtual water sites overlap (bottom inset) leading to rmsd 0.2 Å
prediction; best pose by GAFF lacking this term clashes with this water position (rmsd 1.4 Å).
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MC search, one-body and two-body energies of rotamers
precalculated at the beginning are utilized.33 Input rotamers
possess a constant bonus of −2.0 kcal/mol in their one-body
energies in order to prevent drifting away too much from the
input. The 100 “parents” and 100 “children” are then pooled
and trimmed to the lowest energy 100 not closer than 1 Å to
one another; these 100 serve as the next generation’s “parents.”
After 10 iterations, the top 20 structures are further side-chain
optimized and backbone- and sidechain-minimized using the
ungridded (continuous) energy. A single structure having the
lowest complex energy is taken as a single representative.
GALigandDock supports a fully automated receptor flexibility

logic. Initially, an ellipsoid is constructed around the input
ligand conformation. Moments of inertia are computed and are
scaled by the half size of the ligand box; if the moment of
inertia along an axis is <0.1, it is increased to 0.1 (for planar
molecules). All protein residues whose average side-chain
position overlaps this ellipsoid are assigned as flexible. On
average, 9.8 side-chains are assigned as flexible in the cross-
docking benchmark set. There could be a possible caveat that
assignments can be sensitive to initial ligand placement for an
elongated ligand.
The simulation is repeated 5 and 16 times with the median

runtime running single simulations of rigid docking and
receptor-flexible docking in a single CPU thread for 8.5 and
19.7 min, respectively. On multiplying the number of repeats
made per task, median core-hours per target in this study are
0.7 and 5.3 h, respectively. Simulation replicas can be run in
parallel through multiple threads; hence, the actual wall-clock
runtime is similar to the single simulation time. All the
computational performances for our study were benchmarked
in Intel E5-2650 v2 2.2 GHz processors. Examples of running
GALigandDock can be found in Supporting Information.
3D Grid Representation of Energy. RosettaGenFF is

represented in 3D energy grids around the ligand pocket,
which allows over 10-fold speed-up of docking simulations.34

For each atom type in the ligand, a per-atom “energy field” is
computed on a 0.25 Å grid in a cubic box covering the pocket.
The size of the cubic box is allocated depending on the
maximum heavy atom distance from the center-of-mass of the
ligand (rmax), more specifically, as

rbox width 2( 4.5 Å)max‐ = + (3)

This results in an average 24 Å of cell dimensions in a cubic
box. The energy field summarizes the interaction of all rigid
receptor atoms to an atom at a particular grid point, allowing
ligands to be scored against the grid without explicit
enumeration over individual atomic pairs. 3D spline inter-
polation is used to compute and minimize off-grid points.
Flexible side-chains do not contribute to grid energetics.
Special treatment was required for several orientation-

dependent terms (as graphical illustrations shown in Figure
2a) highlighted below. For each of the attractive and repulsive
contributions to ELennard‑Jones and the isotropic portion of
Eimplicit‑solvation(see eq 1), separate grid tables were generated for
each of the flexible atom types present. The grid table for the
Coulombic term is unified into one representing the electric
field. For the orientation-dependent hydrogen-bond term, the
sparsity of interactions was exploited: a 3D hash table of
receptor donors and acceptors was precomputed, allowing
hydrogen bonds to be quickly identified and scored exactly
with full consideration of orientation. For the orientation-
dependent solvation terms,19,22,23 we could not exploit similar

sparsity. Instead, these were approximated as the sum of two
isotropic terms per atom: one based on the atom position, and
one based on a “water-binding” virtual position. Comparing
exact to grid-computed energies, we see a Pearson correlation
of 0.95, with most of the error coming from the orientation-
dependent solvation terms (0.84 Pearson correlation).

Motif-Guided Ligand Conformation Search. It is critical
for the genetic algorithm to start with a pool of genes that are
promising but are also diverse. In initial testing, we found that
fully randomized starting conformations had difficulty with
ligands making hydrogen bonds deep inside the pocket.
Therefore, a motif-guided placement strategy was applied for
about 2/3 of our starting pool (50−70 models out of 100, with
greater numbers for receptors with many pocket hydrogen
bond donors or acceptors). All non-solvent-exposed hydrogen
bonding sites in the receptor are identified, and “ideal waters”
are built from these sites representing possible hydrogen-
bonding ligand atom positions. These waters are clustered
using a 4 Å radius, and the N clustered motifs with best sum-
of-grid-scores are selected, where N is determined within 5 and
15 by altering the solvent-exposure criterion. Groups of
hydrogen-bonding atoms in ligands are defined as ligand
motifs with the same clustering criteria. Motif matching and
optimization of ligand conformation are then carried out for
every possible pair combination of M receptor-to-ligand motif
matches (M ≤ 70): for each motif match, we first translate the
ligand to the position where the center of mass of the selected
motifs overlap, followed by random sampling of ligand
orientation and torsion angles; the best after 200 random
trials is then minimized against the grid with distance restraints
favoring designated motif match. Maximum 70 ligand
conformations are generated, each from a unique motif
match, prioritizing those matches with a higher sum-of-grid-
score. If M ≤ 50, search on the matches with a higher sum-of-
grid-score is repeated until 50 conformations are generated.

Ligand Docking Dataset. We used Astex diverse35 and
non-native36 sets for self- and (non-native) cross-docking
benchmarks, respectively. Ligand protonation states are fixed
as provided in the original mol2 files. When testing ligand
docking using a conformation directly built from its chemical
connectivity, its initial conformation was generated by
CORINA37 with a few corrections to the protonation states
in the output: carboxylic acids and protonated phosphates are
deprotonated (as protonation overly preferred by CORINA).
We then further optimized the geometry with AM1
calculation38 using Antechamber in the AMBER suite which
helped further optimize 5−6 membered ring conformations
from CORINA outputs. An extended self-docking benchmark
set consisting of 212 complexes was brought from a subset of
previous work30 (list in Supporting Information).

■ RESULTS
Small Molecule Crystal Lattice Discrimination. We

evaluated the parameterized force field by predicting the crystal
lattice structures of 516 small molecules from CSD not used in
training. We use as the primary metric for evaluating the
“top10 success”, the number of cases in which one of the 10
lowest energy structures is less than 1 Å rmsd to the
experimentally observed lattice (crystal lattice prediction is a
quite nontrivial challenge).5 We compared performance to the
generalized Amber force field (GAFF),1 which, like our energy
function, is sufficiently fast that it can be used for drug
discovery studies.39,40 GAFF had an advantage over other such
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force fields, in addition to its popular and broad usage, for
validation as it could be readily implemented in Rosetta
(Figure S7) for direct comparison to RosettaGenFF; note that
GAFF was not optimized using small molecule crystal data. On
the validation set, RosettaGenFF outperformed GAFF in both
the Boltzmann weight19 of the observed crystal structure in the
population of sampled structures and in the top10 success rate
with the definition aforementioned (Table 1; 58% by
RosettaGenFF compared to 30% by GAFF). Two classes of
functional groups stand out when the performances of
RosettaGenFF and GAFF were compared on a per-group
basis (Figures 1c, S1−S2). Improved results were obtained for
polar conjugating groups (e.g. esters or aryl-nitros) likely
because of the improved balance between torsional and
nonbonded energy parameters leading to better transferability
across different chemical contexts. Improved results with
hydrogen-bonding groups are likely due to the explicit
treatment of the orientation dependence of hydrogen bonding
in RosettaGenFF, an improvement over the GAFF isotropic
point-charge model.
Even with explicit fitting to lattice data, there is clear room

for improvement in our energy model. Proper consideration of
polarization effects, in particular, a general and higher-level
description of anisotropic hydrogen bonding and orbital
conjugations in torsions, is an important future direction.
Methods with proper treatment of polarization effectssuch
as density functional theory (DFT) methods or polarizable
force fields5achieve better performances in crystal structure
prediction, with top10 success rates of 70−80%. However,
such methods are too slow for large-scale drug discovery
problems. A force field with similar efficiency to ours by Broo
and Nilsson Lill,41 specifically designed for crystal lattice
docking, performed similarly to ours (50% top10 success rate
on their own test set, compared to 51% with RosettaGenFF on
the same set). One possible future avenue for improvement
would be introducing off-atom charges.42,43

Small Molecule Docking with RosettaGenFF. We
investigated the use of RosettaGenFF for small molecule
docking calculations using the newly developed Rosetta
GALigandDock. Accurate ligand pose prediction through
molecular docking is of great importance in drug discovery
as it provides detailed information about interacting protein
residues and is critical for accurate estimation of relative or
absolute binding free energy of potential binders.6,44,45 A
unique strength of our approach comes from the grid-
representation of water-bridging effects22 and hydrogen
bonding in RosettaGenFF; both are orientation-dependent

and are identified as important features in ligand−protein
energetics.
We first tested the new energy function and docking method

on 85 complexes from the Astex diverse self-docking set35

keeping the protein backbone and side-chain fixed. Rosetta-
GenFF incorporated into GALigandDock produced lowest
energy models with a median rmsd of 0.45 Å, with success
rates of 86/94% predicting ligand conformations within 1/2 Å
rmsd of the crystal conformation and 31/56% within 0.3/0.5 Å
of the crystal structure, respectively. This high success rate and
atomic accuracy suggest that the new energy model
successfully identifies both the correct minima in a large
conformational space as well as precise geometry within the
energy basin (Figure 2d−g). When docking calculations were
performed on a set of ligand conformations directly built from
scratch using chemical connectivity (i.e. SMILES),46 results
were slightly worse, giving a median rmsd of 0.59 Å and
success rates of 80/92% using 1/2 Å criteria. Failures arose
from input ligand structures not well handled in our docking
simulations, especially for ring puckering (Figure S3) which
was not sampled efficiently with the current GALigandDock
(see Methods). Despite these failures, the results were better
than the other methods on the same set (Figure 2b).47−49 The
combination of RosettaGenFF and GALigandDock on an
extended docking set of 212 complexesnonoverlapping
with any target in other protein−ligand training/test sets
again showed a performance superior to GOLD50 with 7%
difference in success rates (Figure S4).
We then repeated the test with variants of the energy

function. A clear improvement was observed (Figure 2c)
throughout the course of the optimization of RosettaGenFF.
This is an encouraging result as the docking benchmark is
quite different from the crystal structure training set
(contribution from the ligand-pose discrimination test used
in training was minor). Both sampling and scoring improved
together through optimization, leading to sampling success
within 250 samples at rmsd <1/2 Å criteria by 92/98% after
optimization (Figure S5). We also tested the same docking
benchmark (i) taking GAFF energy parameters or (ii)
replacing the torsion term into the empirical torsion term
used in GOLD while keeping the energy model on the
receptor unchanged in both tests. The poorer performance was
obtained for both tests (Figure 2e,f), with 78 and 84% success
rates at rmsd < 2.0 Å from (i) and (ii), respectively. For
comparison, we further tested (iii) removal of the orientation-
dependent solvation and hydrogen bond terms from
RosettaGenFF. This resulted in an 88% success rate at rmsd

Table 1. Performance on Various Training Tasks Following Optimization

Tasks measure pre-optimize optimized GAFF

Training small molecule lattice docking Boltzmann probabilitya 0.470 0.652
top10 success rate (%)b 39.3 63.6

dihedral distribution mean KL-divergence 0.355 0.225
distance distribution 0.173 0.162
ligand pose prediction Boltzmann probabilitya 0.529 0.610
hydration free energy error (kcal/mol) 6.4 2.0

Validation small molecule lattice dockingc Boltzmann probabilitya 0.321 0.640 0.386
top10 success rate (%)b 23.5 58.3 29.9

aBoltzmann probability selecting near-native structure against non-native ones.19 Values reported are values averaged over four criteria of near-
native definitions, each corresponding to 1,2,4,6 Å of crystal-interface rmsd measured on the central asymmetric unit and all symmetry mates within
12 Å. bSuccess defined as any sub-Angstrom structure within 10 lowest energy structures sampled. cCompared against a common set of 430
molecules having at least 5 of sub-Angstrom structures sampled in all cases.
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< 2.0 Å, indicating that the main difference from force field
parameters (vdW and torsion) over GAFFindependent of
these orientation termsis about 10%.
We next tested the effectiveness of our energy model and

docking protocol on the more realistic non-native cross-
docking problem, in which compounds were docked onto the
same proteins whose structures were determined independ-
ently (i.e. apo state or bound to other compounds).
GALigandDock allows any residue that can potentially interact
with the ligand to sample alternative backbone and side-chain
conformations, resulting in as many as 20 pocket residues to be
optimized along with the ligand conformation. This flexibility
is enabled by the ability of the underlying Rosetta protein force
field19,23 to model the energetics of protein conformational
changes and Rosetta’s tools for side-chain conformational
sampling and energy minimization.33 We tested cross-docking
performance on the Astex non-native set,36 a standard
benchmark set consisting of 1112 protein−ligand complexes.
On this set, RosettaGenFF incorporated into GALigandDock
achieved a median rmsd of 0.86 Å with success rates of 52/
74% (using the criteria of the ligand rmsd within 1/2 Å,
respectively). This is an over 10% improvement in success rate
over any previously reported study reported to date on the
set30,36,51−54 (Figure 3a).
Comparing these results to those without receptor flexibility

showed that improvements in ligand pose accuracy primarily
came from complexes in which pocket side-chain accuracy also
increased (Figure 3b); relieving small clashes (Figure 3c),
correcting wrong sidechain rotameric states (Figure 3d), and
modeling small backbone conformational changes (Figure 3e);
note that all of these were achieved by fully automated
flexibility annotations. Of 276 complexes with initial models
having relatively accurate backbones (i.e. rmsd < 1 Å at the
backbone atoms annotated flexible by the automated logic) but
for which rigid-receptor docking failed, about half (139) were
successfully docked (ligand rmsd < 2 Å) following incorpo-
ration of receptor flexibility. The remaining 137 complexes for
which both strategies failed showed on average similar docking
results (ligand rmsd of 6.9 and 6.8 Å with and without receptor
flexibility, respectively); for these cases, no clear correlation
was found between ligand rmsd and the structural error on the
binding pocket. When receptor flexibility was employed for
self-docking problems, the success rate decreased to 80/88%
with receptor flexibility (from 86/94% without flexibility),
likely due to the increased search space and additional noise in
energy values introduced from side-chains. Overall, the balance
between protein and nonprotein energetics is clearly important
for flexible backbone docking.43,55

■ DISCUSSION
The small molecule docking results described in this paper
demonstrate the power of using prediction of small molecule
crystal lattices, a new source of data, to drive energy model
parameterization for accurate molecular docking studies.
RosettaGenFF outperforms previously reported approaches in
pose prediction for structure-based native- and non-native
cross-docking. In the context of the functional forms used, the
current energy model may be quite close to optimal for
protein−ligand docking: when any of the energy components
or flexibility was varied from current implementation, around
10% worsening was observed in cross-docking (Table S2).
Avenues for future improvement include improving the
underlying physical model, for example, (a) introducing an

efficient polarizable and/or multipole electrostatic model56,57

and (b) additional bonded terms for ring systems with a ring
sampling operator58 as the current implementation has a
weakness in nonaromatic ring conformation search. A large
amount of small molecule crystal data that was not used in this
study could be utilized for this further development, which
could improve coverage in chemical diversity. Incorporation of
quantum chemistry data during training could further improve
the model, particularly for binding free energy calculations.
Application of the combination of RosettaGenFF and

GALigandDock to high-precision virtual screening will be
enhanced by increasing computational efficiency to allow
higher throughput docking calculations. Improving computa-

Figure 3. Incorporating receptor flexibility improves cross-docking.
(a) Success rates in the cross-docking benchmark for various methods
brought from literature30,36,51−54 tested on Astex non-native set .36

Blue and red bars represent results from docking runs with and
without receptor flexibility, respectively; solid and patterned bars
show results by two criteria, ligand rmsd < 2 and <1 Å, respectively.
Sub-Angstrom success rates are not achieved with other methods. (b)
Per-protein cross-docking performance comparison between docking
with (Y-axis) and without receptor flexibility (X-axis). The size of
points represents the number of alternative protein conformations
from largest (>50) to smallest (<10); colors represent a fraction of
conformations with pocket rmsd improved or unchanged by
flexibility, from 0.0 (black) to 0.8 (yellow). (c−e) Examples in
which flexible docking improves prediction. Top and bottoms panels
are predictions without and with receptor flexibility, respectively.
Crystal poses shown in gold, predicted ligand poses starting from
multiple receptor conformations in blue (top panels) or white
(bottom panels). (c) 1hww, clash with arginine is relieved, increasing
fraction of predictions within sub-Angstrom accuracy from 18 to 95%.
(d) 1g9v, rotameric search on lysine helps increase sub-Angstrom
accuracy from 22 to 60%. (e) 1lpz, starting conformation from PDB
ID 1f0s, backbone flexibility allows to correct the orientation of
tyrosine leading to ligand rmsd 0.9 Å (10.4 Å without receptor
flexibility).
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tional efficiency while minimizing the loss in accuracy is a key
direction of future studies. GPU-accelerated calculation and
algorithmic improvements, such as a “competition-style” model
where ligand identity can change along with ligand
conformation in the genetic algorithm, should improve run
time, allowing for screening against very large ligand libraries.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01184.

List of atom types in RosettaGenFF; performance of
docking benchmarks introducing variations in energy or
protocol; per-group decomposition of Figure 1c;
examples of small molecule crystal structure prediction
highlighting difference between energy models; exam-
ples of docking failures starting from SMILES string;
benchmark result on extended self-docking set; progress
in self-docking scoring and sampling performance
through the parameter optimization; prediction of
thermodynamic properties with RosettaGenFF; repro-
ducibility of GAFF by in-house version; list of PDB IDs
in the extended docking set; example for generating a
Rosetta parameter file containing generic atom types;
example input for small molecule crystal structure
prediction; and example input for running GALigand-
Dock (PDF)

Receptor pdbs and ligand mol2 files of the extended
docking test set (zip) (ZIP)

■ AUTHOR INFORMATION
Corresponding Author
Frank DiMaio − Department of Biochemistry and Institute for
Protein Design, University of Washington, Seattle,
Washington 98195, United States; orcid.org/0000-0002-
7524-8938; Email: dimaio@uw.edu

Authors
Hahnbeom Park − Department of Biochemistry and Institute
for Protein Design, University of Washington, Seattle,
Washington 98195, United States; orcid.org/0000-0002-
7129-1912

Guangfeng Zhou − Department of Biochemistry and Institute
for Protein Design, University of Washington, Seattle,
Washington 98195, United States; orcid.org/0000-0003-
2728-1917

Minkyung Baek − Department of Biochemistry and Institute
for Protein Design, University of Washington, Seattle,
Washington 98195, United States

David Baker − Department of Biochemistry and Institute for
Protein Design and Howard Hughes Medical Institute,
University of Washington, Seattle, Washington 98195, United
States

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jctc.0c01184

Author Contributions
H.P., D.B., and F.D. designed research; H.P., G.Z. and F.D.
performed research; G.Z. and M.B. helped small molecule
docking benchmark; H.P., D.B., and F.D. wrote the manu-
script; G.Z. and M.B. reviewed the manuscript.

Funding
H.P., M.B., and D.B. were funded by Schmidt Family
Foundation EOpt 68−0986. G.Z. and F.D. were funded by
NIH GM-123089.
Notes
The authors declare no competing financial interest.
All the code and energy parameters described here are
available through the Rosetta molecular modeling suite,
downloadable from https://www.rosettacommons.org/
software under a free license for academic users. Further
description of the docking tool and the energy function are
available through RosettaCommons documentation: Docking:
https://www.rosettacommons.org/docs/latest/scripting_
documentation/RosettaScripts/Movers/GALigandDock. En-
ergy function: https://www.rosettacommons.org/docs/latest/
Updates-beta-genpot.

■ ACKNOWLEDGMENTS
We thank Dr. Timothy Craven, Dr. Gaurav Bhardwaj, Dr.
Patrick Salveson, and Jacob O’connor at the University of
Washington, Dr. Douglas Renfrew at Flatiron Institute, Dr.
Rocco Moretti at Vanderbilt University, and Dr. Jason Labonte
at Gettysburg College for their help on designing the project
and helpful discussions. We also thank Dr. Chaok Seok at
Seoul National University, Dr. Philip Bradley at Fred
Hutchinson Cancer Research Center, and Dr. Ryan Pavlovicz
at Cyrus biotech for their advice on the manuscript.
Computing resources for this work are from the Hyak
supercomputer system at the University of Washington.

■ REFERENCES
(1) Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D.
A. Development and Testing of a General Amber Force Field. J.
Comput. Chem. 2004, 25, 1157−1174.
(2) Vanommeslaeghe, K.; Raman, E. P.; MacKerell, A. D., Jr.
Automation of the CHARMM General Force Field (CGenFF) II:
Assignment of Bonded Parameters and Partial Atomic Charges. J.
Chem. Inf. Model. 2012, 52, 3155−3168.
(3) Roos, K.; Wu, C.; Damm, W.; Reboul, M.; Stevenson, J. M.; Lu,
C.; Dahlgren, M. K.; Mondal, S.; Chen, W.; Wang, L.; Abel, R.;
Friesner, R. A.; Harder, E. D. OPLS3e: Extending Force Field
Coverage for Drug-Like Small Molecules. J. Chem. Theory Comput.
2019, 15, 1863−1874.
(4) Halgren, T. A. Merck Molecular Force Field. I. Basis, Form,
Scope, Parameterization, and Performance of MMFF94. J. Comput.
Chem. 1996, 17, 490−519.
(5) Reilly, A. M.; Cooper, R. I.; Adjiman, C. S.; Bhattacharya, S.;
Boese, A. D.; Brandenburg, J. G.; Bygrave, P. J.; Bylsma, R.; Campbell,
J. E.; Car, R.; Case, D. H.; Chadha, R.; Cole, J. C.; Cosburn, K.;
Cuppen, H. M.; Curtis, F.; Day, G. M.; DiStasio, R. A., Jr.;
Dzyabchenko, A.; van Eijck, B. P.; Elking, D. M.; van den Ende, J. A.;
Facelli, J. C.; Ferraro, M. B.; Fusti-Molnar, L.; Gatsiou, C.-A.; Gee, T.
S.; de Gelder, R.; Ghiringhelli, L. M.; Goto, H.; Grimme, S.; Guo, R.;
Hofmann, D. W. M.; Hoja, J.; Hylton, R. K.; Iuzzolino, L.; Jankiewicz,
W.; de Jong, D. T.; Kendrick, J.; de Klerk, N. J. J.; Ko, H.-Y.;
Kuleshova, L. N.; Li, X.; Lohani, S.; Leusen, F. J. J.; Lund, A. M.; Lv,
J.; Ma, Y.; Marom, N.; Masunov, A. E.; McCabe, P.; McMahon, D. P.;
Meekes, H.; Metz, M. P.; Misquitta, A. J.; Mohamed, S.; Monserrat,
B.; Needs, R. J.; Neumann, M. A.; Nyman, J.; Obata, S.; Oberhofer,
H.; Oganov, A. R.; Orendt, A. M.; Pagola, G. I.; Pantelides, C. C.;
Pickard, C. J.; Podeszwa, R.; Price, L. S.; Price, S. L.; Pulido, A.; Read,
M. G.; Reuter, K.; Schneider, E.; Schober, C.; Shields, G. P.; Singh, P.;
Sugden, I. J.; Szalewicz, K.; Taylor, C. R.; Tkatchenko, A.;
Tuckerman, M. E.; Vacarro, F.; Vasileiadis, M.; Vazquez-Mayagoitia,
A.; Vogt, L.; Wang, Y.; Watson, R. E.; de Wijs, G. A.; Zhu, Q.; Groom,
C. R. Report on the Sixth Blind Test of Organic Crystal Structure

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c01184
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

I

https://pubs.acs.org/doi/10.1021/acs.jctc.0c01184?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.0c01184/suppl_file/ct0c01184_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.0c01184/suppl_file/ct0c01184_si_002.zip
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Frank+DiMaio"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-7524-8938
http://orcid.org/0000-0002-7524-8938
mailto:dimaio@uw.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hahnbeom+Park"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-7129-1912
http://orcid.org/0000-0002-7129-1912
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Guangfeng+Zhou"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0003-2728-1917
http://orcid.org/0000-0003-2728-1917
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Minkyung+Baek"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="David+Baker"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01184?ref=pdf
https://www.rosettacommons.org/software
https://www.rosettacommons.org/software
https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/Movers/GALigandDock
https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/Movers/GALigandDock
https://www.rosettacommons.org/docs/latest/Updates-beta-genpot
https://www.rosettacommons.org/docs/latest/Updates-beta-genpot
https://dx.doi.org/10.1002/jcc.20035
https://dx.doi.org/10.1021/ci3003649
https://dx.doi.org/10.1021/ci3003649
https://dx.doi.org/10.1021/acs.jctc.8b01026
https://dx.doi.org/10.1021/acs.jctc.8b01026
https://dx.doi.org/10.1002/(sici)1096-987x(199604)17:5/6<490::aid-jcc1>3.0.co;2-p
https://dx.doi.org/10.1002/(sici)1096-987x(199604)17:5/6<490::aid-jcc1>3.0.co;2-p
https://dx.doi.org/10.1107/s2052520616007447
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c01184?ref=pdf


Prediction Methods. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng.
Mater. 2016, 72, 439−459.
(6) Yin, J.; Henriksen, N. M.; Slochower, D. R.; Shirts, M. R.; Chiu,
M. W.; Mobley, D. L.; Gilson, M. K. Overview of the SAMPL5 Host-
Guest Challenge: Are We Doing Better? J. Comput. Aided Mol. Des.
2017, 31, 1−19.
(7) Boulanger, E.; Huang, L.; Rupakheti, C.; MacKerell, A. D.; Roux,
B. Optimized Lennard-Jones Parameters for Druglike Small
Molecules. J. Chem. Theory Comput. 2018, 14, 3121−3131.
(8) Mobley, D. L.; Bannan, C. C.; Rizzi, A.; Bayly, C. I.; Chodera, J.
D.; Lim, V. T.; Lim, N. M.; Beauchamp, K. A.; Shirts, M. R.; Gilson,
M. K.; Eastman, P. K. Open Force Field Consortium: Escaping Atom
Types Using Direct Chemical Perception with SMIRNOFF v0.1.
2018, bioRxiv:286542.
(9) Qiu, Y.; Smith, D.; Boothroyd, S.; Jang, H.; Wagner, J.; Bannan,
C. C.; Gokey, T.; Lim, V. T.; Stern, C.; Rizzi, A.; Lucas, X.; Tjanaka,
B.; Shirts, M. R.; Gilson, M.; Chodera, J.; Bayly, C. I.; Mobley, D.;
Wang, L.-P. Development and Benchmarking of Open Force Field
v1.0.0, the Parsley Small Molecule Force Field. 2020, chem-
Rxiv:13082561.v1.
(10) Groom, C. R.; Allen, F. H. The Cambridge Structural Database
in Retrospect and Prospect. Angew Chem. Int. Ed. Engl. 2014, 53,
662−671.
(11) Brameld, K. A.; Kuhn, B.; Reuter, D. C.; Stahl, M. Small
Molecule Conformational Preferences Derived from Crystal Structure
Data. A Medicinal Chemistry Focused Analysis. J. Chem. Inf. Model.
2008, 48, 1−24.
(12) Pillardy, J.; Arnautova, Y. A.; Czaplewski, C.; Gibson, K. D.;
Scheraga, H. A. Conformation-Family Monte Carlo: A New Method
for Crystal Structure Prediction. Proc. Natl. Acad. Sci. U.S.A. 2001, 98,
12351−12356.
(13) Price, S. L.; Braun, D. E.; Reutzel-Edens, S. M. Can Computed
Crystal Energy Landscapes Help Understand Pharmaceutical Solids?
Chem. Commun. 2016, 52, 7065−7077.
(14) Cruz-Cabeza, A. J.; Reutzel-Edens, S. M.; Bernstein, J. Facts
and Fictions about Polymorphism. Chem. Soc. Rev. 2015, 44, 8619−
8635.
(15) Pillardy, J.; Wawak, R. J.; Arnautova, Y. A.; Czaplewski, C.;
Scheraga, H. A. Crystal Structure Prediction by Global Optimization
as a Tool for Evaluating Potentials: Role of the Dipole Moment
Correction Term in Successful Predictions†. J. Am. Chem. Soc. 2000,
122, 907−921.
(16) Velec, H. F. G.; Gohlke, H.; Klebe, G. DrugScoreCSDKnowl-
edge-Based Scoring Function Derived from Small Molecule Crystal
Data with Superior Recognition Rate of Near-Native Ligand Poses
and Better Affinity Prediction. J. Med. Chem. 2005, 48, 6296−6303.
(17) Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C. The
Cambridge Structural Database. Acta Crystallogr., Sect. B: Struct. Sci.,
Cryst. Eng. Mater. 2016, 72, 171−179.
(18) André, I.; Bradley, P.; Wang, C.; Baker, D. Prediction of the
Structure of Symmetrical Protein Assemblies. Proc. Natl. Acad. Sci.
U.S.A. 2007, 104, 17656−17661.
(19) Park, H.; Bradley, P.; Greisen, P., Jr.; Liu, Y.; Mulligan, V. K.;
Kim, D. E.; Baker, D.; DiMaio, F. Simultaneous Optimization of
Biomolecular Energy Functions on Features from Small Molecules
and Macromolecules. J. Chem. Theory Comput. 2016, 12, 6201−6212.
(20) DiMaio, F.; Leaver-Fay, A.; Bradley, P.; Baker, D.; André, I.
Modeling Symmetric Macromolecular Structures in Rosetta3. PLoS
One 2011, 6, No. e20450.
(21) O’Boyle, N. M.; Vandermeersch, T.; Flynn, C. J.; Maguire, A.
R.; Hutchison, G. R. Confab - Systematic Generation of Diverse Low-
Energy Conformers. J. Cheminf. 2011, 3, 8.
(22) Pavlovicz, R. E.; Park, H.; DiMaio, F. Efficient Consideration of
Coordinated Water Molecules Improves Computational Protein-
Protein and Protein-Ligand Docking Discrimination. PLoS Comput.
Biol. 2020, 16, No. e1008103.
(23) Alford, R. F.; Leaver-Fay, A.; Jeliazkov, J. R.; O’Meara, M. J.;
DiMaio, F. P.; Park, H.; Shapovalov, M. V.; Renfrew, P. D.; Mulligan,
V. K.; Kappel, K.; Labonte, J. W.; Pacella, M. S.; Bonneau, R.; Bradley,

P.; Dunbrack, R. L., Jr.; Das, R.; Baker, D.; Kuhlman, B.; Kortemme,
T.; Gray, J. J. The Rosetta All-Atom Energy Function for
Macromolecular Modeling and Design. J. Chem. Theory Comput.
2017, 13, 3031−3048.
(24) Jakalian, A.; Jack, D. B.; Bayly, C. I. Fast, Efficient Generation
of High-Quality Atomic Charges. AM1-BCC Model: II. Parameter-
ization and Validation. J. Comput. Chem. 2002, 23, 1623−1641.
(25) Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. Development
and Testing of the OPLS All-Atom Force Field on Conformational
Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996,
118, 11225−11236.
(26) Clark, M.; Cramer, R. D.; Van Opdenbosch, N. Validation of
the General Purpose Tripos 5.2 Force Field. J. Comput. Chem. 1989,
10, 982−1012.
(27) Wang, J.; Hou, T. Application of Molecular Dynamics
Simulations in Molecular Property Prediction. 1. Density and Heat
of Vaporization. J. Chem. Theory Comput. 2011, 7, 2151−2165.
(28) Dahlgren, M. K.; Schyman, P.; Tirado-Rives, J.; Jorgensen, W.
L. Characterization of Biaryl Torsional Energetics and Its Treatment
in OPLS All-Atom Force Fields. J. Chem. Inf. Model. 2013, 53, 1191−
1199.
(29) Nelder, J. A.; Mead, R. A Simplex Method for Function
Minimization. Comput. J. 1965, 7, 308−313.
(30) Baek, M.; Shin, W.-H.; Chung, H. W.; Seok, C. GalaxyDock
BP2 score: a hybrid scoring function for accurate protein-ligand
docking. J. Comput. Aided Mol. Des. 2017, 31, 653−666.
(31) Mobley, D. L.; Guthrie, J. P. FreeSolv: a database of
experimental and calculated hydration free energies, with input files.
J. Comput. Aided Mol. Des. 2014, 28, 711−720.
(32) Radzicka, A.; Wolfenden, R. Comparing the Polarities of the
Amino Acids: Side-Chain Distribution Coefficients between the
Vapor Phase, Cyclohexane, 1-Octanol, and Neutral Aqueous Solution.
Biochemistry 1988, 27, 1664−1670.
(33) Leaver-Fay, A.; Tyka, M.; Lewis, S. M.; Lange, O. F.;
Thompson, J.; Jacak, R.; Kaufman, K. W.; Renfrew, P. D.; Smith, C.
A.; Sheffler, W.; Davis, I. W.; Cooper, S.; Treuille, A.; Mandell, D. J.;
Richter, F.; Ban, Y.-E. A.; Fleishman, S. J.; Corn, J. E.; Kim, D. E.;
Lyskov, S.; Berrondo, M.; Mentzer, S.; Popovic,́ Z.; Havranek, J. J.;
Karanicolas, J.; Das, R.; Meiler, J.; Kortemme, T.; Gray, J. J.;
Kuhlman, B.; Baker, D.; Bradley, P. ROSETTA3: An Object-Oriented
Software Suite for the Simulation and Design of Macromolecules.
Methods Enzymol. 2011, 487, 545−574.
(34) Meng, E. C.; Shoichet, B. K.; Kuntz, I. D. Automated Docking
with Grid-Based Energy Evaluation. J. Comput. Chem. 1992, 13, 505−
524.
(35) Hartshorn, M. J.; Verdonk, M. L.; Chessari, G.; Brewerton, S.
C.; Mooij, W. T. M.; Mortenson, P. N.; Murray, C. W. Diverse, High-
Quality Test Set for the Validation of Protein−Ligand Docking
Performance. J. Med. Chem. 2007, 50, 726−741.
(36) Verdonk, M. L.; Mortenson, P. N.; Hall, R. J.; Hartshorn, M. J.;
Murray, C. W. Protein−Ligand Docking against Non-Native Protein
Conformers. J. Chem. Inf. Model. 2008, 48, 2214−2225.
(37) Sadowski, J.; Gasteiger, J.; Klebe, G. Comparison of Automatic
Three-Dimensional Model Builders Using 639 X-Ray Structures. J.
Chem. Inf. Model. 1994, 34, 1000−1008.
(38) Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P.
Development and Use of Quantum Mechanical Molecular Models.
76. AM1: A New General Purpose Quantum Mechanical Molecular
Model. J. Am. Chem. Soc. 1985, 107, 3902−3909.
(39) Okimoto, N.; Futatsugi, N.; Fuji, H.; Suenaga, A.; Morimoto,
G.; Yanai, R.; Ohno, Y.; Narumi, T.; Taiji, M. High-Performance
Drug Discovery: Computational Screening by Combining Docking
and Molecular Dynamics Simulations. PLoS Comput. Biol. 2009, 5,
No. e1000528.
(40) Suenaga, A.; Okimoto, N.; Hirano, Y.; Fukui, K. An Efficient
Computational Method for Calculating Ligand Binding Affinities.
PLoS One 2012, 7, No. e42846.
(41) Broo, A.; Nilsson Lill, S. O. Transferable Force Field for Crystal
Structure Predictions, Investigation of Performance and Exploration

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c01184
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

J

https://dx.doi.org/10.1107/s2052520616007447
https://dx.doi.org/10.1007/s10822-016-9974-4
https://dx.doi.org/10.1007/s10822-016-9974-4
https://dx.doi.org/10.1021/acs.jctc.8b00172
https://dx.doi.org/10.1021/acs.jctc.8b00172
https://dx.doi.org/10.1002/anie.201306438
https://dx.doi.org/10.1002/anie.201306438
https://dx.doi.org/10.1021/ci7002494
https://dx.doi.org/10.1021/ci7002494
https://dx.doi.org/10.1021/ci7002494
https://dx.doi.org/10.1073/pnas.231479298
https://dx.doi.org/10.1073/pnas.231479298
https://dx.doi.org/10.1039/c6cc00721j
https://dx.doi.org/10.1039/c6cc00721j
https://dx.doi.org/10.1039/c5cs00227c
https://dx.doi.org/10.1039/c5cs00227c
https://dx.doi.org/10.1021/ja9929990
https://dx.doi.org/10.1021/ja9929990
https://dx.doi.org/10.1021/ja9929990
https://dx.doi.org/10.1021/jm050436v
https://dx.doi.org/10.1021/jm050436v
https://dx.doi.org/10.1021/jm050436v
https://dx.doi.org/10.1021/jm050436v
https://dx.doi.org/10.1107/s2052520616003954
https://dx.doi.org/10.1107/s2052520616003954
https://dx.doi.org/10.1073/pnas.0702626104
https://dx.doi.org/10.1073/pnas.0702626104
https://dx.doi.org/10.1021/acs.jctc.6b00819
https://dx.doi.org/10.1021/acs.jctc.6b00819
https://dx.doi.org/10.1021/acs.jctc.6b00819
https://dx.doi.org/10.1371/journal.pone.0020450
https://dx.doi.org/10.1371/journal.pcbi.1008103
https://dx.doi.org/10.1371/journal.pcbi.1008103
https://dx.doi.org/10.1371/journal.pcbi.1008103
https://dx.doi.org/10.1021/acs.jctc.7b00125
https://dx.doi.org/10.1021/acs.jctc.7b00125
https://dx.doi.org/10.1002/jcc.10128
https://dx.doi.org/10.1002/jcc.10128
https://dx.doi.org/10.1002/jcc.10128
https://dx.doi.org/10.1021/ja9621760
https://dx.doi.org/10.1021/ja9621760
https://dx.doi.org/10.1021/ja9621760
https://dx.doi.org/10.1002/jcc.540100804
https://dx.doi.org/10.1002/jcc.540100804
https://dx.doi.org/10.1021/ct200142z
https://dx.doi.org/10.1021/ct200142z
https://dx.doi.org/10.1021/ct200142z
https://dx.doi.org/10.1021/ci4001597
https://dx.doi.org/10.1021/ci4001597
https://dx.doi.org/10.1093/comjnl/7.4.308
https://dx.doi.org/10.1093/comjnl/7.4.308
https://dx.doi.org/10.1007/s10822-017-0030-9
https://dx.doi.org/10.1007/s10822-017-0030-9
https://dx.doi.org/10.1007/s10822-017-0030-9
https://dx.doi.org/10.1007/s10822-014-9747-x
https://dx.doi.org/10.1007/s10822-014-9747-x
https://dx.doi.org/10.1021/bi00405a042
https://dx.doi.org/10.1021/bi00405a042
https://dx.doi.org/10.1021/bi00405a042
https://dx.doi.org/10.1016/b978-0-12-381270-4.00019-6
https://dx.doi.org/10.1016/b978-0-12-381270-4.00019-6
https://dx.doi.org/10.1002/jcc.540130412
https://dx.doi.org/10.1002/jcc.540130412
https://dx.doi.org/10.1021/jm061277y
https://dx.doi.org/10.1021/jm061277y
https://dx.doi.org/10.1021/jm061277y
https://dx.doi.org/10.1021/ci8002254
https://dx.doi.org/10.1021/ci8002254
https://dx.doi.org/10.1021/ci00020a039
https://dx.doi.org/10.1021/ci00020a039
https://dx.doi.org/10.1021/ja00299a024
https://dx.doi.org/10.1021/ja00299a024
https://dx.doi.org/10.1021/ja00299a024
https://dx.doi.org/10.1371/journal.pcbi.1000528
https://dx.doi.org/10.1371/journal.pcbi.1000528
https://dx.doi.org/10.1371/journal.pcbi.1000528
https://dx.doi.org/10.1371/journal.pone.0042846
https://dx.doi.org/10.1371/journal.pone.0042846
https://dx.doi.org/10.1107/s2052520616006831
https://dx.doi.org/10.1107/s2052520616006831
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c01184?ref=pdf


of Different Rescoring Strategies Using DFT-D Methods. Acta
Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2016, 72, 460−476.
(42) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R.
W.; Klein, M. L. Comparison of Simple Potential Functions for
Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926−935.
(43) Harder, E.; Damm, W.; Maple, J.; Wu, C.; Reboul, M.; Xiang, J.
Y.; Wang, L.; Lupyan, D.; Dahlgren, M. K.; Knight, J. L.; Kaus, J. W.;
Cerutti, D. S.; Krilov, G.; Jorgensen, W. L.; Abel, R.; Friesner, R. A.
OPLS3: A Force Field Providing Broad Coverage of Drug-like Small
Molecules and Proteins. J. Chem. Theory Comput. 2016, 12, 281−296.
(44) Wang, L.; Berne, B. J.; Friesner, R. A. On Achieving High
Accuracy and Reliability in the Calculation of Relative Protein-Ligand
Binding Affinities. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 1937−1942.
(45) Wang, L.; Wu, Y.; Deng, Y.; Kim, B.; Pierce, L.; Krilov, G.;
Lupyan, D.; Robinson, S.; Dahlgren, M. K.; Greenwood, J.; Romero,
D. L.; Masse, C.; Knight, J. L.; Steinbrecher, T.; Beuming, T.; Damm,
W.; Harder, E.; Sherman, W.; Brewer, M.; Wester, R.; Murcko, M.;
Frye, L.; Farid, R.; Lin, T.; Mobley, D. L.; Jorgensen, W. L.; Berne, B.
J.; Friesner, R. A.; Abel, R. Accurate and Reliable Prediction of
Relative Ligand Binding Potency in Prospective Drug Discovery by
Way of a Modern Free-Energy Calculation Protocol and Force Field.
J. Am. Chem. Soc. 2015, 137, 2695−2703.
(46) Weininger, D. SMILES, a chemical language and information
system. 1. Introduction to methodology and encoding rules. J. Chem.
Inf. Model. 1988, 28, 31−36.
(47) Repasky, M. P.; Murphy, R. B.; Banks, J. L.; Greenwood, J. R.;
Tubert-Brohman, I.; Bhat, S.; Friesner, R. A. Docking Performance of
the Glide Program as Evaluated on the Astex and DUD Datasets: A
Complete Set of Glide SP Results and Selected Results for a New
Scoring Function Integrating WaterMap and Glide. J. Comput. Aided
Mol. Des. 2012, 26, 787−799.
(48) Liebeschuetz, J. W.; Cole, J. C.; Korb, O. Pose Prediction and
Virtual Screening Performance of GOLD Scoring Functions in a
Standardized Test. J. Comput. Aided Mol. Des. 2012, 26, 737−748.
(49) Spitzer, R.; Jain, A. N. Surflex-Dock: Docking benchmarks and
real-world application. J. Comput. Aided Mol. Des. 2012, 26, 687−699.
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