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ABSTRACT

Cyclic symmetry is frequent in protein and peptide homo-oligomers, but extremely rare within a
single chain, as it is not compatible with free N- and C-termini. Here we describe the computational
design of mixed-chirality peptide macrocycles with rigid structures that feature internal cyclic
symmetries or improper rotational symmetries inaccessible to natural proteins. Crystal structures of
three C2- and C3-symmetric macrocycles, and of six diverse S2-symmetric macrocycles, match the
computationally-designed models with backbone heavy-atom RMSD values of 1 A or better. Crystal
structures of an S4-symmetric macrocycle (consisting of a sequence and structure segment mirrored at
each of three successive repeats) designed to bind zinc reveal a large-scale zinc-driven conformational
change from an S4-symmetric apo-state to a nearly inverted S4-symmetric holo-state almost identical to
the design model. This work demonstrates the power of computational design for exploring symmetries

and structures not found in nature, and for creating synthetic switchable systems.
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INTRODUCTION

Symmetric protein quaternary structures, which are built from many identical copies of a single
protein chain, play key functional and structural roles in biology and have advantages as building blocks
for nanomaterials, since a small number of repeated interfaces can generate large and complex
assemblies.' Such structures have also proved useful for engineering high-avidity binders to symmetry-
matched targets of therapeutic interest.® Macromolecules with internal symmetry in their sequences and
tertiary structures would be particularly advantageous for both nanomaterial and therapeutic
development, since the complexity of dealing with multiple chains can be avoided. Metallo-organic
frameworks (MOFs), for example, are often built from internally-symmetric small-molecule chelators.”
9 While there are many small molecules with internal symmetry, natural proteins and peptides with
internal symmetry are extremely rare, at least in part because true internal symmetry requires that the
chain be circular, with no free N- or C-terminus. Perhaps the best-studied natural example of an
internally-symmetric peptide macrocycle is gramicidin S, a 10-residue antimicrobial agent with C2

symmetry.'%!!

Small synthetic peptide macrocycles with simple, patterned repeating sequences have
been found to give rise to C2 or C3 structural symmetries, 1>~ but to our knowledge there has been no
systematic effort to explore the space spanned by such structures. We and other groups have designed
asymmetric linear and macrocyclic foldamers, > but the peptide design field currently lacks general
computational methods for designing symmetric molecules.

We set out to develop general methods for computationally designing internally-symmetric

peptide macrocycles with conformational rigidity imparted by large energy gaps between a symmetric
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ground state and all alternative conformations. To this end, we incorporated methods for sampling and
designing with internal cyclic or improper rotational symmetries into the Rosetta heteropolymer design
software.!®2?2 Our sampling methods use robotics-inspired kinematic closure methods'®?>?* to provide
analytical solutions for dihedral values yielding closed macrocycle conformations. Dihedral angles in
all asymmetric units of the macrocycle (henceforth referred to as “lobes”) are required to match those in
the first “reference” lobe to within a certain tolerance in the cyclic symmetric case, and after inversion
in the case of improper rotational symmetries. Subsequent symmetric sequence design algorithms ensure
residue identities and conformations in neighboring lobes match (for cyclic symmetry) or match with
chirality inversion and inversion of dihedral values (for improper rotational symmetry).

Here, we apply the newly-developed computational methods to the creation of peptide
macrocycles with cyclic symmetries (C2 or C3). We also explore the structures possible with improper
rotational symmetries that are inaccessible to homochiral proteins, but which can be accessed by
heterochiral peptides, demonstrating robust ability to design diverse, internally S2-symmetric folds.
Finally, we present an S4-symmetric polypeptide macrocycle that functions as a conformational switch,
inverting its fold in the presence or absence of zinc. The robust computational design and validation

methods demonstrated here are applicable to diverse problems in therapeutic and nanomaterial design.

RESULTS

Structures of designed peptide macrocycles with C2 and C3 symmetry
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We developed a computational pipeline, summarized in the methods and in Figure S1, for
designing internally-symmetric peptide macrocycles. This pipeline involved steps of symmetric
backbone conformational sampling, clustering, symmetric sequence design, filtration to discard designs
with undesirable features, and final computational validation by large-scale conformational sampling.
We first applied this pipeline to create macrocycles with C2 and C3 symmetry, with asymmetric units
ranging from 3 to 5 residues. To assess the completeness of our sampling of cyclic peptide
conformational space, we defined four backbone dihedral bins (A, B, X, and Y), with A and B representing
right-handed helical and strand regions of Ramachandran space, respectively, and X and Y representing
the mirror image bins (see supplementary information). We compared the number of bin sequences
(AABAYYXY, for example) sampled to the total number of unique bin patterns possible for each peptide
size and symmetry type designed, with the latter determined analytically using Burnside’s lemma?” (see
Section 2.1.3 of the supplementary information). Where possible, we also assessed whether the solution
space for designs was fully sampled by examining the set of low-energy structures obtained to determine
whether both members of mirror-related bin strings were represented, since the occurrence of just one
member of such isoenergetic pairs indicates incomplete sampling of the solution space. We were able to
sample with many-fold redundancy over all bin patterns possible for peptides up to 24 residues in length,
and found only a small subset for each length that were compatible with chain closure for each symmetry
(Table 1). The mirror test suggested that the identified conformations completely cover the space of
possibilities for C2-symmetric macrocycles with up to 8 residues, and C3-symmetric macrocycles up to
18 residues. For higher-order symmetries, such as C5, complete sampling by the mirror test was possible

up to 30 residues (Table S1).
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We carried out large-scale conformational sampling on each of the designed sequences, and
selected peptide macrocycles with large energy gaps between the designed conformation and all
alternative states to synthesize chemically. We began by synthesizing one C2-symmetric and five C3-
symmetric peptide macrocycles and their mirror-image enantiomorphs to facilitate the crystallization of
the synthesized molecules from racemic mixture.?® With this approach we succeeded in crystallizing the
C2-symmetric peptide and three of the five C3-symmetric peptides (Fig. 1). The observed conformation
of the C2 symmetric peptide (designated C2-1) matched its designed conformation within a backbone
heavy-atom RMSD of 1 A, but with notable deviation in the y dihedral angle of residue dSER1 and the
¢ dihedral angles of residues dGLU2 and AIBS, which inverted the dSER 1-dGLU2 amide bond, allowing
it to form a new hydrogen bond with dGLU?7. Despite this local structural change, the overall fold of the
peptide was largely preserved. This is the first computationally-designed macrocycle of which we are
aware that uses 2-aminoisobutyric acid (AIB), a non-canonical, conformationally-constrained amino
acid, instead of proline to ensure conformational rigidity. Only one enantiomer was observed in this
crystal structure, but an alternative crystal form was identified that incorporates both enantiomers, albeit
with a distorted conformation (see Fig. S2). Table S2 shows sequences, crystallization conditions, space
groups, and backbone heavy-atom RMSD values for all peptides.

Two of the three C3-symmetric peptides that we succeeded in crystallizing closely matched the
design models (Fig. 1). Design C3-1 adopted a conformation different from the design (Fig. S3) likely
due to three buried polar hydrogen atoms that form hydrogen bonds with carbonyl oxygens in adjacent
peptide molecules.?”-?® Recognizing this to be an undesirable structural feature that was poorly penalized

by our automated scoring function, from this point forward we filtered designs, selecting only those
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designs lacking unsatisfied buried polar groups. Crystal structures of peptides C3-2 and C3-3, which
lack buried unsatisfied polar atoms, closely matched their designs, with backbone heavy-atom RMSD
values of 0.5 A and 0.3 A, respectively. The two have acommon fold stabilized by three proline residues

and three backbone hydrogen bonds.

Structures of designed peptide macrocycles with S2 symmetry

We next explored symmetries inaccessible to natural proteins. Unlike proteins built only from
L-amino acids, peptides built from mixtures of D- and L-amino acids can access symmetries involving
mirror operations, such as improper rotational symmetries. Using the same symmetric sampling,
clustering, and sequence optimization strategy, we designed and synthesized a panel of 6 peptide
macrocycles with S2 symmetry ranging in size from 8 to 12 amino acids (designs S2-1 through S2-6).
These peptides have a sequence that repeats twice, with the chirality of residues in the second lobe
inverted relative to the first, yielding a second lobe with a conformation mirroring that of the first. Six
designs were selected for synthesis representing a diverse range of backbone conformations and
hydrogen bonding patterns. We were able to crystallize all six of these peptides, and to determine their
structures by direct phasing methods.

In all cases the observed conformation closely matched the design (overlays in Fig. 2, column F),
with a maximum backbone heavy-atom RMSD of 0.6 A (peptide S2-3) and a minimum of 0.4 A (peptide
S2-1). These peptides’ folds were all stabilized by D- and L-proline residues and by backbone hydrogen
bonds (Fig. 2). The designed conformation of peptide S2-6, a 12-residue peptide with sequence

aNkhPeAnKHpE (where lowercase and uppercase letters represent D- and L-amino acid residues,
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respectively), has a crimped conformation remarkably forming 8 backbone hydrogen bonds, of which 6
were preserved in the crystal structure. The remaining two were lost to a slight rotation of the amide
bond between dASN8 and LYS9, which positioned the donor and acceptor groups where they could
instead make hydrogen bonds to water. The crystal structure deviated from the design by a backbone
heavy-atom RMSD of only 0.4 A. In all other cases, the designed backbone hydrogen bonding patterns
were preserved, with two exceptions: a subtle relaxation of the backbones of peptides S2-4 and S2-5
replaced two direct backbone-backbone hydrogen bonds in the designs with bridging water molecules

[Fig. 2(D), 2(E)].

Metal-induced conformational switching in a designed S4-symmetric polypeptide macrocycle

We next explored the possibility of using the new design methods to create conformational
switches. We sampled S4-symmetric polypeptide conformations with 4 repeats in which alternating
lobes had opposite chirality, and developed a computational strategy to select backbones that could
present metal-binding side-chains for tetrahedral coordination of a central metal ion (see supplementary
information). We designed sequences with L- and D-histidine residues positioned to chelate the metal
ion, AIB and other residues to stabilize the fold, and apolar side-chains on the surface to stabilize an
alternative, inside-out conformation in the absence of metal. The sequences of these designs repeat four
times, with residues in the second and fourth lobes possessing chirality and conformations inverted
relative to equivalent residues in the first and third lobes. We carried out large-scale conformational
sampling to select designs with low-energy designed conformations with the histidine side-chains

positioned to bind zinc. In several designs, we noted that large-scale conformational sampling predicted
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a second energy minimum corresponding to an inside-out fold with the apolar side-chains in the core and
the histidines exposed. We selected a single design for synthesis, S4-1, which has sequence

KLgeXHk1QEXhKLgeXHk1QEXh, in which X represents AIB (Fig. 3).

The 24-amino acid polypeptide S4-1 crystallized in space group P1. The backbone conformation
in the crystal structure (which contained a single copy of the peptide in the asymmetric unit), matched
the design with a backbone heavy-atom RMSD of 0.3 A, with a central metal ion (believed to be zinc)
very close to that in the design model. The central metal-coordinating L- and D-histidine side-chains
matched the design with a side-chain heavy-atom RMSD of 0.1 A. The zinc affinity of S4-1 was 0.32
nM, as measured by competition with the colorimetric chelator 4-(2-pyridylazo)resorcinol (PAR) [Fig.
3(C) and supplementary information].

The central metal ion plays an important structural role in holo-S4-1, stabilizing a conformation
that presents four apolar D- and L-leucine side-chains to aqueous solvent [Fig. 3(A), 3(D), 3(E), 3(K),
3(L)], and as noted above large-scale conformational sampling runs predicted an alternative
conformation with these groups buried in the absence of metal ion [Fig. 3(F), 3(G)]. To explore this
possibility, we solved the structure of the apo-polypeptide. Without zinc, the polypeptide crystallized in
space group P2;22, and did indeed adopt a very different conformation from the holo-structure, packing
apolar D- and L-leucine side-chains against AIB residues in the core, and projecting the D- and L-
histidine side-chains that previously coordinated zinc outward [Fig. 3(H), 3(K), 3(L)]. The observed
apo-state conformation matches the predicted alternative state to a backbone heavy-atom RMSD of 1 A

[Fig. 3(D)].
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DISCUSSION

The 10 new peptide and polypeptide macrocycles presented here have diverse, rigid backbone
folds closely matching the design models, in nearly all cases with sub-Angstrom accuracy. The structures
were designed in four different symmetry classes (C2, C3, S2, and S4), the latter two of which are
inaccessible to proteins or other natural macromolecules built from building-blocks of only one
handedness. Likely because of their symmetry, the success rate of the designs was quite high, both in
terms of crystallization of the designed peptides (11 of 13) and their close match to predicted structures
(10 of 11). Since synthetic macrocycles are not limited to the 20 canonical amino acid building-blocks,
we take advantage of the non-canonical, conformationally-constrained amino acid residue AIB to rigidify
two macrocycles. We also illustrate the use of metal ligands as central structural elements. Moving
forward the methods described here can be used to design with the thousands of possible non-canonical

amino acids, as well as with bound metal ions.

Expanding the set of usable chemical building-blocks for computational design

Past design efforts aimed at producing folding macrocycles focused on peptides built from
canonical L-amino acids and their mirror-image D-amino acid counterparts.'®'® Although large proteins
are stabilized primarily by the formation of a core of well-packed apolar side-chains, smaller peptides
lack large buried volumes, and tend to be stabilized by intrinsic conformational preferences of amino
acid residues. Proline is the most conformationally-constrained canonical amino acid, and has been

essential to the success of past designs; however, proline cannot be used in all contexts. Since the proline
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side-chain connects to the backbone nitrogen, eliminating the backbone amide proton, proline cannot
serve as a backbone hydrogen bond donor. Moreover, the proline delta carbon alters the conformational
preferences of the preceding residue. And of course there are configurations in which the proline side-
chain can clash with other side-chains. It is therefore convenient to have additional conformationally-
constrained amino acids from which to choose when designing. By adding support for designing with
AIB, we were able to include an achiral yet conformationally-constrained residue with narrow
preferences for the regions of Ramachandran space favoured by both L- and D-proline, but which is
nonetheless able to form backbone hydrogen bonds. This permitted the AIB residues in peptide C2-1 to
donate hydrogen bonds to serine side-chains. This also allowed AIB’s incorporation in the holo-S4-1
design in the midst of a 310 helix, a secondary structure that would have been disrupted by proline.
Additionally, in the apo state, the AIB side-chains were able to pack closely with nearby leucine side-
chains, an arrangement that would have resulted in side-chain clashes had proline been substituted. We
anticipate that the ability to expand the set of conformationally-constrained amino acids for
computational design will open new opportunities for stabilizing structures that cannot be stabilized by

canonical amino acids or their mirror images alone.

Near-exhaustive exploration of conformational space for larger molecules

The design of rigidly-folded heteropolymers requires efficient means of sampling backbone
conformations, both to identify conformational states compatible with a given function that can be
stabilized by a suitable choice of sequence, and to validate designed sequences by exploring possible

alternative low-energy conformational states. This is particularly challenging when designing with non-
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canonical amino acid residues, requiring unbiased sampling methods that are not reliant on known
structures. Because N-fold symmetric molecules have far fewer (1/N) conformational degrees of
freedom than similarly sized asymmetric molecules, the new methods make comprehensive sampling
tractable for much larger systems. By focusing on internally-symmetric macrocycles, we were able to
achieve exhaustive or near-exhaustive coverage of the conformation spaces for peptides with up to 30
amino acids for the highest-order symmetries (Table S1) -- a size range well beyond that which can be
sampled exhaustively for asymmetric macrocycles. Since many applications of designed, well-folded
heteropolymers require molecules that are able to present large binding interfaces (e.g. for nanomaterial
self-assembly or therapeutic target binding), or molecules large enough to possess internal binding
pockets (e.g. for small-molecule binding or catalysis), we anticipate that our computational methods for

designing larger symmetric structures with non-canonical building blocks will have broad applicability.

Design of metal-dependent peptide conformational dynamics

Our most complex design, the 24-residue S4-1 polypeptide, binds zinc with sub-nanomolar
affinity, and undergoes a major conformational change when zinc is removed. Both the apo and holo
states are well-structured, with the former burying apolar side-chains and the latter exposing them (Fig.
3). Engineered switching behaviour could ultimately be used to create cell-permeable molecules that
could serve as drugs. Similar conformational switching behaviour is observed in the natural peptide
macrocycle cyclosporine A, and is thought to underlie this drug’s cell permeability: in the lipid bilayer,
cyclosporine is able to adopt a conformation in which all hydrogen bond donors and acceptors are

internally satisfied, and apolar groups are lipid-exposed, promoting its lipid-solubility, while in an
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aqueous environment, the molecule changes conformation to expose its polar groups to water, promoting
water-solubility.?>3® The ability to control this switching behaviour with a metal ion like zinc could also
provide a means of ensuring that the permeation is unidirectional: while extracellular free zinc
concentrations are in the nanomolar to micromolar range,>' high-affinity zinc binding within the cell
lowers the free zinc concentration to picomolar levels.?? Achieving cellular permeability would likely
require further design to ensure that the apolar-exposed state internally satisfies all hydrogen bond donors
and acceptors. The ultimate application would be to engineer a symmetric macrocycle drug able to
undergo a conformational change to pass through a membrane and to present a large, symmetric surface
to bind with high affinity and specificity to a symmetric interface on a homooligomeric intracellular

target protein.

Concluding remarks

We have presented general methods for computational design and validation of symmetric, well-
folded polypeptide macrocycles, including those incorporating metals as structural elements, and have
demonstrated robust ability to control structure with sub- A ngstrom accuracy in laboratory experiments,
culminating in an engineered, metal-dependent conformational switch. The ability to design symmetric,
well-folded polypeptide macrocycles opens up new avenues for both therapeutic design and for bounded
and unbounded nanomaterial design, and shows that methods originally developed for protein design can

now be used to robustly design molecules quite unlike those that exist in nature.

MATERIALS AND METHODS
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Modifications to the Rosetta software suite

Extensive modifications to the Rosetta software suite enabled the design of internally-symmetric
peptide macrocycles, including those able to coordinate a central metal ion. New Rosetta modules were
implemented to be compatible with both the PyRosetta and RosettaScripts scripting languages,3>34
allowing their use in the development of future, application-specific design protocols. Rosetta source
code and compiled executables are provided free of charge to academic, government, and not-for-profit

users through http://www.rosettacommons.org, and the software is licenced to commercial users for a

fee. Computational developments are summarized here and described in detail in the supplementary
information.

The Rosetta symmetry code® was refactored to add support for mirror operations and improper
rotational symmetries, and to correctly interconvert between mirrored amino acid types. Rosetta’s
simple_cycpep_predict and energy_based_clustering applications, both described previously,®19
were enhanced to allow sampling and clustering of quasi-symmetric backbones with a given symmetry
(where a quasi-symmetric backbones is one that is nearly symmetric, but in which small deviations from
perfect symmetry are allowed). A Rosetta module (“mover”) for converting quasi-symmetric structures
to fully symmetric structures, called the SymmetricCycpepAlignMover, was added. The interface and
internal handling of non-canonical amino acids during design was greatly reworked, with the user-
controlled PackerPalette introduced to control the set of chemical building-blocks used for a given

design task, permitting deprecation of many problematic idiosyncrasies present in the previous interface

to streamline the design process.
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To enable the design of metal-binding peptides, Rosetta’s CrosslinkerMover was enhanced with
support for a range of metal coordination geometries, with support for asymmetric structures or for the
symmetry classes compatible with a given coordination geometry. For example, this mover allows the
design of a tetrahedrally-coordinated zinc in an asymmetric structure or in a C2 or S4-symmetric

structure, with suitable repetition of conformations and amino acid identities of the liganding residues.

Computational design protocol

To design symmetric peptides, we first sampled quasi-symmetric mainchain conformations using
the simple_cycpep_predict application, and enumerated conformations with the
energy_based_clustering application. In the case of the S4-1 polypeptide, this step was modified to
sample only those backbone conformations capable of coordinating a central metal ion. Next, with
scripts written in the RosettaScripts scripting language, we converted quasi-symmetric cluster centers to
fully symmetric structures, and carried out sequence design with Rosetta’s symmetric design algorithms.
Finally, we validated each designed sequence by large-scale conformational sampling, again using the
simple_cycpep_predict application, to identify those designed sequences that uniquely favoured the
designed conformation. Computations were carried out on the University of Washington Hyak cluster,
the Argonne National Laboratory Mira and Theta supercomputers, and the Simons Foundation Gordon
and Iron clusters. Additionally, some validations were carried out using the Rosetta@Home distributed
computing platform, which uses volunteer computers, cellular telephones, and mobile devices through
the Berkeley Open Infrastructure for Network Computing (BOINC).3¢ Full details of each step, sample

command-lines, and representative RosettaScripts scripts are provided in the supplementary information.
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Solid-phase peptide synthesis and purification

Peptides were synthesized using standard Fmoc solid-phase peptide synthesis techniques using a
CEM Liberty Blue peptide synthesizer with microwave-heated coupling and deprotection steps. Peptides
with twelve amino acids or fewer that contained L-aspartate or L-glutamate were synthesized tethered
by the acidic side-chain to preloaded Fmoc-L-Asp(Wang resin LL)-ODmab or Fmoc-L-Glu(Wang resin
LL)-ODmab resin, and were cyclized on-bead by a coupling reaction following deprotection of the C-
terminus with 2% (v/v) hydrazine monohydrate treatment in dimethylformamide (DMF). Larger
peptides were synthesized with the C-terminus coupled to CI-TCP(CI) resin from CEM, cleaved from
the resin with 1% (v/v) TFA treatment in dicholoromethane (DCM), and cyclized by a solution-phase
coupling reaction prior to final deprotection. Peptides were purified by reverse-phase HPLC with a
water-acetonitrile gradient, lyophilized, and redissolved in buffer suitable for subsequent experiments
(typically 100 mM HEPES, pH 7.5). Masses and purities were assessed by electrospray ionization mass
spectrometry with a Thermo Scientific TSQ Quantum Access mass spectrometer. Full synthetic and

purification protocols are described in the supplementary information.

X-ray crystallography

Peptides were crystallized by hanging droplet vapour diffusion, with pH, buffer, ionic strength,
and precipitants all optimized for each peptide. Growth conditions for the crystals of each peptide are
described in the supplementary information. Diffraction data were collected at the Argonne National

Laboratory Advanced Photon Source (APS) beamlines 24-ID-C and 24-1D-E.
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Metal-binding assays

To confirm zinc content of the S4-1 and S4-2 peptides, and to measure zinc affinity, we used a
variant of the 4-(2-pyridylazo)resorcinol (PAR) assay described previously.>’3° We carried this assay
out in 96-well plates (200 pl total solution volume per well). To confirm metal content, 10 pM
polypeptide was denatured in 6 M guanidinium hydrochloride (Sigma-Aldrich, St. Louis, MO), 100 mM
HEPES, pH 7.5, and 200 pM PAR, and the change in absorbance at 490 nm was monitored using a
SpectraM AX Mb5e plate reader (Molecular Devices, San Jose, CA). Standard curves were prepared with
ZnCl, to convert absorbance changes to zinc concentrations. The metal affinity of the S4-1 and S4-2
polypeptides was measured by competition with PAR, given the known dissociation constants of the
PAR>-Zn complex. Full protocols and mathematical details for both assays are provided in the

supplementary information.
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Table 1: Summary of peptide macrocycle backbone conformations found for symmetries explored.

Symmetry type' Size (residues) Maxl.)(l)JSi:isEings Bin strings observed Cii?;:;gﬁ;gg:}iz
6 24 8 3
8 70 13 6
10 208 57 25
12 700 15 16
C2
14 2,344 108 96
16 8,230 1,122 898
18 29,144 2,171 1,770
20 104,968 2,585 2,108
6 10 1 1
9 24 4 2
12 70 3 3
3 15 208 4 4
18 700 3 3
21 2,344 14 11
24 8,230
7N 1Q
S2 6 19 ) .
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8 32 2 1
10 104 9 6
12 344 4 4
14 1,172 173 85
16 4,096 294 162
18 14,572 469 303
20 52,432 707 464
8 4 2 1
12 12 1 1
16 32 7 7
S4 20 104 22 19
24 344 18 17
28 1,172 27 22
32 4,096 13 12

1Only symmetry types that were synthesized are listed here. For full analysis of other symmetry
types (e.g. C4, C5), please see the supplementary information.
Results of clustering with a radius of 1.5 A arereported. For full clustering analysis, please refer

to the supplementary information.
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Figure Captions

Figure 1: Designed peptides with cyclic (C2 or C3) symmetries. Columns: (A) Computer models
produced by Rosetta design. Backbone-backbone, backbone-sidechain, and sidechain-sidechain
hydrogen bonds are shown as green, cyan, and blue dashed lines, respectively. Backbone atoms are
shown in grey, polar side-chains in cyan, and apolar side-chains in orange. The C2 or C3 symmetry axis
is shown as a black rod. Hand icons depict the symmetry. (B) Designed amino acid sequences and
Ramachandran bin strings. Amino acids are coloured red and blue (C2 symmetry) or red, green, and
blue (C3 symmetry) to indicate different repeating units. (C) Computed energy landscape of design, in
which each point represents a structure prediction trajectory, with computed energy plotted against
RMSD to the designed structure. Colours represent the number of backbone hydrogen bonds. (D)
Ramachandran map representation of the designed structures (grey points) compared to the
experimentally-determined structures (points coloured by symmetry lobe, as in column B). Grey
numbers indicate sequence positions, and curved arrows show the progression through the sequence.
Grey ovals group the designed and observed backbone angles, as a guide to the eye. In the case of peptide
C2-1, three residues, indicated with red and blue numbers, showed considerable deviation in [
(horizontal dashed lines) or [ (vertical dashed line). (E) Structures determined by x-ray crystallography.
Colours are as in column A. (F) Overlay of the designed model (lighter colours) with the x-ray crystal
structure (darker colours). Symmetric lobes are shown colours matching sequences in column B. Side-
chains other than those of proline are omitted for clarity. Rows: (I) Peptide C2-1. The backbone heavy-

atom RMSD between crystal structure and design was 1 A, mainly due to shifts in [ of residue 1 and [
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of residue 2 (red dashed lines in column D and blue and green arrows in column F) which together rotated
the amide bond between residues 1 and 2 by 180°, and in [ of residue 8, which reoriented a backbone
carbonyl (red arrow) in the absence of the hydrogen bond that would have been donated to it by the
rotated amide proton. Despite these changes, much of the structure overlaid well on the design. (II and
IIT) Peptides C3-2 and C3-3, which shared a common backbone configuration. Crystal contacts resulted
in somewhat different conformations of polar side-chains, but the backbone heavy-atom RMSDs to the

designs were 0.5 A and 0.3 A, respectively, yielding nearperfect alignment in both cases (column E).

Figure 2: Designed peptides with S2 improper rotational symmetry. Unless noted otherwise,
columns and colours are as in Figure 1. The symmetry is illustrated with left and right hands, shown in
green and orange respectively, in icons in column A. Centers of inversion are shown as black spheres in
columns A and E. In column D, pink and light blue ovals indicate the first and second symmetry lobes,
respectively, which are related to one another by mirroring (a 180° rotation about the origin in
Ramachandran space). Bright red and bright blue points represent the design, and dark red and dark blue
points represent the crystal structure. (I through VI) Peptides S2-1 through S2-6. In each of peptides
S2-4 and S2-5, two designed backbone-backbone hydrogen bonds were observed to be replaced with a

bridging water molecule in the crystal structure (dashed purple lines in column E).

Figure 3: A designed biconformational metal-binding polypeptide with S4 improper rotational

symmetry. (A) Design model of S4-1 polypeptide. Backbone hydrogen bonds are shown as dashed

green lines, the central bound zinc atom, as a dark grey sphere, polar side-chains as cyan sticks, apolar
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side-chains as orange sticks, and backbone atoms as grey sticks. Solvent-exposed glutamate, glutamine,
and lysine side-chains are omitted for clarity. In this and subsequent panels, the S4 symmetry axis is
shown as a black line. The icon adjacent to letter illustrates the symmetry, with left and right hands
coloured as in Figure 1. (B) Sequence and expected Ramachandran bins for each residue in the metal-
bound (“Holo bin”) and metal-free (“Apo bin”) states. Colours in first two columns correspond to colours
of symmetric lobes in panels E and I. Bin colours correspond to the shaded regions in the plots in panel
J. (C) Polypeptide S4-1 titration into PAR,Zn solution to measure metal affinity by competition. Based
on the known affinity of PAR for zinc, the measured affinity of the S4-1 polypeptide for zinc was 0.32
nM (curve of best fit). (D) X-ray crystal structure of zinc-bound S4-1 polypeptide. The (i+3 = i) 310 helix
hydrogen bond pattern that was designed was observed. (E) Overlay of S4-1 design and crystal structure
(with symmetric lobes coloured as in panel B). The backbone heavy-atom RMSD was 0.3 A, and metal
binding histidine side-chains and surface-exposed leucine side-chains showed excellent agreement to the
design. (F) S4-symmetric lowest-energy predicted alternative structure with RMSD greater than 2 A
from the design (green arrow in panel G) in the absence of zinc. Although only one glutamine residue
per lobe undergoes a major conformational change, this allows inversion of the structure, so that apolar

side-chains are now buried. (G) Computationally predicted energy as a function of RMSD to the

designed conformation. Colours indicate number of backbone hydrogen bonds: <15 (blue), 16 (cyan),
17 (green), 18 (orange), 19 (red), or >20 (black). The identified alternative fold is marked with a green

arrow. (H) X-ray crystal structure of zinc-free S4-1 polypeptide. The observed hydrogen bond more

closely resembled the (i+3 - i) 310 helix pattern observed in the original design than the pattern predicted

in the alternative state. Nevertheless, the major shift, burying apolar side-chains, was observed. (I)
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Overlay of prediction and crystal structure for alternative apo state of S4-1 polypeptide. For clarity, only
the backbone is shown. The RMSD between predicted alternative apo state and observed state in the
crystal structure was 1 A. (J) Ramachandran plots for the zinc-bound (top) and zinc-free (bottom)
conformations. Curved arrows and numbers indicate progression through the sequence. Two-toned
red/yellow (lobes 1 and 3) and blue/green (lobes 2 and 4) ovals serve as guides to the eye to link designed
and observed dihedral values at each position. Top panel: S4-symmetric designed zinc-bound
conformation (two-toned points) and the observed zinc-bound conformation (solid colours matching
panel B). All backbone dihedral values observed were very close to those designed. Bottom panel:
predicted S4-symmetric alternative, zinc-free conformation (solid colours matching panel B) and the
observed symmetric structure (two-toned points). Although there was more deviation between the
prediction and the observed structure, all points fell in the predicted Ramachandran bins. (K) Space-
filling sphere models showing the major conformational change between zinc-bound (top) and zinc-free
(bottom) states. Colours are as in panel A. Apolar side-chains that are solvent-exposed in the zinc-bound
state (orange) are buried in the apo-state, while metal-binding histidine residues that are buried in the
zinc-bound state are exposed in the apo-state, yielding a fully polar surface (cyan). (L) Cutaway views
of zinc-bound (top) and zinc-free (bottom) S4-1 crystal structures. The zinc-bound state has a well-
packed polar core consisting mainly of zinc-binding histidine side-chains (cyan side-chains, top), with
the central zinc atom lying on the symmetry axis and mirror plane. The apo-state has a well-packed

apolar core more like that of a conventional protein (orange side-chains, bottom).
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Figure 1: Designed peptides with cyclic (C2 or C3) symmetries. Columns: (A) Computer models produced
by Rosetta design. Backbone-backbone, backbone-sidechain, and sidechain-sidechain hydrogen bonds are
shown as green, cyan, and blue dashed lines, respectively. Backbone atoms are shown in grey, polar side-
chains in cyan, and apolar side-chains in orange. The C2 or C3 symmetry axis is shown as a black rod.
Hand icons depict the symmetry. (B) Designed amino acid sequences and Ramachandran bin strings.
Amino acids are coloured red and blue (C2 symmetry) or red, green, and blue (C3 symmetry) to indicate
different repeating units. (C) Computed energy landscape of design, in which each point represents a
structure prediction trajectory, with computed energy plotted against RMSD to the designed structure.
Colours represent the humber of backbone hydrogen bonds. (D) Ramachandran map representation of the
designed structures (grey points) compared to the experimentally-determined structures (points coloured by
symmetry lobe, as in column B). Grey numbers indicate sequence positions, and curved arrows show the
progression through the sequence. Grey ovals group the designed and observed backbone angles, as a
guide to the eye. In the case of peptide C2-1, three residues, indicated with red and blue numbers, showed
considerable deviation in € (horizontal dashed lines) or € (vertical dashed line). (E) Structures
determined by x-ray crystallography. Colours are as in column A. (F) Overlay of the designed model
(lighter colours) with the x-ray crystal structure (darker colours). Symmetric lobes are shown colours
matching sequences in column B. Side-chains other than those of proline are omitted for clarity. Rows: (I)
Peptide C2-1. The backbone heavy-atom RMSD between crystal structure and design was 1 &, mainly due
to shifts in @€ of residue 1 and @€ of residue 2 (red dashed lines in column D and blue and green arrows
in column F) which together rotated the amide bond between residues 1 and 2 by 180°, and in € of
residue 8, which reoriented a backbone carbonyl (red arrow) in the absence of the hydrogen bond that
would have been donated to it by the rotated amide proton. Despite these changes, much of the structure
overlaid well on the design. (II and III) Peptides C3-2 and C3-3, which shared a common backbone
configuration. Crystal contacts resulted in somewhat different conformations of polar side-chains, but the
backbone heavy-atom RMSDs to the designs were 0.5 & and 0.3 A, respectively, yielding near-perfect
alignment in both cases (column E).
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Figure 2: Designed peptides with S2 improper rotational symmetry. Unless noted otherwise, columns and

colours are as in Figure 1. The symmetry is illustrated with left and right hands, shown in green and orange

respectively, in icons in column A. Centers of inversion are shown as black spheres in columns A and E. In
column D, pink and light blue ovals indicate the first and second symmetry lobes, respectively, which are
related to one another by mirroring (a 180° rotation about the origin in Ramachandran space). Bright red

and bright blue points represent the design, and dark red and dark blue points represent the crystal
structure. (I through VI) Peptides S2-1 through S2-6. In each of peptides S2-4 and S2-5, two designed
backbone-backbone hydrogen bonds were observed to be replaced with a bridging water molecule in the
crystal structure (dashed purple lines in column E).
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Figure 3: A designed biconformational metal-binding polypeptide with S4 improper rotational symmetry.
(A) Design model of S4-1 polypeptide. Backbone hydrogen bonds are shown as dashed green lines, the
central bound zinc atom, as a dark grey sphere, polar side-chains as cyan sticks, apolar side-chains as

orange sticks, and backbone atoms as grey sticks. Solvent-exposed glutamate, glutamine, and lysine side-
chains are omitted for clarity. In this and subsequent panels, the S4 symmetry axis is shown as a black
line. The icon adjacent to letter illustrates the symmetry, with left and right hands coloured as in Figure 1.
(B) Sequence and expected Ramachandran bins for each residue in the metal-bound (“Holo bin”) and
metal-free ("Apo bin”) states. Colours in first two columns correspond to colours of symmetric lobes in
panels E and I. Bin colours correspond to the shaded regions in the plots in panel J. (C) Polypeptide S4-1
titration into PAR2Zn solution to measure metal affinity by competition. Based on the known affinity of PAR
for zinc, the measured affinity of the S4-1 polypeptide for zinc was 0.32 nM (curve of best fit). (D) X-ray
crystal structure of zinc-bound S4-1 polypeptide. The (i+3 — i) 310 helix hydrogen bond pattern that was
designed was observed. (E) Overlay of S4-1 design and crystal structure (with symmetric lobes coloured as
in panel B). The backbone heavy-atom RMSD was 0.3 A, and metal-binding histidine side-chains and
surface-exposed leucine side-chains showed excellent agreement to the design. (F) S4-symmetric lowest-
energy predicted alternative structure with RMSD greater than 2 A from the design (green arrow in panel G)
in the absence of zinc. Although only one glutamine residue per lobe undergoes a major conformational
change, this allows inversion of the structure, so that apolar side-chains are now buried. (G)

Computationally predicted energy as a function of RMSD to the designed conformation. Colours indicate
number of backbone hydrogen bonds: <15 (blue), 16 (cyan), 17 (green), 18 (orange), 19 (red), or =220

(black). The identified alternative fold is marked with a green arrow. (H) X-ray crystal structure of zinc-

free S4-1 polypeptide. The observed hydrogen bond more closely resembled the (i+3 — i) 310 helix pattern
observed in the original design than the pattern predicted in the alternative state. Nevertheless, the major
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shift, burying apolar side-chains, was observed. (I) Overlay of prediction and crystal structure for
alternative apo state of S4-1 polypeptide. For clarity, only the backbone is shown. The RMSD between
predicted alternative apo state and observed state in the crystal structure was 1 A. (J) Ramachandran plots
for the zinc-bound (top) and zinc-free (bottom) conformations. Curved arrows and numbers indicate
progression through the sequence. Two-toned red/yellow (lobes 1 and 3) and blue/green (lobes 2 and 4)
ovals serve as guides to the eye to link designed and observed dihedral values at each position. Top panel:
S4-symmetric
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