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Targeting the interaction between the SARS-CoV-2 Spike protein and the human ACE2 receptor is a
promising therapeutic strategy. We designed inhibitors using two de novo design approaches. Computer
generated scaffolds were either built around an ACE2 helix that interacts with the Spike receptor binding
domain (RBD), or docked against the RBD to identify new binding modes, and their amino acid sequences
designed to optimize target binding, folding and stability. Ten designs bound the RBD with affinities ranging
from 100pM to 10nM, and blocked ARS-CoV-2 infection of Vero E6 cells with IC 50 values between 24 pM
and 35 nM; The most potent, with new binding modes, are 56 and 64 residue proteins (IC 50 ~ 0.16 ng/ml).
Cryo-electron microscopy structures of these minibinders in complex with the SARS-CoV-2 spike
ectodomain trimer with all three RBDs bound are nearly identical to the computational models. These
hyperstable minibinders provide starting points for SARS-CoV-2 therapeutics.

SARS-CoV-2 infection generally begins in the nasal cavity,
with virus replicating there for several days before spreading
to the lower respiratory tract (7). Delivery of a high concen-
tration of a viral inhibitor into the nose and into the respira-
tory system generally might therefore provide prophylactic
protection and/or therapeutic benefit for treatment of early
infection, and could be particularly useful for healthcare
workers and others coming into frequent contact with in-
fected individuals. A number of monoclonal antibodies are in
development as systemic treatments for COVID-19 (2-6), but
these proteins are not ideal for intranasal delivery as antibod-
ies are large and often not extremely stable molecules and the
density of binding sites is low (two per 150 KDa. antibody);
antibody-dependent disease enhancement (7-9) is also a po-
tential issue. High-affinity Spike protein binders that block
the interaction with the human cellular receptor angiotensin-
converting enzyme 2 (ACE2) (10) with enhanced stability and
smaller sizes to maximize the density of inhibitory domains
could have advantages over antibodies for direct delivery into
the respiratory system through intranasal administration,
nebulization or dry powder aerosol. We found previously that
intranasal delivery of small proteins designed to bind tightly
to the influenza hemagglutinin can provide both prophylactic
and therapeutic protection in rodent models of lethal influ-
enza infection (11).
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Design strategy

We set out to design high-affinity protein minibinders to the
SARS-CoV-2 Spike RBD that compete with ACE2 binding. We
explored two strategies: first we incorporated the alpha-helix
from ACE2 which makes the majority of the interactions with
the RBD into small designed proteins that make additional
interactions with the RBD to attain higher affinity (Fig. 1A).
Second, we designed binders completely from scratch with-
out relying on known RBD-binding interactions (Fig. 1B). An
advantage of the second approach is that the range of possi-
bilities for design is much larger, and so potentially a greater
diversity of high-affinity binding modes can be identified. For
the first approach, we used the Rosetta blueprint builder to
generate miniproteins which incorporate the ACE2 helix (hu-
man ACE2 residues 23 to 46). For the second approach, we
used RIF docking (12) and design using large miniprotein li-
braries (1I) to generate binders to distinct regions of the RBD
surface surrounding the ACE2 binding site (Fig. 1 and fig. S1).

Experimental characterization and optimization

Large pools of designed minibinders (see Methods) made us-
ing the first and second approaches, were encoded in long
oligonucleotides and screened for binding to fluorescently
tagged RBD displayed on the surface of yeast cells. Deep
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sequencing identified three ACE2 helix scaffolded designs
(Approach 1), and 105 de novo interface designs (Approach 2)
that were enriched following fluorescence activated cell sort-
ing (FACS) for RBD binding. All three ACE2-scaffolded de-
signs and twelve of the de novo designs were expressed in E.
coli and purified. One of the ACE2-scaffolded designs and
eleven of the twelve de novo designs were soluble and bound
RBD with affinities ranging from 100nM to 2uM in biolayer
interferometry (BLI) experiments (figs. S2, A, C, and E, and
S3). Affinity maturation of the ACE2-scaffolded design by
PCR mutagenesis led to a variant, AHB1, which bound RBD
with an affinity of ~1 nM (fig. S4) and blocked binding of
ACE2 to the RBD (fig. S5A), consistent with the design model,
but had low thermostability (fig. S4C). We generated ten ad-
ditional designs incorporating the binding helix hairpin of
AHBI, and found that one bound the RBD and was thermo-
stable (fig. S2, B, D, and F).

For 50 of the minibinders made using approach 2 and the
second generation ACE2 helix scaffolded design, we gener-
ated site saturation mutagenesis libraries (SSMs) in which
every residue in each design was substituted with each of the
20 amino acids one at a time. Deep sequencing before and
after FACS sorting for RBD binding revealed that residues at
the binding interface and protein core were largely conserved
for 40 out of the 50 Approach 2 minibinders and for the ACE2
helix scaffolded design (Fig. 2 and figs. S6 and S7). For most
of these minibinders, a small number of substitutions were
enriched in the FACS sorting; combinatorial libraries incor-
porating these substitutions were constructed for the ACE2-
based design and the eight highest affinity Approach 2 de-
signs and again screened for binding to the RBD at concen-
trations down to 20pM. Each library converged on a small
number of closely related sequences; one of these was se-
lected for each design AHB2 or LCB1-LCB8 and found to bind
the RBD with high affinity on the yeast surface in a manner
competed by ACE2 (Fig. 3 and fig. S8).

AHB2 and LCB1-LCB8 were expressed, purified from E.
coli, and binding to the RBD assessed by BLI. For seven of the
designs, the Kp values ranged from 1-20 nM (Fig. 3, fig. S8,
and table S2), and for two (LCB1 and LCB3), the Kp values
were below 1 nM, which is too strong to measure reliably with
this technique (Fig. 3). On the surface of yeast cells, LCB1 and
LCB3 showed binding signals at 5 pM of RBD following pro-
tease (trypsin and chymotrypsin) treatment (fig. S9). Circular
dichroism spectra of the purified minibinders were con-
sistent with the design models, and the melting temperatures
for most were greater than 90°C (Fig. 3 and fig. S8). The de-
signs retained full binding activity after 14 days at room tem-
perature (fi g.510). AHB1/2 and LCB3 also bound to the SARS-
CoV RBD (in addition to the SARS-CoV-2 RBD), but with
lower affinity (fig. S11); we anticipate the binding affinities
achieved for SARS-CoV-2 could be readily obtained for other
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coronavirus spike proteins if these were directly targeted for
design.

CryoEM structure determination

We characterized the structures of LCB1 and LCB3 in complex
with the SARS-CoV-2 spike ectodomain trimer at 2.7 A and
3.1 A resolution, respectively, and found that the minibinders
bind stoichiometrically to the three RBDs within the spike
trimer (Fig. 4, A and E, and figs. S12 and S13). Although the
spike predominantly harbored two open RBDs for both com-
plexes, we identified a subset of particles with three RBDs
open for the LCB3 complex (Fig. 4, A and E, and figs. S12 and
S13). We improved the resolvability of the RBD/LCB1 and
RBD/LCBS3 densities using focused classification and local re-
finement yielding maps at 3.1 and 3.5 A resolution enabling
visualization of the interactions formed by each minibinder
with the RBD (Fig. 4, B and F, and figs. S12 and S13).

LCB1 and LCB3 dock with opposite orientations in the
crevice formed by the RBD receptor-binding motif through
extensive shape complementary interfaces with numerous
electrostatic interactions mediated by two out of the three
minibinder a-helices (Fig. 4, B to D and F to H). Similar to
ACE2, the LCB1 and LCB3 binding sites are buried in the
closed S conformational state and require opening of at least
two RBDs to allow simultaneous recognition of the three
binding sites (Fig. 4, A and E). Both LCB1 and LCB3 form
multiple hydrogen bonds and salt bridges with the RBD with
buried surface areas of ~1,000A22 and ~800A72, respectively
(Fig. 4, C, D, G, and H), consistent with the subnanomolar
affinities of these inhibitors. As designed, the binding sites
for LCB1 and LCB3 overlap with that of ACE2 (fig. S14 and
table S1), and hence should compete for binding to the RBD
and inhibit viral attachment to the host cell surface.

Superimposition of the designed LCB1/RBD or LCB3/RBD
models to the corresponding cryoEM structures, using the
RBD as reference, show that the binding poses closely match
the design with backbone Ca rmsd of 1.27 A and 1.9A for LCB1
and LCBS3, respectively (Fig. 4, B and F) and most of the polar
interactions in the design models closely match the CryoEM
structure (Fig. 4, C, D, G, and H). These data show that the
computational design method can have quite high accuracy.
The structure comparisons in Fig. 4, C, D, G, and H, are to the
original design models; the substitutions that increased bind-
ing affinity are quite subtle and have very little effect on back-
bone geometry.

Virus neutralization

We investigated the capacity of AHB1, AHB2 and LCB1-5 to
prevent infection of cells by bona fide SARS-CoV-2. Varying
concentrations of minibinders were incubated with 100 fo-
cus-forming units (FFU) of SARS-CoV-2 and then added to
Vero E6 monolayers. AHB1 and AHB2 strongly neutralized
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SARS-CoV-2 (ICso of 35 nM and 155 nM respectively),
whereas a control influenza minibinder showed no neutrali-
zation activity (Fig. 5A). Next, we tested the Approach 2 de-
signed minibinders LCB1-5. We observed even more potent
neutralization of SARS-CoV-2 by LCB1 and LCB3 with ICs
values of 23.54 pM and 48.1 pM, respectively (Fig. 5B; at in-
creased incubation volumes, IC50’s as low as 11 pM were ob-
tained). On a molar basis, these values are approximately 3-
fold lower than the most potent anti-SARS-CoV-2 monoclonal
antibody described to date (13); on a mass basis, because of
their very small size, the designs are even more potent than
the antibodies.

Conclusions
The minibinders designed in this work have potential ad-
vantages over antibodies as potential therapeutics. Together,
they span a range of binding modes, and in combination viral
mutational escape would be quite unlikely (figs. S1 and S14
and table S1). The retention of activity after extended time at
elevated temperatures suggests they would not require a tem-
perature-controlled supply chain. The designs are 20-fold
smaller than a full antibody molecule, and hence in an equal
mass have 20-fold more potential neutralizing sites, increas-
ing the potential efficacy of a locally administered drug. The
cost of goods and the ability to scale to very high production
should be lower for the much simpler miniproteins, which
unlike antibodies, do not require expression in mammalian
cells for proper folding. The small size and high stability
should also make them amenable to formulation in a gel for
nasal application, and to direct delivery into the respiratory
system by nebulization or as a dry powder. We will be explor-
ing alternative routes of delivery in the months ahead as we
seek to translate the high potency neutralizing proteins into
SARS-Cov2 therapeutics and prophylactics. Immunogenicity
is a potential problem with any foreign molecule, but for pre-
viously characterized small de novo designed proteins little
or no immune response has been observed (11, 14), perhaps
because the high solubility and stability together with the
small size makes presentation on dendritic cells less likely.
Timing is critical in a pandemic outbreak: potent thera-
peutics are needed in as short a time as possible. We began
to design minibinders in January 2020 based on a Rosetta
model of the SARS-CoV-2 Spike structure and switched to the
crystal structures once they became available (4, 15-17). By
the end of May 2020, we had identified very potent neutral-
izers of infectious virus; during this same time, a number of
neutralizing monoclonal antibodies were identified. We be-
lieve that with continued development, the computational
design approach can become much faster. First, as structure
prediction methods continue to increase in accuracy, target
models suitable for design could be generated within a day of
determining the genome sequence of a new pathogen.
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Second, with continued improvement in computational de-
sign methods, it should be possible to streamline the work-
flow described here, which required screening of large sets of
computational designs, followed by experimental optimiza-
tion, to identify very high affinity binders. The very close
agreement of the cryoEM structures of LCB1 and LCB3 with
the computational design models suggest that the main chal-
lenges to overcome are not in the de novo design of proteins
with shape and chemical complementarity to the target sur-
face, but in recognizing the best candidates and identifying a
small number of affinity increasing substitutions. The large
amount of data collected in protein interface design experi-
ments such as those described here should inform the im-
provement of the detailed atomic models at the core of
Rosetta design calculations, as well as complementary ma-
chine learning approaches, to enable recognition and im-
proved sequence design of the best candidates; this would
enable even faster in silico design of pM inhibitors like LCB1
and LCB3. With continued methods development, we believe
that it will become possible to generate ultra-high-affinity,
pathogen neutralizing designs within weeks of obtaining ge-
nome sequence. Preparing against unknown future pandem-
ics is difficult, and such a capability could be an important
component of a general response strategy.
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Fig. 1. Overview of the
computational design approaches.
(A) Design of helical proteins
incorporating ACEZ2 helix. (B) Large
scale de novo design of small helical
scaffolds (top) followed by rotamer
interaction field (RIF) docking to
identify shape and chemically
complementary binding modes.
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Fig. 2. High resolution sequence mapping of AHB2, LCB1 and LCB3 prior to sequence optimization. (A, C, and
E) The designed binding proteins are colored by positional Shannon entropy from site saturation mutagenesis with
blue indicating positions of low entropy (conserved) and red those of high entropy (not conserved). (B, D, and F)
Heat maps representing RBD-binding enrichment values for single mutations in the design model core (left) and the
designed interface (right). Substitutions that are heavily depleted are shown in blue, and beneficial mutations in red.
The depletion of most substitutions in both the binding site and the core suggest that the design models are largely
correct, while the enriched substitutions suggest routes to improving affinity. Full SSM maps over all positions for
AHB2 and all eight de novo designs are provided in figs. S6 and S7.
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Fig. 3. The optimized designs bind with high affinity to the RBD, compete with ACE2, and are thermostable.
(A) ACE2 competes with the designs for binding to the RBD. Yeast cells displaying the indicated design were
incubated with 200pM RBD in the presence or absence of 1luM ACE2, and RBD binding to cells (Y axis) was
monitored by flow cytometry. (B) Binding of purified miniproteins to the RBD monitored by biolayer
interferometry. For LCB1 and LCB3 K4's could not be accurately estimated due to lack of instrument sensitivity
and long equilibration times below 200pM. (C) Circular dichroism spectra at different temperatures, and (D)
CD signal at 222 nm wavelength as a function of temperature. The fully de novo designs LCB1 and LCB3 are
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B, i Gadined Fig. 4. CryoEM characterization of
gy TN the LCB1 and LCB3 minibinders in

PR ;B/N complex with SARS-CoV-2 S. (A)

P ..t »:)\@o Molecular surface representation of

s ‘w\“u\év,\,v, T LCB1 bound to the SARS-CoV-2 S
avean O W B¢ 5 » T ectodomain trimer viewed along two
=\ XS orthogonal orientations. (B)
u§\ﬂb Superimposition of the designed
e model (silver grey) and refined

cryoEM structure (magenta) of LCB1
(using the map obtained through
local refinement) bound to the RBD
(cyan). (Cand D) Zoomed-in views of
computational model (silver grey) of
LCB1/RBD complex overlaid on the
CryoEM structure (cyan for RBD and
pink for LCBI) showing selected
interacting  side  chains.  (E)
Molecular surface representation of
LCB3 bound to the SARS-CoV-2 S
ectodomain trimer viewed along two
orthogonal orientations. (F
Superimposition of the designed
model (silver grey) and refined
cryoEM structure (salmon) of LCB3
(using the map obtained through
local refinement) bound to the RBD
(cyan). (G and H) Zoomed-in view of
the interactions between LCB3
(salmon) and the SARS-CoV-2 RBD
(cyan) showing selected interacting
side chains. In (A) and (E), each S
protomer is colored distinctly (cyan,
pink and gold). For (B) and (F), the
RBDs were superimposed to
evaluate the binding pose deviations
between designed models and
refined structure of each minibinder.
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Fig. 5. Neutralization of live virus by
designed miniprotein inhibitors.
Neutralization activity of (A) AHB1 and
AHB2 or (B) LCB1-5 were measured
by FRNT. Indicated concentrations of
minibinders were incubated with 100
FFU of authentic SARS-CoV-2 and
subsequently transferred onto Vero
E6 monolayers. AHB1, AHB2, LCBI,
and LCB3 potently neutralize SARS-
CoV-2, with ECso values < 50nM (AHB1
and AHB2) or < 50pM (LCB1 and
LCB3). Data are representative of two
independent  experiments, each
performed in technical duplicate.
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