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Abstract: We present a novel method called RosettaHoles for visual and quantitative assessment

of underpacking in the protein core. RosettaHoles generates a set of spherical cavity balls that fill
the empty volume between atoms in the protein interior. For visualization, the cavity balls are

aggregated into contiguous overlapping clusters and small cavities are discarded, leaving an

uncluttered representation of the unfilled regions of space in a structure. For quantitative analysis,
the cavity ball data are used to estimate the probability of observing a given cavity in a

high-resolution crystal structure. RosettaHoles provides excellent discrimination between real and

computationally generated structures, is predictive of incorrect regions in models, identifies
problematic structures in the Protein Data Bank, and promises to be a useful validation tool for

newly solved experimental structures.

Keywords: protein structure/folding; structure; crystallography; computational analysis of protein
structure; protein structure prediction; hydrophobic interactions; protein structures—new

underpacking; validation; visualization

Introduction
Tight packing of side chains in protein cores is crucial

to protein folding and stability. Protein cores are

packed as tightly as corresponding crystals, and muta-

tions that disrupt a protein core strongly reduce the

free energy of folding.1–3 The near absence of voids in

protein cores is in part a reflection of the large free

energy cost of forming a protein-sized cavity in water,

which increases steeply with the total volume of the

structure, including voids.

Much work has been done in the assessment of

protein core packing. The most widely used packing-

related metric is the Leonard-Jones (LJ) interaction

energy, which favors nonbonded atom pairs that are

close together but not overlapping. The LJ energy,

along with the majority of other commonly used force-

field terms and scoring methods, is pairwise additive:

each pair of atoms in a structure is evaluated, and the

results are summed. However, the void volume and

cavity contribution to the solvation free energy cannot

be accurately expressed as a sum of atom pairs. Cavity

area and volume obey the inclusion–exclusion rule:

total space filled is that filled by single atoms, minus

two-body intersections, plus three body intersections,

minus four body intersections, and so on, and cannot

be accurately captured by pair-additive functions.

Multibody methods that directly measure cavities

are typically based on a space-filling representation in

which each atom is modeled as a hard sphere with
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radius equal to the van der Waals (VDW) radius of the

atom. Setting the radius of the sphere to the physically

reasonable VDW radius is problematic in that all

empty space within the protein is usually contiguous

with the outside of the protein. To produce explicit

cavities, existing methods inflate the VDW radii, usu-

ally by the radius of a water molecule (1.4 Å), filling

most interstitial space and cutting off remaining cav-

ities from outside space. Several methods exist to char-

acterize the explicit cavities in the inflated representa-

tion, including an approximate slicing method4 and

the exact Alpha Shapes method.5,6 Unfortunately, the

inflated atom representation washes out those geomet-

ric features of a protein that are smaller than 2.8 Å.

For example, after inflating VDW radii, a long, narrow

crack would disappear. In a close-packed lattice of car-

bon atoms, voids larger then 2.8 Å do not appear until

the spacing is increased by 40%. We have found in

practice that features finer-grained than 2.8 Å are im-

portant in assessing packing quality.

To avoid the loss of detail inevitable in an inflated

VDW model of voids and packing, we have developed

a new method, RosettaHoles, that generates a set of

void-filling balls that cover the interstitial space in an

uninflated VDW model. In regions surrounding cav-

ities, we measure the contact surface area for 30 probe

radii ranging from 0.1 to 3.0 Å in size, yielding a

wealth of data about packing of atoms around each

cavity. We then employ a support vector machine

(SVM)7 trained to distinguish high-resolution crystal

structures from poorly packed theoretical model. The

resulting score is an estimate of the probability that a

given atomic arrangement is like those in high-resolu-

tion crystal structures. This score has been used exten-

sively in our laboratory for assessment of predictions

and designs produced with Rosetta8 and has proven

very effective in distinguishing well-packed, high-reso-

lution crystal structures from poorly packed computa-

tionally generated models. When applied to experi-

mentally determined models, we find that the

Figure 1. Overview of cavity computation and visualization.

(A) All of the spheres computed based on vertices of the

approximate Apollonius diagram. (B) Balls remaining after

those exposed to the surface are pruned away. (C) Balls

clustered into contiguous cavities with an arbitrary color for

each cavity. (D) Final clusters remaining after small cavities

have been pruned away. In the flat slices on the left, colors

are shaded by depth for clarity.

Figure 2. Calculation of cavity balls. Pictured is the result

of a 2D implementation of our cavity finding process

performed on a slice through the center of heat shock

operon repressor HrcA (arbitrarily selected example).

Shaded circles represent atoms and the surrounding

like-colored dots are closer to that atom than any other.

The furthest dot for each atom, which approximates the

vertex of the ideal Apollonius diagram, is marked as a

larger like-colored dot with a black center. Centered on

these dots are the largest empty circles that fit around each

vertex and do not intersect any atom. These circles are the

2D analog of the cavity filling balls in our method. Slices of

atoms closer to the camera overlap those further from the

camera and coloration is arbitrary.
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RosettaHoles score of structures in the Protein Data

Bank (PDB) depends heavily on experimental method

and X-ray resolution and that many structures with

poor scores are known to be problematic in some way.

We believe RosettaHoles will be useful in validating

newly determined experimental structures as well as

theoretical models of natural and designed proteins.

Results

Summary of method and testing

As described in detail in Methods section, Rosetta-

Holes starts by finding the largest spherical hole adja-

cent to each buried atom in the VDW structure and

then pruning away balls that are accessible to a water-

sized probe. The remaining cavity balls are the basis

for both visualization and quantitative analysis of core

packing. For visualization, the spherical holes are clus-

tered into contiguous cavities, and small clusters are

pruned away. See Figures 1 and 2 for an illustration

and the methods section for details. Quantitative anal-

ysis is based on the contact surface area with respect

to various sized probes, computed for atomic shells

surrounding empty spaces in the protein. These

surface area statistics are aggregated via a Support

Vector Machine (SVM) into the RosettaHoles score,

which estimates the probability that a structural region

came from a high resolution crystal structure, and

root-mean-squared distance (RMSDpred), in a local

region of a model to the corresponding crystal struc-

ture. Training and testing were performed on three

data sets of computational protein structure predic-

tions and designs from Rosetta.

We show that RosettaHoles applies generally to

computationally generated models by analysis of fulla-

tom structure predictions submitted by all groups in

the 7th Critical Assessment of Structure Prediction

(CASP7). To assess the usefulness of our method on

experimentally solved structures, we analyze the pack-

ing quality of all structures in the PDB.

Illustration

Figure 3 illustrates explicit cavity visualization and

RosettaHoles scores from SVM training. An experi-

mentally determined structure is shown in panels A,

B, C, D, along with a corresponding structure predic-

tion in panels E, F, G, and H. Panels A and E show

the unadorned crystal and predicted structures,

respectively. Panels B and F show the cavities super-

imposed on the structures, colored by contiguous cav-

ities. The balls clearly indicate the cavities in the com-

putationally generated model. Panels C, D, G, and H

show the RosettaHoles score on a color scale from red

(bad packing ¼ 0) to green (good packing ¼ 1). A slice

through the colored VDW structures is shown in pan-

els D and H. Surface atoms tend to be colored blue as

they have neutral packing scores. The poor packing in

the computationally generated model shows up clearly

in both the explicit cavity representation 3(B,F) and in

coloration by RosettaHoles score (compare red regions

in D/H).

Comparison of packing metric in experimental

and computed structures
The RosettaHoles scores shown by coloration in Figure

3(D,H) show a qualitative difference between the crys-

tal structure and the flawed computational model.

Figure 3. Visualization of cavities. The top panels A, B, C, and D show a crystal structure of CASP6 target 199, heat shock

operon repressor HrcA, and the bottom panels E, F, G, and H show a computational structure prediction for this protein. The

leftmost panels A and E show the unadorned structure. Panels B and F show the structure with cavity clusters represented

explicitly in arbitrary colors to distinguish cavities. The structures in panels C, D, G, and H are colored by the numerical

packing score described in the text. The color scale ranges from green to blue to red, with the worst packed regions in red.
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Figure 4 shows a quantitative comparison of Rosetta-

Holes between crystal and computationally generated

structures for a broad range of proteins. Figure 4(A)

shows a density plot of RosettaHoles scores for the

void-centered regions in data set 1 (see methods), with

structure predictions in red and corresponding crystal

structures proteins in black. There is a clear separa-

tion, receiver operating characteristic (ROC) of 0.943,

between atomic shells from crystal versus computa-

tionally generated models. Figure 4(B) shows the

RosettaHoles scores of whole structures, the median of

the scores over all regional scores for a structure. In

almost all cases, the computationally generated model

scores significantly worse than the crystal structure.

These aggregate RosettaHoles scores have an ROC

score of 0.972. Figure 4(C,D) shows an example struc-

ture pair from the data set, a computationally gener-

ated model in 4C and the corresponding crystal struc-

ture in 4C. The difference in packing quality is visually

clear. A similar separation in RosettaHoles score is

observed between a set of fixed backbone protein

designs and corresponding crystal structures, as shown

in Figure 4(E,F). Atomic shells from designed proteins

can be differentiated from similar regions from crystal

structures fairly reliably with an ROC score of 0.934

[Fig. 4(E)] and aggregate packing scores for whole

structures separate designs from crystal structures

with an ROC score of 0.980 [Fig. 4(F)]. As in the

structure prediction data, almost all computed models

score worse than the experimentally determined struc-

ture. Figure 4(G,H) shows an example design and

crystal structure pair.

Correlation of packing metric with local

structure quality

In the discrimination tests, we observed that the

RosettaHoles scores for local regions of a structural

model are a powerful predictor of how much those

region deviate from the corresponding region of a

crystal structure. Following up on this observation, we

tested the correlation between local RMSD to crystal

structure and RMSDpred, the packing based predictor

of local RMSD, for 12 large (200–400 residue) CASP7

targets. Predicted RMSDpred was computed exactly as

the RosettaHoles scores (see methods) except that

SVM regression was used rather than SVM discrimina-

tion. RMSDs to crystal structure were measured over

the same local regions used in generating the

RMSDpred scores. For each of the 12 proteins, local

regions for comparative models were sorted into bins

based on RMSDpred, and the median local RMSD for

each bin was computed. Figure 5 shows the result for

each of the 12 structures; the estimated RMSDpred bin

is plotted on the x axis, and the median real RMSD for

the bin on the y axis. The area of each plotted point is

proportional to the number of local regions that scored

Figure 4. Packing quality of protein structure predictions and designs. (A) Distribution of RosettaHoles scores for cavities in

predicted and crystal structures (ROC 0.943). In red are the estimated RosettaHoles scores of structure predictions for 42

proteins and in black is the distribution of scores for the set of corresponding crystal structures. (B) RosettaHoles whole-

structure score for 42 structure predictions plotted against the score of the corresponding crystal structure. (C) Structure

prediction for CASP target 199. (D) Crystal structure for target 199. (E) Distribution of RosettaHoles scores for individual

cavities (ROC 0.934). In red are the RosettaHoles scores of fixed backbone redesigns of 62 proteins and in black is the

distribution of scores for the set of corresponding crystal structures. (F) RosettaHoles whole-structure score for the 62

designs plotted against the score of the corresponding crystal structure. (G) Fixed backbone design of protein 1cc8. (F)

Crystal structure for 1cc8.
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in that bin. In the majority of cases, the median

RMSD for each bin is correlated with RMSDpred, show-

ing that packing information is predictive of local

structure RMSD.

Packing analysis on CASP7 models

Although we developed RosettaHoles for the analysis

of structure predictions and designs generated with

Rosetta, it detects similar packing flaws in computa-

tionally generated models submitted by other groups

in CASP7. For each CASP7 target with a crystal struc-

ture available for reference, we computed packing

scores for submitted models from all groups. Because

it is impossible to fairly assess packing in models that

do not include all heavy atoms, all models missing

more than 5% of heavy atoms were discarded. Table I

shows the percentile rank of the crystal structure

among all the computational models for each target.

For most targets, the crystal structure ranked better

than all submitted models. In all but four cases, the

crystal structure is in the top 3%, and in all but one

case, the crystal structure is in the top 10%. All four of

these cases are due to a low packing score for the crys-

tal structure rather than an abundance of well-packed

models (Supplementary Fig. S1).

Packing analysis of structures in the PDB
We performed a systematic analysis of packing quality

for all PDB structures larger than 50 residues in size

and containing less than 10% nucleic acid (circa April

2008). For the analysis of PDB structures, only heavy

atoms were considered because most structures con-

tain few if any hydrogen atoms but all heavy atoms

are typically present. All heteroatoms other than

hydrogen and water were included. The RosettaHoles

score was found to be highly correlated with experi-

mental method and crystallographic resolution. Figure

6 shows density plots of the packing score for various

X-ray resolution bins as well as for NMR structures

and CASP7 models. Very high-resolution crystal struc-

tures (sub-1.0 Å ) have systematically better packing

scores than all other structures; a 95th percentile

structure between 1.0 and 2.0 Å in resolution would

be merely average for 1.0 Å or better resolution. Simi-

larly, a 95th percentile NMR structure would be aver-

age among 1–2 Å crystal structures. The computation-

ally generated fullatom models submitted to CASP7

are systematically worse than all experimentally solved

structures.

The RosettaHoles score is plotted versus resolution

for 38,061 crystal structures in Figure 7. For clarity, the

majority of the structures in the plot are shown in a 2D

histogram, with only points below the dotted line shown

explicitly. The plotted points, especially the very lowest

ones, have unusually bad packing scores for their resolu-

tion. Many of these structures were published before

1990, suggesting an increase in structure quality since

that time. For some outliers, especially among the sub-

2.0 Å resolution structures, the inclusion of low B-factor

buried waters often raises the packing score above the

plotted diagonal line. Eight of the outliers, (PDB codes

2A01, 1BEF, 1RID, 1Y8E, 1BGX, 1G44, 2QID, 1G40) are

from the Murthy group.9

The outlier marked number 1 in Figure 7 is of par-

ticular interest. This structure, 179L, is one of many

T4 lysozyme mutants published by Matthews et al.10

All of the many hundreds of similar T4 lysozyme

structures from Matthews et al. have packing scores

that are at least average given their resolution, and

most are well above average. Comparison of 179L with

177L, which are the same mutation and the same crys-

tal space group, revealed that the placement of second-

ary structure elements in 179L is stretched along two

axes. This stretching caused large voids between some

secondary structure elements and thus a bad Rosetta-

Holes score. The stretched structure turns out to have

been caused by one crystallographic data set being

mistakenly substituted for another, which resulted in

an increase in the a and b cell parameters by about

10%. Changing a and b from 80.0 Å to 72.6 Å, fol-

lowed by re-refinement, resulted in a very modest

decrease in the R-value (from 25.3% to 23.4%). This is

because the fractional crystallographic coordinates are

essentially correct and change very little after

Figure 5. Correlation of local packing score with local

RMSD. Predicted versus actual RMSD is shown for 12 large

(200–400 residue) CASP7 targets. Predicted RMSD was

computed exactly as the RosettaHoles scores except that

SVM regression was used rather than SVM discrimination.

RMSDs to crystal structure were measured over the same

7-Å radius balls of atoms used to compute the estimated

RMSD. The atom balls were binned on predicted local

RMSD, shown on the x-axis, and the median true RMSD is

plotted on the y-axis. The area of each plotted point is

proportional to the number of local regions which scored in

that bin.
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refinement with the correct cell dimensions. The error

in the structure occurs when the wrong cell dimen-

sions are used to convert the crystallographic coordi-

nates into absolute values. This error was not apparent

in the bond lengths and angles during refinement

(Dale Tronrud, personal communication).

It seems possible that other packing quality out-

liers could be due to mistakenly inflated crystallo-

graphic cells. We analyzed the packing outliers with

WhatCheck11 and found that most have possible

inflated cell parameter errors based on anisotropic

analysis of bond lengths. If the unit cell is too large,

there are two ways a refinement process could com-

pensate: (1) the whole model can be stretched uni-

formly to fill more space, increasing bond lengths and

voids volume slightly but producing no new holes and

(2) large voids can open up in portions of the model,

adding overall volume without increasing bond

lengths. A sensible refinement process would most

likely prefer to stretch the model, as this will best

match the uniformly stretched electron density. How-

ever, bond lengths can be stretched only so far and

remain physically reasonable; hence, if the cell is

inflated by a significant amount, voids will form. The

corrections recommended by WhatCheck are reflective

only of bond stretching and are typically very small—

smaller than would be needed to correct underpacking

flaws—but bond stretching in conjunction with exces-

sive void volume is a strong indication that these

structures may, like 179L, have significantly inflated

unit cells.

Discussion
We have developed a novel method for visualization

and quantitative assessment of protein core packing

based on a set of balls that fill the interstitial space in

a protein structure. This methodology, called Rosetta-

Holes, works directly with a space-filling VDW model

and does not require inflation of the VWD radii to

induce explicit cavities. The void-filling balls, after

clustering and pruning, can be superimposed on

standard representations of protein structures to cre-

ate a very clear picture of the empty space in the

structure. The RosettaHoles score, based on contact

surface area data for atoms surrounding cavities, effec-

tively discriminates between high-resolution crystal

structures and computational models.

RosettaHoles has been found broadly useful in

our laboratory for assessing predictions of the struc-

ture of naturally occurring proteins and designs of

Table I. Packing Score Percentile of Crystal Structure Among CASP7 Targets

Target Percentile Target Percentile Target Percentile

t283 97.5 t320 100.0 t346 97.5
t285 97.0 t321 99.2 t347 100.0
t286 100.0 t322 100.0 t348 95.2
t288 100.0 t323 100.0 t359 93.7
t290 98.4 t324 100.0 t362 100.0
t292 97.6 t325 100.0 t364 97.0
t297 100.0 t328 99.2 t367 100.0
t298 99.1 t329 100.0 t369 100.0
t300 88.0 t330 100.0 t371 100.0
t301 100.0 t331 100.0 t372 98.4
t304 97.9 t332 100.0 t374 100.0
t306 99.1 t333 100.0 t375 100.0
t307 97.6 t334 100.0 t376 100.0
t308 98.8 t338 100.0 t378 100.0
t309 93.5 t339 100.0 t379 100.0
t312 96.9 t340 97.7 t382 99.3
t313 97.5 t342 100.0 t383 99.3
t315 100.0 t345 100.0 t385 100.0
t316 100.0 t346 97.5 t386 94.1
t319 91.0

The percentile rank of the crystal structure (correct answer) among all structure predictions submitted in CASP7.

Figure 6. Packing score distributions of predicted and

experimental structures. Density plots of the packing score

for different X-ray resolution bins as well as for NMR

structures and CASP7 models submitted by all groups.

Very high-resolution crystal structures (sub-1.0 Å) have

systematically better packing scores than all other

structures; a 95 percentile structure between 1.0 and 2.0 Å

resolution would be merely average for 1.0 Å or better

resolution. Similarly, a 95th percentile NMR structure would

be average among 1 to 2 Å crystal structures. The

computationally generated fullatom models submitted to

CASP7 are much worse than experimentally solved

structures.
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novel proteins with new folds and functions. Our anal-

ysis shows that computational structure prediction and

design calculations often result in structures with

packing flaws. As these flaws are nearly invisible to

pairwise additive energy functions, they have been dif-

ficult to identify in an automated way. RosettaHoles’s

near-perfect discrimination of crystal from computa-

tionally generated models, not only in whole protein

structure but in local regions, should aid in the devel-

opment of prediction and design algorithms that pro-

duce well-packed structures. An analysis of packing

quality in models submitted from many other groups

to CASP7 indicates that packing defects are not unique

to Rosetta but are present in all computationally gen-

erated models submitted in CASP7.

Our new method has notable differences from

previous methods, which are based on approximate

and exact analytical void volume calculations. The li-

mitation of these techniques is that explicit cavities are

not present in a typical VDW representation of a pro-

tein—all internal space is contiguous with the outside.

The commonly accepted solution to this problem is to

expand the VDW radii by the radius of a water mole-

cule. While expanding the radii in this way fills most

interstitial space and creates explicit cavities, it ren-

ders invisible all structural detail smaller than a water

molecule. RosettaHoles provides an alternative that

allows finer discrimination by using a set of void-fill-

ing balls to define cavities and utilizing contact surface

area data for a range of probe radii from 0.1 to 3.0 Å.

This is particularly important because in our studies,

we have found that the most powerful discriminator

between incorrect models and crystal structures is the

amount of interstitial space in the core of a structure

which is accessible to a ball of radius 0.8 Å. This infor-

mation is lost when radii are inflated by 1.4 Å.

What are the features that most differentiate com-

putationally generated and crystal structures? Because

Figure 7. Assessment of PDB structures using RosettaHoles score. RosettaHoles score is plotted versus resolution for

38,061 crystal structures. For clarity, the majority of the points are shown in a 2D histogram, with only points below the

dotted line shown explicitly. The plotted points, especially the very lowest ones, have unusually bad packing scores for their

resolution. The lowest points at a given resolution were investigated to discover the cause of poor packing quality. (The open

circles represent structures that were not further investigated, and the filled circles represent structures that were considered

but no explanation could be found.) Many of these structures were published before 1990, and the poor packing may be an

artifact of older methodology. Eight of the outlier points are structures associated with KH Murthy (see Ref. 9). For some

outliers in the sub-2.0 Å resolution structures, the inclusion of low b-factor buried waters raises the packing score above the

plotted diagonal line. Many underpacking outliers have possible inflated unit cells according to WhatCheck.
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of increased void volume, computationally generated

models have, for most probe sizes, more exposed sur-

face than do crystal structures. However, crystal struc-

tures have more surface area exposed to very small

probes. Figure 8(A) shows the median difference in

contact surface area between computationally gener-

ated and crystal structures for various probe radii,

0.1– 2.0 Å. Most values are positive because computa-

tionally generated models are less well packed and

thus have more internal surface exposed to probes.

For small probe sizes below 0.4 Å in radius, the trend

is reversed: crystal structures have more surface area

exposed to very small probes than do computationally

generated models. Further insight into the differences

in atom–atom distributions is provided by Figure

8(B), which shows the radial distribution function

(RDF) for methyl–methyl atom pairs from a large set

of crystal structures along with the methyl–methyl

RDF from a set of Rosetta structure predictions mod-

eled with explicit hydrogen atoms. Crystal structures

show a gradual peak centered at 4.0 Å, whereas the

computationally generated models have a sharper peak

at 3.8 Å, suggesting that individual atom pairs are

spaced more closely together in computationally gen-

erated models than crystal structures even though

computationally generated models are less well-packed

overall.

We hypothesize that the differences between pre-

dicted models and crystal structures reflect clumping

of atoms following minimization of pair-additive

energy functions, such as the Rosetta fullatom energy.

Figure 8(C) shows a hypothetical native-like, evenly

spaced arrangement of atoms as shaded circles and a

set of clumped atoms as filled circles. The surface ac-

cessible to both small and large probes is shown for

both the native-like and clumped sets of atoms. For a

small probe, there is more surface area exposed in the

evenly distributed set of atoms because the even spac-

ing is greater than the size of the probe in most places,

but there is less exposed surface area in clumped

arrangement because even a small probe cannot fit

within the tight groupings. In contrast, for a large

probe, there is less surface area exposed in the evenly

distributed set of atoms and more exposed surface

area in the clumped arrangement. The data shown in

Figure 8(A,B) are well explained by this hypothesis.

The physical origins of the difference in packing

between computationally generated and crystal struc-

tures may be twofold. First, the clumping observed in

predicted and designed structures could reflect the

missing entropic contributions associated with atomic

vibrations during energy minimization (the energy

rather than the free energy is being minimized). Sec-

ond, the increased number of large voids in computed

models likely reflects the limited extent to which solva-

tion can be modeled with pair additive force fields. A

large component to the free energy of solvation is the

cost of forming a protein-sized void in the solvant,

and this cavity free energy cannot be captured by a

pair additive function. The importance of this contri-

bution is illustrated by the very small number of voids

in native protein structures, and the neglect of this

term could explain the larger number of voids in com-

puted models. Our new approach to quantifying pack-

ing is a step toward incorporating the solvent associ-

ated cavity free energy into protein structure

prediction and design calculations. Toward this end,

we are developing a differentiable RosettaHoles score,

which can be easily minimized, for incorporation

directly into modeling calculations.

Figure 8. Differences in atomic arrangement in

computational versus experimental structures. (A) The

median difference in contact surface area between

computationally generated structures and crystal structures

for probe radii 0.1 to 2.0 Å in radius. The contact surface

area is measured over 7 Å radius balls of atoms

surrounding computed cavities. For probes 0.4 Å or larger,

the computationally generated models have more exposed

surface and crystal structures have more surface exposed

to very small probes. (B) The RDF for methyl side chain

groups in crystal structures and computationally generated

protein structures. In crystal structures, the methyl groups

are typically 4.0 Å apart but there is a broad peak. Methyl–

methyl pairs in computationally generated models tend to

be spaced slightly closer together and have a tighter peak

around this value. (C) Model for differences in atom

distributions for computed models (black) versus

experimentally determined structures (grey). The outline

represents the surface exposed to a small or large probe.

The evenly packed configuration has more surface area

exposed to a small probe while a large probe can access

more surface area in the clumped arrangement. We

hypothesize the clumped arrangement occurs more

frequently in computationally generated structures.
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The same kind of packing flaws found in compu-

tationally generated protein designs and structure pre-

dictions occur in some experimentally determined

structures. Low-resolution X-ray and NMR structures,

in particular, appear poorly packed in comparison to

high-resolution X-ray structures. A systematic analysis

of the PDB shows that many post-1990 packing quality

outliers are problematic crystal structures. Our analy-

sis of packing in the PDB has already lead directly to

an author’s request for retraction. Further, Rosetta-

Holes is complementary to existing validation meth-

ods. We have compared the RosettaHoles score to the

MolProbity score, an extensively used composite of

many validation metrics including bond geometry and

steric clashes.12 MolProbity and packing scores for

37,059 crystal structures in the PDB were compared,

and the overall correlation is 0.527. Much of this cor-

relation is due to the underlying resolution of the

structures as both MolProbity and RosettaHoles scores

are highly correlated with resolution. If the structures

are divided into 0.5 Å resolution bins, the average cor-

relation between the packing and MolProbity scores

within each resolution bin is 0.203. This low correla-

tion is reflective of the fact that the clashes and bond

geometry features measured by MolProbity are largely

independent of voids and underpacking measured by

RosettaHoles. Because it provides new and valuable

structural information, we believe RosettaHoles will

help in the identification and correction (or retraction

if corrections cannot be made) of other flawed struc-

tures as well as validation of new submissions to the

PDB.

Methods

Overview

Our goal is to visualize and quantitatively measure

underpacking in the protein core. RosettaHoles starts

by finding the largest balls that can be placed in the

empty space adjacent to each atom in the structure

[Fig. 1(A)] and then prunes away balls that are accessi-

ble to a water-sized probe from the outside of the

structure [Fig. 1(B)]. The remaining buried void-filling

spheres are the basis for both visualization and quanti-

tative analysis of core packing. For visualization, the

spherical holes are clustered into contiguous cavities

[Fig. 1(C)], and small holes/clusters are pruned away

[Fig. 1(D)]. The resulting cavity clusters can then be

displayed with a molecular visualization package such

as RasMol or PyMol.13,14 Quantitative analysis is based

on the contact surface area, the area that is accessible

to probes of various sizes on the surface of an atom or

group of atoms. The contact surface area statistics

were used in a machine-learning-based packing mea-

sure that was trained and tested on sets of well packed

and poorly packed structures. The data sets used for

training included incorrect ab initio structure predic-

tions with good Rosetta energy but poor packing,

fixed-backbone protein designs that minimize Rosetta

energy8 but tend to be poorly packed, and comparative

models generated by Rosetta during the CASP7 experi-

ment15 (www.predictioncenter.org). Testing was done

on models submitted by all groups in CASP7 and on

the whole of the PDB. The following sections describe

the RosettaHoles methodology in detail.

Definition of cavities

For each atom Ai in the structure, we compute the

largest empty ball Bi tangent to Ai that does not over-

lap any other atoms. This computation proceeds in

three steps: (1) For each atom Ai of radius ri, define a

set of 30 � 162 dots: ASri that are evenly distributed

on concentric spheres of radius ri þ pr centered on

atom Ai (there are 162 dots on each concentric sphere;

the dot mask for each concentric sphere is rotated ran-

domly to more evenly sample the space around each

atom). (2) Remove ASri from Dots(Ai) if ASri is closer

to the surface of any other atom Aj=i than it is to the

surface of Ai. The resulting dot sets are a discrete

approximation to an Apollonious diagram, a partition-

ing of space in which each atom is assigned a cell and

all points in that cell are closer to the surface of that

atom than to the surface of any other atom (see Fig.

2). (In the special case where all atoms are exactly the

same size, the Apollonious diagram is the same as a

Voronoi diagram.) (3) Select CSApr(AS
r
i ) which is fur-

thest away from the surface of atom Ai, breaking ties

arbitrarily. Figure 2 shows the results of a 2D imple-

mentation of this process performed on a slice through

heat shock operon repressor HrcA. Shaded circles rep-

resent atoms and the surrounding like-colored dots

are closer to that atom than any other (step 2). The

furthest dot for each atom (step 3) is marked as a

larger like-colored dot with a black center. The ball Bi

of radius ri þ pri centered on CSA3.0(AS
r
i ) will touch

the surface of atom Ai (to within 0.1 Å) and will be the

largest such ball (to within 0.2 Å) that does not inter-

sect any other atom Aj=i. The colored open circles in

Figure 2 are the 2D analog of these spheres. This cal-

culation can be performed quickly using precomputed

bitmasks.16

For the balls to represent interior cavities, those

on the surface must be removed. We define ball Bi to

be buried if a probe sphere the size of a water mole-

cule (1.4 Å) cannot touch Bi without intersecting any

other ball Bj=i or any atom Ai. Balls with any degree

of exposure to a water-sized probe are removed. This

process is repeated until no exposed balls remain;

multiple rounds of pruning are required because the

removal of one ball may expose another. Figure 1(A)

shows heat shock operon repressor HrcA (PDB code

1STZ, an arbitrarily selected example) and its cavities

in three different ways, a 2D slice with coloration rep-

resenting depth, a 3D VDW structure, and a cartoon

representation. Figure 1(B) shows the cavities in Fig-

ure 1(A) after pruning. Pruning is followed by
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clustering overlapping balls into cavities, as shown in

Figure 1(C). For visualization, clusters that have joint

volume less than 20 Å3 or surface area less than 40 Å2

are removed, resulting in a final set of cavities as illus-

trated in Figure 1(D). Packing statistics are computed

for a representative set of the buried balls, as

described later.

Packing statistics

The RosettaHoles scores are based on packing infor-

mation about a cavity ball and the local region sur-

rounding it, most importantly the contact surface area

of atoms surrounding the cavity with respect to a

sequence of probe radii, 0.1 Å, 0.2 Å, . . . 3.0 Å. To

reduce computation time, a representative set of cavity

balls is selected in a greedy fashion by successively

choosing the largest such ball that is not within 4 Å of

a previously selected ball. For each buried cavity ball

Bi in the representative set, we record the radius,

number of other balls Bi overlaps, and total volume

and surface area of the cluster containing Bi. In addi-

tion to the holes themselves, we examine the contact

surface area of portions of the protein structure sur-

rounding each ball. Contact surface (accessible area on

the atomic surface) was used in preference to solvent

accessible surface (area swept out by the probe center)

or molecular surface (a smoothed, continuous atomic

surface) because contact surface area with respect to

different probe radii are directly comparable: a smaller

probe always has greater or equal contact surface area

than a larger probe. For each void-filling ball Bi, define

ASri to be the shell of atoms that are between r � 1.0

and r Å from the center of the cavity ball Bi. For each

Bi, we consider the atomic shells CSApr(AS
r
i ) �

CSA3.0(AS
r
i ) of radii {1.0 Å, 2.0 Å, . . . 7.0 Å} and com-

pute the contact surface area (not including the cavity

balls) of Dots(Ar) ¼ {dotpri |k ¼ 1,2,. . .162; pr ¼ 0.1 Å,

0.2 Å, . . . 3.0 Å} for various probe sizes pr, denoted

dotprk , and normalize by dotprk . This normalization cor-

rects for atoms that are on the surface of the structure.

Values reported for each dot�i [ Dots(Ai) are dot�i for

pr ¼ 0.1 Å, 0.2 Å, . . . 0.2.9 Å. A score for each repre-

sentative cavity ball is generated from these raw statis-

tics via an SVM, as described in the following section.

Assessment of packing quality

SVM description. The quantitative measures

reported by RosettaHoles are based on an SVM trained

to estimate the probability that a local cavity-centered

region of a structure is from a high-resolution crystal

structure versus a computationally generated model.

The long vectors of packing statistics described in

Packing Statistics section are condensed into summary

statistics by taking a weighted average (linear combi-

nations of individual statistics) with weights deter-

mined by linear kernel SVM, as described in the next

section. To ease interpretation, the summary statistics

are mapped monotonically to the interval [0,1] and thus

can be interpreted roughly as probabilities. Predictions

were performed using a soft margin SVM with a linear

kernel and reported as empirical probabilities via a sig-

moidal mapping17 as implemented in the R package

e1071.18 We trained separate SVMs to (1) estimate the

probability of an individual cavity-centered region being

part of a crystal structure and (2) to estimate RMSD of

a cavity centered region of a computational model to

that of a crystal structure via an SVM regression.18 All

training and prediction was done on individual cavities

(approximately 400–1000 per structure). Aggregate

probability and RMSDpred scores for whole structures

are taken as the median score of all the local scores for

the structure. Other more sophisticated methods of

summarization, including mean and various quantiles,

were tried, with no clear benefit over simply taking the

median of the scores for each ball.

SVM training. SVM training was carried out on

three data sets: (1) crystal structures for 45 small to

medium sized proteins and corresponding high RMSD

structure predictions that have low Rosetta fullatom

energy but are poorly packed; (2) fixed-backbone rede-

signs of 59 proteins along with corresponding crystal

structures; (3) homology models for 12 medium to

large size CASP7 targets as well as the crystal struc-

tures for these targets. There is an overlap of eight

proteins between sets (1) and (2), but no models were

the same. The first two data sets were used to evaluate

the ability of packing statistics to discriminate artifi-

cially generated protein structures of poor quality from

their crystal structure counterparts. Set (3) was used

in regression tests to predict local RMSD to crystal

structure for each local atomic shell in computational

models. Discrimination tests on sets (1) and (2) were

cross-validated 10 fold and no models of the same pro-

tein sequence were included in both the training and

test set. RMSD predictions on set (3) were tested using

a 12-fold leave-one-out style cross validation by testing

on structures from one protein and training on data

from the other 11. For training sets larger than 10,000

examples, a random subset of size 10,000 was chosen

for training (there are many computationally gener-

ated structures for each protein and many cavities per

structure, yielding many examples).
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