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Abstract
We describe several notable aspects of our structure predictions using Rosetta in CASP12 in the

free modeling (FM) and refinement (TR) categories. First, we had previously generated (and pub-

lished) models for most large protein families lacking experimentally determined structures using

Rosetta guided by co-evolution based contact predictions, and for several targets these models

proved better starting points for comparative modeling than any known crystal structure—our

model database thus starts to fulfill one of the goals of the original protein structure initiative. Sec-

ond, while our “human” group simply submitted ROBETTA models for most targets, for six targets

expert intervention improved predictions considerably; the largest improvement was for T0886

where we correctly parsed two discontinuous domains guided by predicted contact maps to accu-

rately identify a structural homolog of the same fold. Third, Rosetta all atom refinement followed

by MD simulations led to consistent but small improvements when starting models were close to

the native structure, and larger but less consistent improvements when starting models were fur-

ther away.
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1 | INTRODUCTION

The Rosetta hybrid protocol, originally developed for homology model-

ing1 to combine multiple input templates and alignments, can optimize

discontinuous chain segments in both Cartesian and internal coordinate

space through Rosetta’s core kinematic system. In fully internal coordi-

nate representations, small perturbations can result in large atomic

movements due to lever-arm effects; the hybrid protocol gets around

this problem by sampling individual chain segment geometries in internal

coordinate space, and interactions between the segments, in Cartesian

space. Multiple alternative conformations of individual chain segments

are maintained and can be recombined in Cartesian space; low energy

models are fed back into the protocol for further recombination and iter-

ative refinement. The protocol has been successfully applied to a broad

range of refinement problems starting from de novo or homology mod-

els in combination with experimental2–4 and co-evolution data.5

In the previous CASP11 experiment, we used the hybrid protocol

to refine de novo models generated using NOE and/or co-evolution

data. Post-analysis revealed that the greatest source of error came

from incorrect local fragments, resulting from incorrectly predicted sec-

ondary structure, and also from incorrect domain parsing. For the

CASP12 experiment we sought to remedy these problems by using co-

evolution-derived contact predictions directly, if available, for both

picking discontinuous fragments and domain parsing. Also, given that

structural matches can occur in the absence of detectable sequence

similarity, we sought to identify distant structural homologs based on

the match between predicted contact maps and known structures.

For the refinement category predictions, we used an adaptation of

the hybrid protocol alone and in combination with explicit water MD

simulations.6,7 As the Rosetta energy function is an implicit solvent

model, we sought to test whether inclusion of explicit waters could

improve model accuracy when the starting model was close to the

native structure.

2 | MATERIALS AND METHODS

2.1 | Hybridization protocol

The protocol is described in detail in ref. 1, and here we give a general

overview. The protocol works with single or multiple templates; here*Sergey Ovchinnikov and Hahnbeom Park contributed equally to this work.
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we describe the more general multiple template scenario. The protocol

starts by randomly selecting a single template (biased by input weight),

the remaining templates are then superpositioned with the selected

template, bringing all input templates to a common global frame. Roset-

ta’s symmetric sampling protocol is used if the selected template has

multi-chain symmetry. During sampling, the secondary structure seg-

ments (“chunks”) are recombined between templates. Additional frag-

ment replacement within chunks is performed, allowing local sampling

without lever-arm effects. The sampling (chunk recombination or frag-

ment replacement) can be limited to specific regions, or biased to a cer-

tain direction using residue-pair restraints.

We also developed an iterative version of the hybridization proto-

col for problems requiring more aggressive sampling or further refine-

ment. The overall iterative process is guided by an evolutionary

algorithm applying hybridization as mutation or crossover operations at

each iteration and controlling diversity within the structural pool to

prevent rapid convergence. The objective function within the iterative

process is the Rosetta all-atom energy,8,9 with additional restraints if

any information is available (for example, co-evolution data). Iterative

hybridization is briefly introduced in ref. 8, and will be reported in more

detail elsewhere (manuscript in preparation).

2.2 | Contact prediction

For contact prediction we use GREMLIN10 with a multiple sequence

alignment (MSA) generated using HHblits (from HHsuite version

2.0.15; -id 90 -cov 75 -n 8 -maxfilt 1 -neffmax 20 -nodiff -realign_max

1 -e [e-value]).11 The MSA is generated by using an iterative proce-

dure with a stopping criteria to avoid attracting distant homologs at

early stages or when they are not necessary (if enough sequences can

be recruited with a lower e-value). The protocol starts with an e-value

1E-80 increasing by a factor of 1E10 until either the number of effec-

tive sequences reaches 128 Nf or the e-value reaches 1E-10. Nf is a

metric for the number of effective sequences used for the MSA, and

considered as sufficient for accurate model building when it is >64.8

After 1E-10, the e-value is increased by a factor of 1E2 until the Nf

reaches 64 or e-value of 1E-4 is reached. If <64 Nf sequences are

reached we try to enrich the alignment using additional sequences

from metagenomes.8 hmmbuild (from HMMER version 3.1b1)12 is used

to construct a hidden Markov model (HMM) of the MSA and

hmmsearch (with bit-score of 27) is used to search against the database.

The enriched alignment is filtered to reduce the redundancy to 90%

and to remove sequences that do not cover at least 75% of the query

(HHfilter -id 90 -cov 75). Positions that have >50% gaps are removed

before the alignment is fed into GREMLIN. The protocol for restraint

generation was the same one used in ref 8.

2.3 | Fold recognition and fragment picking using

contact maps

The query contact map generated by GREMLIN is filtered to only

include the top 1.5 3 sequence-length predictions (sorted by coupling

strength) and contacts between residue pairs with sequence

separation�3. To standardize the values, the coupling strength are

converted to probabilities based on the number of effective sequences

and length.5,13 This predicted contact map is aligned to the contact

maps of known structures in the PDB for fold recognition. For the con-

tact map search database, a non-redundant list of PDBs from HHsearch

(pdb70; May 2016) was used.14 A distance cutoff of 5 Å between any

two heavy atoms (with sequence seperation�3) was used to define a

contact. A contact map alignment tool called map_align8 was used to

search against this data. Before the search, the query contact map is

manually analyzed for any clear domain boundaries, and the contact

map is trimmed into domains if detected. Global and local matches are

measured by Rc score for each hit; Rc score is the (# of contacts

made)/(# of expected contacts), where the expected number of con-

tacts is estimated by taking the sum of the computed probabilities. For

the local Rc score, the expected number of contacts are only computed

over the aligned regions (global Rc is calculated using the full query

contact map). The results are ranked by global Rc, and the top 20 hits

are extracted as templates for modeling. In addition to the 20 hits, we

also extract the top 10 hits with (local Rc�0.8 and length�100) or

(local Rc�0.9 and length�50), sorted by local Rc score. In the hybrid-

ization protocol, each of the templates is weighted by the global Rc

score, and if they do not align to the global frame (due to a mismatched

or partial starting template), the fragments from these templates are

still used for internal coordinate sampling.

2.4 | Robetta: fully automated structure prediction

server

Since 18 of the 39 free modeling submissions were directly copied

from the Robetta server without replacement, here we briefly describe

the four major improvements made to the server pipeline since the

CASP11 experiment.

First, the iterative hybridization protocol was automated and used

to refine challenging targets (estimated GDT-TS<0.61), when the

length of the protein was <200 with no co-evolution data or <300

with sufficient co-evolution data (Nf>32). This automation was able

to reproduce our highlights from the CASP11 experiment made by the

human group (T0806,T0824).5 Second, the Rosetta all-atom energy

function was updated to the recent significantly improved REF2015.9

Third, a set of models for 614 protein families (Pfams) from our recent

large-scale modeling efforts using co-evolution data8,13 was collected

into a model database (MDB), and served as additional templates for

modeling. These Pfams did not have any homologous structures in the

PDB. The models were only added to our HHsearch database. Finally,

the model quality assessment program ProQ2 was used for ranking the

final five models.

2.5 | Human modeling

Our main focus for the human submission efforts was to correct the

inputs to our modeling framework. For 21 free-modeling domains, 6

domains were reparsed and modeled using co-evolution data, 3 were
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remodeled using known functional data (beside co-evolution data), and

12 included additional sampling using the hybridization protocol.

2.6 | Overview of our approach on the refinement

category

In the CASP12 refinement category, we designed and tested an inte-

grated approach that runs the Rosetta hybridization protocol with a

provided starting model, followed by extra MD-based refinement.6,7

Rosetta hybridization was applied in two separate ways as in

CASP11,15 namely high- and low-resolution protocols (described

below), depending on how close the starting model is to the native

structure (as provided by organizers in GDT-HA). In the high-resolution

protocol, Rosetta hybridization was applied to rebuild local regions esti-

mated to contain errors, while in the low-resolution protocol, the itera-

tive version was applied to rebuild the whole structure while more

intensively focusing on less reliable regions.16 The criteria for running

the high-resolution protocol is (1) if the starting model’s GDT-HA�55

or (2) the protein size is >400 amino acids (even if starting GDT-

HA<55). Otherwise the low-resolution protocol was chosen. The basis

for splitting targets into two categories stems from quite distinct char-

acteristics of errors in the starting models;15 while errors in high-

resolution starting models occur at local backbone regions that can be

refined through a conservative approach, errors in low-resolution start-

ing models occur at multiple regions that can be only fixed by allowing

more aggressive backbone sampling throughout the entire model. In

the following sections we describe more details on each component

applied.

2.7 | High-resolution refinement protocol

Our high-resolution protocol was designed based on the hypothesis15

that fixing local errors and core-refinement should play a complemen-

tary role for refining moderately accurate starting models. Local regions

to rebuild are identified following Park et al.16 which uses a well-

known correlation between residue-level fluctuation and structural

error. The maximum number of regions to rebuild is set to 3 for a pro-

tein smaller than 100 amino acids and otherwise set to 5. Rosetta

hybridization is repeated 2,000 times independently to intensively sam-

ple around the identified local regions. The representatives of five low-

est energy clusters from the generated models are selected and subject

to further MD-refinement for core-refinement.

2.8 | Low-resolution refinement protocol

Our low-resolution protocol is designed for large-scale energy-guided

refinement of an inaccurate model using the iterative version of hybrid-

ization. Because the main driving force for structural change is the all-

atom energy function,9,15 and only weak restraints to the starting

model are used, the success strongly depends on the accuracy of our

energy function with sufficient sampling. More details on the low-

resolution refinement protocol based on hybridization will be reported

elsewhere. Representatives of the five lowest energy clusters after the

iterative process are selected for further MD-refinement.

2.9 | Succeeding MD-based refinement and model

ranking

MD-based refinement6,7 is applied to the output models from both

the high- or low-resolution Rosetta protocol with the same set of

parameters. The AMBER12SB force field5,17 is used for the simula-

tion. The protein is solvated in a periodic boundary box filled with

the TIP3P explicit water model.18 During the simulation, harmonic

restraints are applied to the Ca atoms at their starting coordinates

of MD. For each of five selected Rosetta-refined models, 10 ns of 5

independent Langevin dynamics simulations are run, and structures

on the trajectories are averaged (without filtering) to pick the repre-

sentative model. This process is repeated separately for each of five

Rosetta models to produce five structure-averaged models, which

are then regularized by Rosetta FastRelax19 with hard positional

restraints to backbone atoms.

Five MD-refined models are ranked by the ensemble properties

observed from their corresponding MD trajectories. The feature pri-

marily used for ranking is the ensemble-average Rosetta energy

(average Rosetta energy across the MD trajectory). The only excep-

tion is when the structural convergence within the ensemble of the

second-ranked model (in the energy-based metric) is better than

that of the first-ranked model by >10%; structural convergence

within the ensemble structures is measured by the percent of resi-

dues with root-mean-squared fluctuation (RMSF) lower than 1.0

Ang in the corresponding MD trajectory. The concept of this model

ranking can be understood as cross-validation between two orthog-

onal components—the first energy-based metric evaluates the qual-

ity of ensemble structures sampled by the molecular mechanics

force field using the Rosetta energy, and the second convergence-

based metric validates the quality of a Rosetta model by running fur-

ther MD simulations.

3 | RESULTS

3.1 | Free modeling (FM) and free modeling/template-

based modeling (FM/TBM) results

In Figure 1A, the model quality of all-group targets is shown for our

server models and human-guided models. For 37 out 69 domains of

the “all group” target, the human group simply submitted the Robetta

models. In the remaining cases, human efforts generally added extra

value: six had significant improvements (DGDT-TS>20) and additional

six had modest improvements (DGDT-TS>10). Most of the signifi-

cantly improved cases involved more sophisticated use of co-evolution

data with human intervention. Comparison of our human submission to

all other non-BAKER server submission (See Figure 1B) highlights fail-

ures that were not fixed with our human efforts. All five domains hav-

ing significant failures (DGDT-TS<220) were due to domain parsing

issues. In one case T0942-D1, the human group was able to correct

the domain parse, bringing the GDT-TS from 35 to 77. Below we sum-

marize a few highlights where there was a significant improvement

over other server submissions.
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3.2 | Domain parsing and structural homology search

using co-evolution contacts

For T0886, human intervention corrected domain parsing and

improved coevolution-guided homolog search (Figure 2A). Inspec-

tion of the predicted contact map suggested it has at least three

domains (Figure 2A). For domain 1 and 2, map_align was run to see

if there were any structural homologs. For these we found strong

hits to flagellar proteins, with little sequence homology (6% identity

between 4ut1_A and D1, 20% between 4nx9_A and D2) and differ-

ent chain connectivity. While domain 1 is discontinuous in the

query, it is continuous in the structural homolog, which made it diffi-

cult for the server to take full advantage of co-evolution analysis.

Domain 3 was sampled using the Rosetta Abinitio protocol since it

was all alpha-helical and no hits were found using map_align, but

unfortunately, most of domain 3 does not appear in the crystal

structure and thus was not used for evaluation. For T0886-D1 and

D2, the GDT-TS is 71 and (next best server 29, our 23) 63 (next best

server 49, our 48), respectively (side by side structural comparison in

Figure 2B).

For T0912, expert intervention also improved domain parsing and

modeling guided by co-evolution data. Using the contact map, we

parsed T0912 into 2 initial domains: (114–153, 267–300) and (197–

260) (Figure 2C). Similar to T0886, discontinuity in the domain1

sequence caused difficulty in using co-evolution data at the server

stage. The two domains were modeled separately, docked guided by

the extensive interdomain contacts, and then refined. Due to time limi-

tation, little effort was made to model the remaining parts of the pro-

tein. In this case, the domains were over-parsed, resulting in errors for

the remainder of the defined domains. Nonetheless, both had

significant improvement over our or other server models, GDT-TS

being 78 (next best server 56, our 51) and 42 (next best server 40, our

22) for D2 and D3, respectively. For the two assembled domains as

defined by the assessors, the GDT-TS is 49 (next best submission 29;

see Figure 2D for side by side comparison; the GDT-TS of the two

assembled domains using our domain definitions is 56 compared to 36

for the next best submission).

T0886 and T0912 illustrate the importance of discontinuous

domain modeling and domain parsing using contact maps. Without

parsing these domains, map_align would not have been able to find

the best templates, due to strong gap penalties, but in the case of

T0912, over-parsing may have limited proper sampling of sheets in

the remainder of T0912-D3. The map_align hit, formed a sheet pair-

ing at 232–236, preventing further sampling in that region. In the

case of T0886, “human intuition” to select models that have most

sheets hurt our prediction for one of the loops (158–163) in T0886-

D2. For both targets, there were no contacts predicted indicating

that these sheets should be paired, for future experiments it would

be worth deleting regions not restrained by contacts and resampling

these.

3.3 | Contact-guided model database (MDB) for

additional templates

Prior to CASP12, we had carried out and published a comprehensive

set of structure models for large protein families without solved crystal

structures. The accuracy of this large scale modeling effort has been

highlighted on numerous occasions since the article was published as

six newly solved crystal structures published more recently are all very

close to our models. For CASP12, we tested the use of this set of

FIGURE 1 Comparison of human group submissions to server submissions. Shown are 68 all-group targets. A, Comparing the BAKER
server submission to the BAKER human submission. Highlighted are the domains where large improvements were observed. The three col-
ors are used to distinguish the Free-modeling (FM), FM/Template-based-modeling (FM/TBM) and Template-based-modeling (TBM) targets.
B, Comparing against non-BAKER server submission. Highlighted are domains where the human submission did significantly worse than the
best non-baker server. Targets T0896-D1, T0897-D2, T0890-D2, and T0905-D2 all suffered due to domain parsing issues. For T0942-D1,
the domain parsing was corrected for the human submission
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models (collected in a database we call MDB) as a starting point for

comparative modeling. This resembles the goal of the original protein

structure initiative (PSI)—to produce a set of models that provided

starting points for reliable comparative modeling of any protein

sequence.

Three targets had a significant hit to one of the MDB models:

T0866, T0907 and T0918. T0907 is a homolog of T0866 and contains

3 copies of this domain. Our model for T0866-D1 had a GDT-TS of 80,

which far exceeds the best GDT-TS of 62 available by typical

sequence-based homolog search. The top HHsearch hit (pdb:1lpl_A) for

T0866-D1 with probability of 17.8% made very few of the predicted

contacts due to a flipped beta hairpin (Figure 3A). In contrast, we found

a strong hit (HHsearch probability of 100%) from the MDB making

most of the predicted contacts (Figure 3B). For T0918-D2 and D3, our

MDB hit also provided much better starting templates, resulting in final

model GDT-TS of 50 and 56, compared to the next best server of 38

and 45, for D2 and D3, respectively.

3.4 | Incorporating known functional information for

fold recognition

We reasoned that T0880 and T0888 could have folds similar to previ-

ously solved adenovirus head structures, and used HHsearch to gener-

ate threadings of their sequence onto these structures. The alignments

were poor, but were improved by hybridization at the modeling stage;

during chunk recombination, we allowed stochastic sequence registry

shifts up to 4 amino acids in either direction. For T0880-D1, the GDT-

TS is 62 (next best server 60, our 51). For T0880-D2 the GDT-TS is 36

(next best server 32, our 21). For T0888-D1 the GDT-TS is 53 (next

best server 29, our 23).

FIGURE 2 Contact-guided domain parsing and fold-recognition allows accurate modeling. A, Based on the contact map, T0886 was parsed
into three domains (green, orange and grey; green is a discontinuous domain). Here, we focus on the first two N-terminal domains (green
and orange). Most of the third C-terminal domain (grey) was not present in the crystal structure, hence is not evaluated here. The partial

threads from the top 5 map_align hits are shown for the two domains. B, Comparing the model (top) to native (bottom) structure. Each
domain is superpositioned into the corresponding native domains for illustration. C, Based on the contact map (trimmed to 100–310), the
initial parsing of two domains (green and orange; also green is a discontinuous domain) are shown. Each of these domains were modeled
separately and then refined as a whole. D, Comparing the model (top) to native (bottom). One of the sheets (indicated with black arrow)
was incorrectly predicted. The partial threads from the top 5 map-align hits are shown in the orange box
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3.5 | Refinement of close to native targets

Our high-resolution protocol combining reconstruction by Rosetta

hybridization protocol with subsequent MD simulation was run for 18

of 42 targets. In Figure 4, the models generated by Rosetta local recon-

struction and MD are individually compared to the starting model using

GDT-HA and SphereGrinder (SG).18,20 With the combined protocol,

Model 1 improved over the starting model in half the cases as assessed

by both GDT-HA and SG.

The most successful cases (TR885, TR882, TR922, and TR917)

were those for which the input models were already quite accurate

(GDT-HA>65). In control experiments with TR882 and TR885 using

the MD simulation protocol alone, poorer results were obtained (Com-

bined protocol GDT-HA/SG 15/18 and 14/19; MDonly,13/0 and

0/0; for TR882 and TR885, respectively); the enhanced sampling

brought about by the Rosetta refinement evidently improves

performance.

Reconstruction of large unreliable regions was attempted for

multiple targets (TR948, TR947, TR909, and TR912) but the models

were either partially refined or remained unrefined because of insuf-

ficient sampling. TR948 (Figure 4D) is a good example; a 25-

residue-loop forming loop-helix-loop motif was roughly refined by

intensive reconstruction but the model still contained an obvious

error having a void inside the hydrophobic core (orange dotted circle

in the figure). Other targets similarly had issues with hydrophobic

packing. To enhance the sampling of the hydrophobic core, it should

be possible to introduce metrics for hydrophobic packing to the

convergence check, or use more sophisticated structural operators

and restraints.21

Another source of error in high-resolution refinement was neglect

of interactions with other subunits in homo-oligomers, ordered water

molecules, and small-molecules/metals (an example is TR879 shown in

Figure 4E). Consideration of the full biological unit using information

available from templates with more aggressive local error corrections

should improve high-resolution refinement.

Model ranking using MD trajectory was generally helpful but can

be improved in the future. The best-of-five model was correctly

selected as model1 for a number of targets: TR885, TR922, TR948

among close-to-native targets. Despite the small sample size, analysis

on these targets suggests that successful sampling improves model

selection; selection failures may be associated with poor sampling. An

exception was TR882 (Figure 4C), which was sampled successfully but

ranked incorrectly due to inaccuracy in the Rosetta energy function,

suggesting future directions in model ranking.

3.6 | Refinement of distant from native targets

For the more challenging 24 of the 42 targets, we ran aggressive

energy guided model rebuilding by Rosetta followed by MD refine-

ment. In Figure 5A, the overall results are again compared to their start-

ing models in GDT-HA and SphereGrinder (SG). Substantial

improvement in SG were found for multiple targets (>10% for 7 tar-

gets), but improvements in GDT-HA was observed only in a handful

cases (TR894, TR594, and TR942). The overall fraction of targets for

which model1 improved over starting model is 50% and 58% (75% and

71% with best of five models) in GDT-HA and SphereGrinder,

respectively.

The largest improvement was for TR594 (Figure 5B). Refinement

of this target was attempted within the context of the whole complex

built from the starting models generated for TR594, TR894, and

TR895. Iterative Rosetta reconstruction applied to the complex recov-

ered all the secondary structure segments and orientations of TR594,

and also improved the other two targets in the complex. Refinement

was also successful for a couple other large proteins (TR928, 381 aas;

TR942, 387 aas), which are larger than the proteins in the benchmark

set used to previously test the method (200 aas).

FIGURE 3 Comparing the Model Data Bank (MDB) and Protein Data Bank (PDB) hits for T0866. A, The overlay of the predicted contacts
over the top HHsearch PDB hit 1lpl_A (Prob: 17.8%). In blue are the top 1.5 3 length predicted contacts. The regions with most violations
are circled in red. B, The overlay of the predicted contact over top MDB HHsearch hit (Prob: 100%)
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Analysis of results on a number of very challenging targets

revealed limitations in our large-scale sampling approach not observed

in our previous benchmarks. 6 targets in CASP12 were especially chal-

lenging; TR869, TR870, and TR898 had starting SG<25, GDT-

HA<30, protein size>100 aas, and TR890, TR901 and TR905 had

starting SG<40, GDT-HA<35, protein size>180 aas. Refined models

for TR870 and TR890 (Figure 5C,D) were partially successful but also

highlighted missing aspects in our sampling protocol. For TR890, the

intra-domain conformation at domain1 was corrected (inset of Figure

5C) but the orientation with respect to domain2 was made worse,

which led to an increase in SG but not in GDT-HA. Improvement for

TR870 was also only in SG because while interactions between pairs of

contacting helices were improved, their overall global positioning was

not. For the other four targets, none of our models improved even par-

tially over the starting model. All these pathologies are likely related to

insufficient sampling—native structures have clearly better energy than

what we sampled—and provide useful challenges for future methods

development.

Our method also performed poorly in correcting sequence align-

ment errors. Starting models for two targets (TR896 and TR921) had

incorrect beta-strand registers. As a post analysis, we carried out a

control experiment on TR896 after the release of the native structure

to see how correcting this error could make difference. The same

low-resolution protocol was repeated but with a starting model

rethreaded following secondary structure prediction.6 The control

refinement yielded a significantly improved structure (Figure 5E) com-

pared to our CASP submission, as not only the Rosetta energy signifi-

cantly dropped but also clear convergence was found in final models.

In spite of this encouraging result, correcting sequence alignments

through refinement will require some effort given uncertainty in sec-

ondary structure prediction and identification of a small number of

alternative alignments.

FIGURE 4 Automated high-resolution refinement combining local rebuilding by Rosetta and MD refinement. A, Decomposition of contribu-
tion to refinement by Rosetta and MD in A, GDT-HA (top) and SphereGrinder (bottom). Thirteen targets with native structures available are
shown here. For each target, starting model quality is shown in black dots, range of five models by Rosetta modeling and succeeding MD
refinement in orange and green bars, respectively, and change in quality of model1 from Rosetta stage to MD refinement by blue arrow. B-
E, Structures for the targets with successful refinement or targets showing lessons for future direction. Native, starting model, and refined
model structures are shown in gray, red, blue cartoons, respectively. Regions automatically detected and reconstructed are shown in dotted
circles. Improvements in secondary structure orientations are highlighted by black arrows. B-C, High-end refinement targets, TR885 and
TR882, were successful with our protocol. D, TR948, reconstruction on long region (large circle on top, residue 53–78) put helix at roughly
correct position but had poorer hydrophobic packing in our model (below) compared to the native structure (top); void shown as orange
circle on the inset panel. E, TR879 was the only target significantly worsen by MD refinement; decrease in GDT-HA solely comes from MD
refinement stage, presumably due to ignoring metal binding (black arrow). Reconstructed at five regions, and three of these reproduced cor-
rect loop conformations (inset) which led to improvement to SG
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4 | DISCUSSION

4.1 | Overcoming mispredicted secondary structure,

domain parsing, and sampling complex topologies

using contact information

Due to the vast search space required for free modeling targets,

Rosetta modeling methods such as hybridization or AbInitio in the past

were limited to small and simple folds. Challenges to adequate sampling

are at both local and global levels: in regions where the local structure

is strained by surrounding residues or otherwise poorly modeled by an

ensemble of short fragments with similar local sequences, and complex

topologies with many non-local interactions. Our results here and in

ref. 8 show that if the protein belongs to a sufficiently large sequence

family, the second problem – modeling proteins with complex toplogies

– can be largely overcome by using contact information and a popula-

tion based evolutionary algorithm. Given the large number of

independent MC trajectories, it is likely that at least some correct

non-local interactions are sampled in each trajectory. By iteratively

recombining these models guided by contact information, we expect to

sample new structures that contain all the non-local interactions.

The first problem – correcting local structures – is not easily

solved. Local-window-based secondary structure prediction approaches

such as PSIPRED6 are sometimes not able to capture secondary struc-

ture preferences that are depend on long-range interaction (sequence

separation>15). Errors are often seen in terminal and buried beta-

sheets that do not follow a typical alternating hydrophobic/hydrophilic

pattern. In the CASP12 experiment, we explored the possibility of cor-

recting the second problem by using contact information to search for

discontinuous fragments that make a significant fraction of the con-

tacts, independent of sequence or predicted secondary structure. After

developing the method, we found that in some cases it was able to

recover entire folds in the PDB that make a majority of the predicted

contacts, allowing us to bypass the AbInitio stage altogether. This was

FIGURE 5 Automated low-resolution refinement by large-scale energy guided sampling. A, Decomposition of contribution to refinement
by Rosetta and MD in GDT-HA (top) and SphereGrinder (bottom). Bars, dots, arrows are drawn in the same way as in Figure 4A. Nineteen
targets with native structures available are shown. B-E, Structures for the targets with successful refinement or targets showing lessons for
future direction. Native, starting model, and refined model structures are shown in gray, red, blue cartoons, respectively. B, Successful
refinement on TR594. C-E, Challenging refinement targets in CASP12. C, TR890, separate colors are used for the two domains in the native
structure; black for domain1 and white for domain2. Domain1, which was poor in the input model, was correctly refined (inset; superim-
posed onto domain1), but its relative orientation to domain2 was wrong and did not lead to an increase in GDT-HA. D, TR870; secondary
structures and their rough orientations were fixed, but precise positioning was incorrect. E, Incorrect register shift by six residues at one of
the strands (highlighted by spheres) was not fixed by refinement, and this error propagated to mis-prediction at the other parts of the sub-
mitted model. When started from the correct threading to the starting model, the output of refinement converged close to native (cyan, left
panel)
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facilitated by manual domain parsing of the contact maps into regions

strongly connected by the predicted contacts. Future development will

focus on automating contact map based domain parsing and on com-

bining partial discontinuous hits during sampling.

4.2 | Future directions in refinement method

development

Unifying our low- and high-resolution refinement protocol into a single

general refinement framework will be an important research direction.

A unified approach would use hybridization to refine unreliable regions

and core parts simultaneously, while adjusting the magnitude of pertur-

bations at the core parts depending on the reliability of the input model

or the convergence of sampling. Many of the targets that underwent

the high-resolution protocol had relatively poor starting model quality

(55<GDT-HA<65) and still contained considerable structural devia-

tions from their natives. For these, iterative refinement on the entire

structure should, in principle, be more appropriate than our current

conservative approach.

AVAILABILITY

Robetta and GREMLIN are available for non-commercial use at http://

robetta.bakerlab.org and http://gremlin.bakerlab.org, respectively. The

Rosetta software suite can be downloaded from http://www.rosetta-

commons.org.
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