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The folding of natural biopolymers into unique three-dimensional structures that determine their
function is remarkable considering the vast number of alternative states and requires a large gap
in the energy of the functional state compared to the many alternatives. This Perspective explores
the implications of this energy gap for computing the structures of naturally occurring biopolymers,
designing proteins with new structures and functions, and optimally integrating experiment and
computation in these endeavors. Possible parallels between the generation of functional molecules
in computational design and natural evolution are highlighted.
Introduction
The complexities of life arise from the marvelous and intricate

functions carried out by the millions of precisely ordered macro-

molecules present in living systems. As suggested by Anfinsen

(Epstein and Anfinsen, 1962), it is likely that these precisely

ordered states are global free energyminima and that the precise

ordering reflects folding of macromolecules to their lowest free

energy states. For biomolecule native states to be at global

free energy minima, the attractive interactions in the folded state

must be strong enough to overcome the very large entropic cost

to folding (Figure 1). Encoding the large energy gaps required for

folding in the linear amino acid or nucleic base sequence is quite

nontrivial given the weak and relatively unspecific noncovalent

van der Waals, hydrogen bonding, and hydrophobic interactions

operating within macromolecules.

Biological self-organization depends not only on the folding of

biopolymers to precise structures, but also on the specificity of

macromolecular interactions. Proper cell functioning requires

that protein interaction networks have well-defined specificity,

with each protein interacting with a small subset of the myriad

of other biomolecules in a typical cell compartment. Temporal

and spatial control of expression partly insulate proteins from in-

teracting with one another (Kuriyan and Eisenberg, 2007; Sha-

piro and Losick, 2000), and chaperones encapsulate slowly

folding proteins to ensure that their hydrophobic cores are not

exposed to spurious binding; yet, at any point in time and

space, most biological macromolecules are in close vicinity to

millions of others with which they do not interact (Scott and Paw-

son, 2009). A simple consideration of the quantities involved

illustrates the magnitude of the challenge of insulating protein

interactions from one another: a bacterial cell is estimated to

contain 4,000 different protein types totaling a million polypep-

tide chains with total protein concentration of 3 mM (Moran

et al., 2010). Against the backdrop of such high density of

competing partners, specificity requires an energy gap between
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the correct set of interactions and the very much larger set of

nonspecific interactions (Figure 1) that, if overly populated,

would interfere with proper signaling and other molecular trans-

actions. Breakdowns of interaction specificity (Zarrinpar et al.,

2003), like breakdown in folding stability (Dobson, 2003), can

lead to reduced organism fitness and disease, providing the

selection pressure to drive the evolution of these high energy

gaps.

This Perspective explores the far-reaching implications of the

requirement of a large energy gap for biomolecular organization.

First, we describe how the necessity of the energy gap has

opened up new approaches to macromolecule structure deter-

mination. Second, we describe the challenge that the energy

gap requirement poses for both protein design and natural

evolution and the approaches that have been taken in design,

and the possibly related strategies in natural evolution, to over-

come it.

Structure Prediction
The necessity of the energy gap has direct implications for

macromolecule structure prediction. Because of the energy

gap, structure prediction can be posed as a search for the lowest

energy conformation of a protein or RNA polymer. Successful

structure prediction should be possible if conformations close

to the native structure are sampled and the errors in energy func-

tions are smaller than the energy gap. In such cases, the lowest

computed energy state will likely be close to the native state

despite error in the energy calculations.

Over the past several years, structure prediction problems for

a wide variety of biological systems have been found to exhibit

remarkably similar properties. We have used extensive confor-

mational sampling with the Rosetta structure modeling program

to map out the energy landscapes and predict structures of

globular proteins (Bradley et al., 2005), membrane proteins

(Barth et al., 2009), homo-oligomers (André et al., 2007), RNA
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Figure 1. Modeling Difficulty Is Determined

by Computational Complexity, the Energy

Gap, and System Polarity
The figure illustrates connections between
computation, thermodynamics, and applications
for diverse molecular phenomena in biology. There
are two major determinants of the difficulty of
structure prediction and design problems. The first
is the number of competing states (numbers on the
left of bar). This ranges from a handful (bottom) to
astronomically large (top). The second is the
polarity of the interactions (column on right side).
This ranges fromalmost completely nonpolar in the
case of monomeric protein folding to largely polar
in the case of functional site modeling. For struc-
ture prediction problems, though the search
becomes more difficult, distinguishing the native
structure from the alternatives becomes easier as
the number of competing states increases, as the
built-in energy gap (right of bar) must be larger for
the native state to be highly populated. For design
problems, in contrast, difficulty increases because
design cannot rely on a built-in energy gap. For
both structure prediction and design, nonpolar
interactions can be more accurately modeled than
charged interactions, and hence fold prediction
and design can be easier than functional site
prediction and design despite the larger number of
competing state in the former. The energy gap DE
required to give rise to 99.9% population of
a desired state in equilibrium with N equal energy
competitors is readily obtained from theBoltzmann
expression: p= expð�DE=kTÞ=½expð�DE=kTÞ+N�,
in which k is the Boltzmann constant and T is the
absolute temperature. For protein folding (top),
assuming three degrees of freedom per residue,
the number of unfolded states of a 100 residue
polypeptide chain is on the order of 3100 (Levinthal,
1968), and to obtain 99.9% of a single state in
a population of this size would require on the order
of 70 kcal/mole of attractive interactions (similar
estimates are obtained from experimental data;
Brady and Sharp, 1997). The numbers and polarity
valuations are very coarse estimates and are for
illustrative purposes only.
molecules (Das and Baker, 2007), and protein-DNA complexes

(Ashworth et al., 2010). As illustrated in Figure 2, the energy land-

scapes mapped out by these calculations are qualitatively very

similar for very diverse biomolecular systems. The results of

calculations on all of these systems exhibit several common

features: (1) independent structure calculation trajectories end

in different local minima with widely varying conformations and

energy, (2) the native conformation has lower energy than almost

all nonnative minima, and (3) the energy drops only quite close

(<2 Å root-mean-square deviation [rmsd] of the main-chain

atoms) to the native state. A sharp drop in energy near the native

state has also been observed in long molecular dynamics (MD)

simulations of protein-small-molecule binding (Shan et al.,

2011). Property 1 reflects the rugged nature of macromolecular

free energy landscapes in which even closely related minima

can be separated by large barriers from high-energy atomic

clashes. Property 2 follows from the necessity of the energy

gap for the existence of stable and unique conformations and

suggests that the depth of the energy gaps is, in general, greater

than the magnitude of the noise due to inaccuracies in current

energy functions. Property 3 arises because the tight comple-
mentary jigsaw puzzle-like packing of side chains/bases that

are responsible for the very low energy of the native state

requires close to native state backbone geometry. The existence

of the energy gap (property 2) can have unexpected conse-

quences; because of the gap, nonscientists can contribute to

structure prediction efforts through online games like FoldIt by

using human intuition and problem-solving skills to improve

search for the lowest-energy (highest-scoring) state (Cooper

et al., 2010).

Because the energy gap from unfolded conformations to the

native structure is so large, success in structure prediction and

folding to the native structure does not indicate that forcefields

have the�1 kcal/mole accuracy that is necessary for successful

small-molecule docking, discrimination between protein excited

and ground states, and other applications that require fine

energy discrimination (Figure 1). Indeed, despite success in ab

initio structure prediction for very small proteins (Kinch et al.,

2011), refinement of models based on structures of sequence

homologs for larger proteins has been very challenging—there

only need exist a small energy gap between the native structure

and compact low-energy near-native states (as long as there are
Cell 149, April 13, 2012 ª2012 Elsevier Inc. 263



Figure 2. Energy Gaps in De Novo Structure Prediction Calculations for Diverse Macromolecular Systems
(A–E) The structures of small macromolecular systems can be predicted de novo because the evolutionarily encoded energy gap between the native state and the
large number of nonnative states compensates for inaccuracies in current force fields. In each of these systems, the starting point for simulation is an extended
chain or unbound monomers. In structure prediction (A–C and E), search is carried out by stochastic Monte Carlo sampling of the internal degrees of freedom
(monomer folding) and, in the case of complexes, the rigid body degrees of freedom. To effectively sample the astronomically large conformation space in these
systems (see competitor states in Figure 1), conformational search is biased to sample backbone and side-chain conformations that are observed in natural
biopolymers. Each configuration is evaluated according to an energy function representing van der Waals interactions, hydrogen bonding, solvation, and
electrostatic interactions and is selected if it is energetically more favorable than the preceding structure or only slightly worse. This process is repeated, iter-
atively isolating lower-energy structures. In molecular dynamics (MD) simulations (D), the system is similarly started away from the native state, and the physical
forces operating between the atoms are deterministically simulated at very short temporal intervals, simulating the motion of biomolecular systems. In all cases,
conformations with low rmsd from the native state have lower energies (y axis) than those with high rmsd.
(A) In simulations of protein folded states of ribosomal protein S6 based on sequence information alone, the native state is identified with high precision.
Alternative conformations also score favorably but less so than the native.
(B) The folded state of the sarcin/ricin domain of 23S bacterial rRNA is precisely captured (Das and Baker, 2007). An alternative local energy minimum is also
identified, but it is higher in energy.
(C) Although homo-oligomers are large, symmetric modeling reduces the search space and produces clear energy gaps that identify the native state of the
S. Aureus tetrabrachion coiled coil.
(D) LongMD simulations starting from nonnative conformations of the PP1 inhibitor bound to Src end in a state that is essentially identical to the native state (Shan
et al., 2011). Early phases of the simulation (<700 ns) have high rmsd from the native state and high energies (red points), and as the trajectory progresses
(>1400 ns), the conformations converge on the native state (green points). Data for generating the panel were generously provided by Yibing Shan and David
Shaw.
(E) The membrane-embedded vacuolar ATPase shows a clear energy gap between near native conformations (green) and far-from-native conformations (red),
although, in this case, the prediction lacks atomic-level accuracy. Molecular representations were generated with PyMol (DeLano, 2002). Green and gold
represent the prediction and the native state, respectively, and blue, red, and yellow represent nitrogen, oxygen, and sulfur atoms. R.e.u., Rosetta energy units.
Protein data bank accession codes for the native states from (A)–(E) are: 1LOU (Otzen et al., 1999), 1Q9A (Correll et al., 2003), 1FE6 (Stetefeld et al., 2000), 1QCF
(Schindler et al., 1999), and 2BL2 (Murata et al., 2005), respectively.
relatively few of them; Figure 1), and this small energy gap may,

in some cases, be within the noise of current forcefields. Indeed,

very intensive conformational sampling can reveal alternative

minima, which might be due to energy function errors (Das,

2011; Mandell et al., 2009) or may correspond to alternative

conformational states that are not seen in static crystal struc-

tures (Tyka et al., 2011). Due to the small magnitude of the energy

gap, such alternative conformations are quite difficult for macro-

molecular forcefields to distinguish from the predominant state

observed in experiment (Figure 1). Another important challenge

is correctly accounting for electrostatics and interactions with
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solvent in both folding and binding. Flexible ligand docking and

drug design are challenging for two reasons: first, ligands often

interact with their targets through polar and charged interactions

that are difficult to model accurately; second, the total free

energy of binding is generally small, and hence the energy gap

between the experimentally observed bindingmode and alterna-

tives is, in many cases, too small for current methods to detect

reliably.

As the number of conformations accessible to a biopolymer

increases very rapidly with chain length (Levinthal, 1968), the

ability of unconstrained ab initio folding calculations or MD



Figure 3. Structure Determination Using Sparse Experimental

Constraints to Guide Conformation Research
Modeling of large macromolecules is limited by conformational sampling, but
sparse experimental constraints can guide sampling toward the native state. In
these simulations, the energy is computed solely based on a physical model,
and the constraints are only used to bias sampling.
NMR chemical shift residual dipolar coupling (CS-RDC) data were used to
constrain sampling of a 25 kD protein (green), yielding a clear energy gap
between near and far from native states (Raman et al., 2010). Without the
experimental constraints (red), no energy gap is seen, with conformationally
very different structures showing equally low energies. Identifying energy gaps
in the presence of experimental constraints, but not in their absence, can thus
provide an inherent control of the prediction’s veracity. Panel was adapted
with permission from Raman et al. (2010).
trajectories to sample close enough to the folded state to detect

the energy gap in large systems is quite limited (Figure 1). For this

reason, ab initio structure prediction currently is not practically

useful for structure determination of proteins larger than �80

residues, including multidomain and membrane-embedded

proteins, and important progress remains to be made in this

arena (Cozzetto et al., 2008).

New Approaches to Structure Determination
Though current ab initio structure prediction methods are not of

practical use in determining reliable macromolecular structures

for all but the smallest proteins, the necessity of an energy gap

has led to new areas of application for these methods, where

they appear to have considerable utility. Traditional biomolecular

structure determination methods use experimental nuclear

magnetic resonance (NMR) spectroscopy or X-ray data to deter-

mine the detailed arrangements of atoms in protein and RNA

structures. Large amounts of data are needed to unambiguously

determine the positions of the atoms. However, because of the

energy gap, the experimental data can be used in a quite

different way. Rather than determining the detailed atomic posi-

tions, they can be used to guide the search process, and the

correct structure can then be selected based on its very low

energy.

A simple analogy illustrates the power of even a very limited

amount of experimental data in locating a global minimum.
Consider the problem of finding the lowest elevation point on

the land-covered surface of the earth. Without experimental

information, search may incorrectly converge on Death Valley

in California. However, with the single datum that the lowest

elevation point is not in North America, this can be immediately

eliminated, and with the additional datum that the lowest eleva-

tion point is in the Middle East, search can much more rapidly

hone in on the Dead Sea. As in the structural calculation case,

the experimental data do not define the exact location of the

minimum; they can serve, rather, to rule out large regions of

space that would otherwise greatly slow down the search for

the lowest-energy structure.

New methods that exploit the energy gap have been particu-

larly successful for NMR structure determination. Traditional

structure determination via NMR involves assignment of the

backbone and side chain resonances and, subsequently, the

interpretation of NOESY spectra, which report on distances

between atoms. The assignment of backbone resonances is

largely automated, but assigning NOESY spectra is time

consuming and, for larger proteins, complicated by consider-

able spectral overlap. The distances obtained from NOESY

spectra are critical for traditional approaches that seek to define

the positions of all atoms based on the experimental data. By

contrast, new approaches that utilize the data primarily to guide

sampling can build reliable models, in some cases using just the

chemical shift assignments for the backbone atoms, which

provide information on local backbone structure. The use of

these data to guide search dramatically increases the accuracy

of the resulting structures, which for small proteins can be close

to the accuracy of models determined using much larger data

sets with conventional methods (Shen et al., 2008). For larger

proteins, sampling again becomes problematic, but supple-

menting the backbone chemical shifts with sparse backbone

RDC and HN-HN NOE data allows the search to hone in on the

low-energy native structure for proteins up to 25 kD (�200 resi-

dues) (Raman et al., 2010). The backbone chemical shift data

constrain which backbone torsion angles are sampled, whereas

the long-range interactions bias the search to conformations

with the correct overall topology. The necessity of the energy

gap also enables a new structure validation criterion: because

constraints focus search on the region where the native state

lies, the energy should be lower when sampling with constraints

than without (Figure 3) (Raman et al., 2010). This is only likely to

be the case if the native energy minimum is sampled; otherwise,

constraining sampling should result in higher rather than lower

energies. In addition to extending the size range and reducing

the time that is required for NMR structure determination, this

method has considerable potential for determining the struc-

tures of transiently populated states, in which experimental

data are often very sparse (Bouvignies et al., 2011; Korzhnev

et al., 2010).

Structure Determination from Sparse X-Ray, Cryo-EM,
and Proteomics Data
Macromolecular structures are being solved at a very rapid pace

by X-ray crystallography, but when the resolution is low (>3.5 Å)

or the starting phase information is poor, it becomes difficult to

resolve the positions of the atoms and obtain an accurate
Cell 149, April 13, 2012 ª2012 Elsevier Inc. 265



structure using traditional methods. In such cases, structure

determination may still be possible by using the experimental

data to guide the search for the lowest-energy structure. X-ray

structure determination by molecular replacement utilizes phase

information from homologs to initiate the structure refinement

process but can fail when the homologous structures are too

divergent. However, even this very noisy information can still

help guide Rosetta energy-based search for low-energy struc-

tures (DiMaio et al., 2011); this has been found to considerably

increase the radius of convergence of molecular replacement

and has allowed the solution of many previously unsolved struc-

tures. The use of electron density to guide energy-based refine-

ment also has promise for obtaining atomic models from

cryo-EM data and low-resolution X-ray data sets. Refinement

in these cases is quite challenging due to the larger size of the

molecules typically studied and the lower resolution of the

data, and consistent refinement of cryo-EM models to atomic

accuracy remains an open research problem (Baker et al.,

2010; DiMaio et al., 2009; Schröder et al., 2010). At still lower

resolution, large-scale proteomic data can be used to guide

modeling of large macromolecular complexes such as the

nuclear pore (Alber et al., 2007). Looking forward, hybrid

approaches that utilize experimental data from cryo-EM density

maps, solid-state NMR, and proteomics experiments to guide

energy-based search could provide much-needed information

on the internal structures of other large complexes that defy

conventional structure determination.

How to Encode the Energy Gap: Design and Evolution
Biomolecule design is a stringent test of our understanding of the

principles underlying biomolecular organization and can, in prin-

ciple, lead to a whole new world of molecules with novel and

useful functions. Design and structure prediction are inverse

problems: whereas in structure determination/prediction, the

challenge is to find the lowest-energy structure for fixed

sequence, in design, the challenge is to find the lowest-energy

sequence for a specified structure or function. Because both

prediction and design are fundamentally searches for low-

energy states, closely related methods can be used to solve

both problems; this duality has spurred the development of Ro-

setta and other prediction and design software (Kuhlman et al.,

2003).

While both problems involve searches for low-energy states,

unlike in structure prediction, in protein design, there is no

built-in energy gap to favor the target conformation over the

competitors, as there has been no evolutionary selection for

function and conformational uniqueness. Design is thus much

more susceptible to forcefield inaccuracies, particularly

involving polar interactions, such as hydrogen bonding and elec-

trostatics, which play important roles in catalysis and binding

specificity (Sharp and Honig, 1990). In the perspective taken

here, structure prediction probes the principles of biomolecular

organization from within the confines of the thermodynamic

hypothesis, which ensures the existence of sufficiently high

energy gaps selected by evolution, whereas design probes

biomolecular organization from outside of these confines. How

to encode the necessary energy gap into designed biomole-

cules is a central challenge (Figure 1), which highlights the
266 Cell 149, April 13, 2012 ª2012 Elsevier Inc.
remarkable effectiveness of natural evolution in producing

energy gaps and precisely folded native states for hundreds of

thousands of diverse biomolecules. Indeed, protein design has

often turned to nature for inspiration on how to encode energy

gaps.

There are three broad classes of approaches to designing

biomolecules with large energy gaps. The first class we will call

‘‘forward design.’’ This strategy seeks to optimize the sequence

such that the target folded structure is so low in free energy that

any other folded structure is likely to be higher in energy and thus

disfavored. The second class we will call ‘‘explicit negative

design.’’ This strategy explicitly considers a set of alternative

structures and optimizes the sequence such that the desired

state is lower in energy than any of the alternatives. The third

class wewill call ‘‘heuristic negative design.’’ This strategy seeks

to disfavor alternative energy minima by employing heuristics

that increase the energy of most nontarget states. In the

following, we will describe how these strategies have been

employed to design new biomolecules and how they have drawn

inspiration and guidance from nature.

Forward Design

In this approach, possible competing states are not considered

explicitly, and the focus is instead onmaking the desired state as

low in free energy as possible. This approach has been applied

most successfully to protein fold design. The justification for

this approach is that, to fold into a unique structure, a biopolymer

must encode very many precise stabilizing atomic interactions,

and so stable alternative structures are unlikely to arise by

chance (Figure 1). Indeed, screens for random sequences that

adopt folded structures suggest that they are extremely rare

(Scalley-Kim et al., 2003) unless they have certain hydro-

phobic-polar patterns (Xu et al., 2001). The most stringent test

of forward design applied to monomeric proteins is the compu-

tational design of a protein topology not observed in nature,

which yielded a very stable protein named Top7 (Kuhlman

et al., 2003). X-ray crystallographic studies of Top7 showed

that the molecular structure was nearly identical to the computa-

tional model, demonstrating the sufficiency of current energy

functions for creating new structures from scratch with atomic-

level accuracy. Even in this case, however, there were elements

of negative design, as structure prediction calculations were

used to ensure that the native state was lower in energy than

any alternatives.

Forward design has also been used to design small molecules

to bind, inhibit, or induce the function of enzymes and proteins

involved in signal transduction to target many traditional classes

of drug targets, including kinases, proteases, and, more

recently, protein-protein interactions (reviewed by Ekins

[2006]). In high-throughput computer calculations, millions of

small molecules can be docked into a target site and the most

tightly binding compounds identified. However, because the

docked molecules are small and the interactions often quite

polar, it unfortunately is often the case that the desired bound

state does not have a significant energy gap relative to other

states, and the small molecules in practice bind in alternative

modes to the same structure or to entirely different proteins.

Indeed, the small energy gaps are perhaps the major issue con-

founding computer-based drug design.



Explicit Negative Design

In this approach, a number of ‘‘competitor’’ states are explicitly

modeled, and design seeks to maximize the Boltzmann weight

of the desired state relative to the competitors by both

decreasing the energy of the desired state and increasing the

energy of the competitors (Havranek and Harbury, 2003). Such

multistate design has been used to generate specific coiled coils

and DNA binding and cleaving enzymes (Ashworth et al., 2006;

Grigoryan et al., 2009; Havranek et al., 2004; Havranek and Har-

bury, 2003).

There are interesting possible parallels to explicit negative

design in nature. Cellular protein interaction networks in critical

processes such as signaling often involve highly homologous

binding components (Meenan et al., 2010; Newman andKeating,

2003; Zarrinpar et al., 2003). Due to this high homology, insulating

interactions fromone another is challenging but crucial for proper

function. The importance of insulating interactions for organismal

fitness is illustrated by a yeast SH3 domain-binding peptide that

binds with high specificity to only one of the 27 SH3 domains in

yeast but nonspecifically crossreacts with many non-yeast SH3

domains. (Zarrinpar et al., 2003). Sequence variants of this

peptide, which bound additional yeast SH3 domains, conferred

a fitness defect to yeast cells expressing them, suggesting

a role for negative selection in interaction insulation. In vitro evolu-

tion studies have shown further that binding specificity does not

arise simply as a byproduct of selection for higher binding affinity

and that selection pressure against binding undesired targets

must sometimes be explicitly enforced to get high-specificity

binding (Collins et al., 2006; Levin et al., 2009).

Heuristic Negative Design

A problem with the explicit negative design strategy for both

computational design and natural evolution is that the set of

undesired alternatives must be enumerated for the calculations

or present during selection. In the design case, this requires

that the set of undesired structures/complexes be already

known and not too large (otherwise the calculations become

intractable). The heuristic negative design strategy, in contrast,

builds up the energy gap not by explicitly disfavoring specific

alternative competitors but by incorporating features that are

likely to increase the energy of most undesired states, making

them less favorable. An example of heuristic negative design is

presented by edge strands in b sheets, which often are quite

polar and somewhat irregular, which disfavors pairing with other

strands and hence aggregation or nonspecific association with

other b sheet-containing proteins (Richardson and Richardson,

2002); the resultant proteins avoid undesired association without

requiring selection against binding to each and every undesired

protein. Natural drug-like small molecules have, on average,

more chiral centers, fewer rotatable bonds, and more rings

than do molecules in chemical libraries used for screening and

identification of drug candidates; these properties likely enhance

binding specificity and are key features that drug design aims to

emulate (Feher and Schmidt, 2003). Again, there are close paral-

lels between strategies used in negative design calculations and

strategies that nature has appeared to employ to achieve energy

gaps required for function.

Though, as noted above, the forward design strategy appears

to be sufficient to generate unique folded states, it appears likely
that nature has employed heuristic negative design to increase

folding cooperativity. Kinetic studies of the folding of the de

novo designed protein Top7 revealed the population of several

stable intermediate structures and overall low folding coopera-

tivity (Scalley-Kim and Baker, 2004; Watters et al., 2007). These

results suggested that cooperative folding is not a necessary

feature of stable proteins but, rather, that cooperativity emerges

by evolutionary selection. A likely explanation for natural selec-

tion of cooperatively folding polymers is that partially folded

substructures of proteins are more prone to aggregation and

amyloid formation with potentially catastrophic fitness conse-

quences (Dobson, 2003; Eichner and Radford, 2011). The low

sequence identity of homologous domains in large multidomain

proteins may also reflect heuristic negative design to reduce in-

terdomain misfolding and aggregation (Borgia et al., 2011;

Wright et al., 2005).

Heuristic negative design is likely to be particularly important

for biomolecular interactions. Interactions between biopolymers

or between biopolymers and small molecules need only over-

come the entropy loss of limiting six rotational and translational

degrees of freedom (though conformational changes have an

important role in molecular recognition), and because the

entropic barrier to binding is much lower than that for folding,

new macromolecular interactions can arise quite readily. For

example, it has been estimated that more than 50% of the

T cell receptors that are capable of undergoing positive selection

for binding of peptide-MHC complexes are deleted due to unde-

sired interactions with self antigens (van Meerwijk et al., 1997). It

is unlikely that interaction specificity in biological systems arises

solely from explicit negative design: a necessity for each protein

or RNA molecule to be specifically selected not to bind to all co-

existing biopolymers implies an improbable fragility of the

biopolymer complement in every cellular compartment. Rather,

it seems probable that there are general rules that, although

they cannot prevent all crossreactivity, do minimize its likeli-

hood. One clear trend that likely arises from heuristic negative

design is the absence of large clusters of hydrophobic residues

(which can nucleate protein-protein interactions) on most

protein surfaces.

Design efforts can help to bring into focus principles under-

lying biological self-organization. A comparison of interaction

sites on natural proteins to those on designed proteins sug-

gested that the former were more conformationally restricted

(Fleishman et al., 2011b, 2011d). Thus, one of the mechanisms

that nature uses for heuristic negative design appears to be con-

formationally restricting potentially promiscuous sets of side

chains and loop segments so that they are unable to form unde-

sired interactions or result in protein misfolding. As described

below, protein interface design methodology has had some

success attempting to emulate this property, illustrating again

how insights from nature can inform design.

Another biomolecule class in which nature has apparently

used heuristic negative design is the intrinsically unfolded

proteins (IUP) (Wright and Dyson, 1999). These proteins contain

domains that lack structure in solution but often fold into

a distinct three-dimensional structure when bound to their target

proteins (Dyson and Wright, 2005). To ensure that the proteins

do not fold in isolation, IUPs lack bulky hydrophobic residues
Cell 149, April 13, 2012 ª2012 Elsevier Inc. 267



Figure 4. Increasing the Energy Gap in Designed Proteins through

In Vitro Evolution
Design of energy gaps in macromolecules is limited by the accuracy of
underlying energy functions but can be achieved by experimental iterative
improvements of activity through in vitro selection. The experimentally deter-
mined molecular structure of a de novo designed binder of influenza hemag-
glutinin (gold) shows atomic-level agreement with the model (green) (Fleish-
man et al., 2011c). Starting binding affinity was low (Kd > 1uM), but affinity
maturation through in vitro selection identified mutations that improved
binding affinity, e.g., A60V, which increases the shape complementarity of the
interacting surfaces (inset), but was not identified by the design calculations
because of minor steric clashes with neighboring protein backbone atoms.
Thus, affinity-increasing substitutions reveal missing elements in macromo-
lecular modeling and design and drive improvements in design methodology.
Arrows point to hemagglutinin surfaces that form a canyon around the critical
site, likely to evade recognition by bulky immune antibodies (Rossmann, 1989).
By utilizing small protein scaffolds, computational design can circumvent the
constraints imposed by pathogens on binding surfaces vital to their repro-
duction. Hemagglutinin is rendered as a yellow surface.
and have high polar and charged residue propensity. These

negative design rules are so prominent that they have been

used quite successfully to predict the existence of IUPs on the

basis of sequence information alone (e.g., Mizianty et al.,

2011). Countering the vast entropic penalty of the unfolded to

folded-and-bound transition requires a large contact surface

area encompassing many favorable interactions with the target

molecule, which results in high specificity, and the entropic

penalty of folding-upon-binding reduces affinity: high specificity

and low affinity are hallmarks of the regulatory processes in

which IUPs are prominent, such as signaling and transcriptional

regulation. In the perspective taken here, IUPs stand out in that

the required energy gap only arises when their binding partner

is present, ensuring that, though they do not adopt unique struc-

tures in isolation, they bind their targets with very high specificity.

Pathogens also appear to have utilized heuristic negative

design to fend off the host immune system. For example, viral

surface proteins such as influenza hemagglutinin have deep

surface depressions that hide regions that participate in viral

attachment and cellular invasion. These so-called structural

‘‘canyons’’ (Rossmann, 1989) significantly reduce access to

immune antibodies and thus allow the maintenance of

conserved sites free of immune system pressures (arrows in

Figure 4). Rather than responding to selective pressures from
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individual antibodies, viruses thereby employ heuristics to

prevent recognition by a vast majority of antibodies.

De Novo Design of Function
There has been considerable progress in designing proteins with

novel functions. As is clear from the above considerations,

success requires the existence of an energy gap between func-

tional conformation(s) and the vastly larger number of nonfunc-

tional conformations. We summarize recent progress in

designing novel functions, emphasizing both approaches for

generating the required energy gap and areas where more

work is required to achieve such a gap. In the following, our focus

is on de novo design driven by physically realistic modeling, but

exciting progress has also been made in de novo design of

a hydrogenase (Jones et al., 2007), an oxygen carrier (Koder

et al., 2009), and cofactor binders (Cochran et al., 2005) using

low-resolution modeling (reviewed by Samish et al., 2011).

Design of Protein-Protein Interfaces

The ability to design proteins that bind tightly to any desired

surface on a target macromolecule of known structure would

be of tremendous utility in biomedicine. Most methods for

designing protein-protein interfaces have relied on forward

design by generating sequences that are predicted to bind

tightly to their targets. For example, two membrane-spanning

peptides targeting two homologous human integrins were de-

signed by utilizing the membrane-protein 5 residue dimerization

motif small-xxx-small, in which small are Gly, Ala, or Ser resi-

dues, and x is any intervening residue (Yin et al., 2007). Low-

affinity homo-oligomeric and hetero-oligomeric complexes

have been designed by docking natural proteins and redesigning

the residues at the interface (Huang et al., 2007; Jha et al., 2010).

Higher-affinity interactions were designed between two normally

noninteracting proteins by computational docking guided by

specific hydrogen bonding interactions across the interface fol-

lowed by design of the surrounding residues (Karanicolas

et al., 2011). The computationally designed complex, Prb-

Pdar, bound with a dissociation constant (Kd) of 150 nM, and in-

vitro selection for higher-affinity variants identifiedmutations that

increased affinity to the Kd < 1 nM range. However, a crystal

structure of the evolved complex showed that, although the

proteins interacted through the designed residues, conforma-

tional changes at the interface led to reorientation of the binding

mode by 180�. The observed conformational changes under-

scored the pliability of protein surfaces and the importance of en-

coding heuristic elements of negative design to ensure that the

desired binding mode is favored over alternatives.

To emulate the conformational restriction of binding patches

noted above, which likely functions for heuristic negative design

in native proteins, we developed a method that starts by

computing clusters of disembodied amino acid side chains

that interact favorably with one another and the protein target

(Fleishman et al., 2011c). Next, this method identifies scaffolds

that can accommodate one of these clusters and finally designs

the remaining surface for high binding affinity. The requirement

that core side chains form energetically favored spatial clusters

reduces the conformational plasticity of the designed binding

surfaces because alternative conformations are likely to have

higher energies (Fleishman et al., 2011a); this method thus



encompasses elements of both forward design and heuristic

negative design. The method was used to generate two proteins

that, following sequence optimization by in vitro selection for

high-affinity binders, interacted at low nanomolar dissociation

constants with a spatially recessed surface on influenza hemag-

glutinin. One of the proteins inhibited the pH-dependent confor-

mational changes in Spanish and avian influenza hemagglutinin,

and the crystallographically determined molecular structure of

the other with the Spanish influenza hemagglutinin revealed

high accuracy in the modeled interaction (Figure 4). Such de-

signed proteins could potentially serve as antiviral therapeutics

and diagnostics.

Design efforts have some potential long-term advantages over

evolution in devising new inhibitors. Nature recycles certain

protein scaffolds such as the immunoglobulin, PDZ, and ankyrin

repeat, and those recur as binders of diverse targets (Pawson

and Nash, 2003). Though these scaffold proteins have favorable

characteristics as binders, the reuse of scaffolds reflects evolu-

tionary history rather than thermodynamic necessity. By

contrast, protein design is unencumbered by evolutionary

dynamics and can use any energetically appropriate scaffold;

in the case of the hemagglutinin binders (Fleishman et al.,

2011c), steric constraints imposed by the hemagglutinin surface

that likely result from selection of surfaces that would avoid

immune system recognition (Rossmann, 1989) favored the use

of small helical protein scaffolds (Figure 4).

Enzyme Design

The challenge in computational enzyme design is to generate

proteins that bind to a high-energy transition state and catalyze

the chemical transformation. Enzyme designmethodology could

have wide application in chemical synthesis, creation of new

metabolic pathways, bioremediation, and numerous other areas.

Enzyme design has been approached by forward design

methods: first finding a constellation of amino acid side chains

that can catalyze the reaction and then stabilizing these side

chains and transition state binding by sequence design (Zan-

ghellini et al., 2006). Computational design has been used to

generate several new enzymes, including unimolecular Kemp el-

imases (Röthlisberger et al., 2008) and retroaldolases (Jiang

et al., 2008) and bimolecular Diels-Alderases (Siegel et al.,

2010). Kemp elimination has also been generated in calmodulin

to produce an allosterically regulated enzyme by introducing

a single glutamate residue in a hydrophobic pocket (Korendo-

vych et al., 2011). Catalytic rates in all of de novo designed

enzymes have been quite low (Kcat/Kuncat 105) compared to

most natural enzymes. Apo crystal structures of some designed

enzymes have shown good correspondence with the original

designed models (Jiang et al., 2008; Röthlisberger et al., 2008;

Siegel et al., 2010), but structures in complex with transition

state analogs have only started to emerge in the case of de

novo designed retroaldolases (Wang et al., 2011). The experi-

mental complex structures broadly agree with the design

conception: the catalytic lysine residue forms covalent interac-

tions with the transition state analog, and other hydrophobic

interactions are similarly well captured, but the fine details of

the water structure surrounding the substrate as well as the

positioning of the substrate often differ in the experimental

structures.
Achieving catalytic rates, turnovers, and substrate selectivities

approaching those of natural enzymes will likely require

advances in understanding of the subtle interplay between struc-

tural stability and enzyme function (Tokuriki and Tawfik, 2009).

Encoding significant energy gaps for (1) the catalytically compe-

tent arrangement of active site residues relative to the much

larger number of nonfunctional arrangements, (2) the substrate

binding mode relative to all other binding modes, and (3) the

reaction transition state relative to the ground state is likely to

be critical for increasing activity. The number of competitor

states in each of these scenarios is small, but encoding the

required energy gaps (Figure 1) is a particular challenge for

enzyme design, as the catalytic residues are frequently charged

and flexible, such as the lysine residue that forms a critical Schiff

base in the retroaldolase design mechanism (Jiang et al., 2008).

Whereas for native proteins, enzyme dynamics can contribute to

catalysis (Eisenmesser et al., 2005), because the chemical

step(s) are so well optimized that substrate binding and/or

product release become rate limiting, for designed enzymes, at

this stage of development of the field, achieving structural preci-

sion (by encoding the necessary energy gaps) and reducing

sampling of nonproductive states is likely to be critical.

Experimental Optimization of the Energy Gap

in Designed Proteins

As described above, directed evolution has been employed to

increase the energy gap in designed interactions. This has re-

sulted in orders of magnitude improvements in catalytic activity

and binding and has underscored important areas for improve-

ments in computational methods. In the design of influenza

hemagglutinin inhibitors, the affinity-increasing mutations

improved the shape and charge complementarity of the de-

signed and target surfaces and relieved energetic strain in the

designed binding surface (Figure 4) (Fleishman et al., 2011c). In

de novo enzyme design, starting activities were improved by

two to three orders of magnitude by plate-based activity assays

of error-prone PCR (epPCR) libraries encoding variants of the

computational designs (Jiang et al., 2008; Khersonsky et al.,

2011; Röthlisberger et al., 2008). In the design of retroaldolases,

activity-enhancing mutants packed more tightly around a cata-

lytic lysine residue presumably to stabilize the catalytic geom-

etry. Amino acid substitutions that increased the activity of de

novo designed Kemp eliminases likely improve the electrostatic

compatibility of the enzyme active site for the substrate as well

as the stability of the catalytic sites (Khersonsky et al., 2011).

Thus, directed evolution of designed proteins can provide

insights into energetic aspects of protein function that are

systematically missing from design calculations and can provide

a clear guide to improving design calculations in future applica-

tions. On the flip side, evolution can increase the energy gap of

alternative conformations, as may have occurred in the directed

evolution of the de novo designed protein-binding pair Prb-Pdar

(Karanicolas et al., 2011).

Contrasting Roles of Experiment and Computation

in Prediction and Design

The requirement for the energy gap leads to a fundamental

difference between the roles of experiment and computation

in structure determination and design (Table 1). In structure

determination, because of the omnipresent energy gap for
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Table 1. Contrasting Roles for Experiment and Computation in

Structure Prediction and Design

Search

Problem?

Large Energy

Gap? Solution

Structure

calculation

yes yes experiment then

computation

Function

design

no no computation then

experiment

The necessity of the energy gap leads to contrasting roles for experiment

and computation in structure prediction and design. Structure prediction

can rely on the naturally encoded energy gap between the native state

and its alternatives to accurately identify the native state, but in large

macromolecular systems, conformational search is limiting. The solution

is to use experimental data to constrain sampling. In the design of func-

tion, the target state is arbitrarily chosen, avoiding the search problem,

but the low accuracy of the energy function yields small initial energy

gaps. The solution here is to iteratively improve designed functions by

in vitro selection for higher-activity variants. Energy function accuracy

is still an issue for structure prediction (in particular, distinguishing among

a handful of lowest-energy states [Figure 1, inset]) but much less so than

for design.
native folded structures, the main limitation for the methods

described here is conformational sampling, and thus experi-

ments precede computation to guide sampling toward the

native state. Once the native state is sampled, it can be identi-

fied as such due to the evolutionarily encoded energy gap

with respect to other states. In design, sampling is less of

a problem because there is no single native state to be found

and any conformation that satisfies the design specifications

is adequate, but energy function inaccuracies entail small initial

energy gaps and hence low initial activities. These small energy

gaps can be increased by experimental activity optimization

through sequence variation and selection, which has the great

advantage of utilizing nature’s own energy function. Thus,

because of the existence of the energy gap in structure determi-

nation of naturally occurring biomolecules and the difficulty of

designing energy gaps in new biomolecules, experiment is

most effective preceding computation in structure determina-

tion and following computation in design efforts.

The Energy Gap, Specificity, and Promiscuity in Natural
and Designed Systems
The challenges facing biomolecule designers echo those that

constrain the evolution of natural enzymes and cellular interac-

tion networks (Figure 1). Cells developed elaborate machinery

to prevent misfolding and undesired associations through chap-

erones and the unfolded protein response (reviewed by Dobson,

2003). In addition, there are general strategies for avoiding the

pitfalls of macromolecular folding in a high-concentration envi-

ronment, as outlined above. When these rules are broken by

mutation, dysregulation and disease can result. The case of

sickle cell anemia illustrates the importance of interaction insula-

tion: a surface Glu/Val mutation (Ingram, 1956) forms a hydro-

phobic surface that does not impair the hemoglobin oxygen-

carrying capability but, rather, forms a new site for favorable

interactions with other hemoglobin proteins (Pauling and Itano,
270 Cell 149, April 13, 2012 ª2012 Elsevier Inc.
1949), leading, under certain conditions, to large oligomers

that cripple erythrocytes and cause anemia.

Though this essay has focused on the large energy gaps

required for folding and specificity, switching between alterna-

tive conformations or interactions requires small energy gaps

between competing states. Allosteric regulation by effectors

requires very small energy gaps: the free energy difference

between the low- and high-affinity states of hemoglobin (for

oxygen) states must be quite small (Perutz et al., 1998) to allow

the population of the two states to be modulated by protons

and CO2; this modulation is critical for vertebrate life. The cell

cycle-governing cyclin-dependent kinase (CDK) is regulated by

very similar interactions at a common site with different cyclins,

which direct kinase activity to different substrates (Miller and

Cross, 2001; Morgan, 2007); agonists, antagonists, posttransla-

tional modifications, localization, expression levels, and degra-

dation act to ensure precise patterns of activation, and for these

to switch specificity, the energy gaps between the different

states must be quite small. Though the energy gap between

alternative conformations or interactions must be small, the

energy gap relative to the vastly larger number of unfolded or

nonspecific interactions must still be very large to ensure that

the desired set of discrete states is populated at all. Designing

allosteric switchable systems with two low energy states sepa-

rated by a large energy gap from the sea of unfolded or noninter-

acting conformations is a current challenge for protein design

(Ambroggio and Kuhlman, 2006).
Conclusions
Fascination with the ability of biological macromolecules to

interact specifically and at high affinity with one another predates

the elucidation of the first protein structures (Pauling, 1948). The

energy gap determines self-organization in biological macromol-

ecules and is maintained through evolution by specific and

general rules. These rules have traditionally been uncovered

through the biophysical examination of aberrant macromole-

cules (Pauling and Itano, 1949) and are increasingly being char-

acterized through engineering and computational design, shed-

ding light on evolutionary processes and enabling the design of

novel protein functions. Although there has been considerable

progress, design has far to go in matching naturally occurring

binders and enzymes. As one concrete example, immune

system antibodies are able to bind a bewildering diversity of bio-

logical macromolecules with exquisite specificity through the

use of unstructured loops, but the ability to consistently predict

loop conformations, let alone design them, remains elusive.

Macromolecular prediction and design will continue to gain

from better understanding of the mechanisms employed by

nature to encode the energy gaps that are required for folding,

function, and specific binding. Conversely, prediction and

design efforts should highlight fundamental contributions to bio-

logical self-organization.
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