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While information from homologous structures plays a central role
in X-ray structure determination by molecular replacement, such
information is rarely used in NMR structure determination because
it can be incorrect, both locally and globally, when evolutionary re-
lationships are inferred incorrectly or there has been considerable
evolutionary structural divergence. Here we describe a method
that allows robust modeling of protein structures of up to 225 re-
sidues by combining 1HN, 13C, and 15N backbone and 13Cβ chemical
shift data, distance restraints derived from homologous structures,
and a physically realistic all-atom energy function. Accurate models
are distinguished from inaccurate models generated using incor-
rect sequence alignments by requiring that (i) the all-atom energies
of models generated using the restraints are lower than models
generated in unrestrained calculations and (ii) the low-energy
structures converge to within 2.0 Å backbone rmsd over 75% of
the protein. Benchmark calculations on known structures and blind
targets show that the method can accurately model protein struc-
tures, even with very remote homology information, to a back-
bone rmsd of 1.2–1.9 Å relative to the conventional determined
NMR ensembles and of 0.9–1.6 Å relative to X-ray structures for
well-defined regions of the protein structures. This approach facil-
itates the accurate modeling of protein structures using backbone
chemical shift data without need for side-chain resonance assign-
ments and extensive analysis of NOESY cross-peak assignments.
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In recent years, the application of multidimensional data collec-
tion techniques in isotopically enriched proteins (1) as well

as development of selective labeling schemes in perdeuterated
samples (2–5) and other methodological improvements (6, 7)
have allowed the application of NMR methods to larger proteins
(8–10). Conventional NMR structure determination relies
primarily on the availability of distance restraints from NOESY
experiments, which requires time-consuming experiments, in-
cluding extensive analysis of side-chain resonance assignments
and laborious assignments of most of the observed NOESY cross-
peak resonances. While automated assignment methods (11–13)
have greatly stream-lined the process (14), the assignment of
NOE cross-peaks in spectra of larger proteins presents a signifi-
cant challenge due to increased spectral overlap, line broadening,
and low signal-to-noise ratios, rendering existing automated as-
signment methods ineffective in the absence of a preliminary
structural model. Accurate structures can be generated for small
proteins (up to 100–120 residues) using chemical shift informa-
tion to guide structure prediction calculations (15, 16), but addi-
tional NMR data, including backbone NOEs and residual dipolar
coupling (RDC) data, are required to obtained converged struc-
tures for larger proteins (17) and protein oligomers (18). Such
data are often hard to collect and analyze, which hinders the
automation of these methods. The development of assignment-
independent methods is a powerful alternative to conventional

NMR structure determination (19, 20), but such methods have
only been applied for small, globular proteins. Finally, even with
the assignment of NOE data available, the use of NOE restraints
for structural analysis suffers from problems such as conforma-
tional pinning (21) and spin diffusion (22), while ensemble dy-
namics cannot be adequately represented using conventional
methods due to the optimization of a single target function to
the experimental data (21). The solution of these drawbacks is
nontrivial and can be ameliorated using inferential structure de-
termination techniques (23) and ensemble averaging methods
(24–26), but these calculations are inherently limited to smaller-
size systems due to the large number of free parameters.

Considerable information is often available in the structures of
evolutionarily related proteins. This information has long been
used to generate molecular replacement models to phase X-ray
diffraction datasets, and with recent advances this can be accom-
plished even when the evolutionary relationships are quite re-
mote (∼15%–25% sequence identity) (27, 28). Although the use
of homologous X-ray structures to improve and refine existing
NMR structures has been previously described (29), this informa-
tion has not been used for de novo structure modeling. We rea-
soned that this information should also be useful for guiding
CS-Rosetta structure predictions, and investigated the possibility
of accurately modeling protein structures using only the chemical
shifts of backbone atoms (HN, N, Cα, Cβ, C’), distance restraints
derived from homologous proteins of known structure, and the
Rosetta sampling methodology and all atom energy function
(30) (see Methods).

An obvious concern in using evolutionary information in struc-
ture modeling is the potential for error due to sequence align-
ment inaccuracies, both locally (local alignment mismatches)
and globally (incorrect fold in the identified template structure).
A useful method must be both robust to input alignment errors
and have reliable metrics for assessing the accuracy of the result-
ing models, in particular indicating when a structure calculation is
likely to have significant errors. Energy functions have been used
to a limited degree for distinguishing correct from incorrect
sequence alignments in homology modeling calculations (31),
while in molecular replacement methods for X-ray crystallogra-
phy, the fit to the diffraction data distinguishes correct from
incorrect homologous structure information (32). Here we show
that the combination of rapidly obtained backbone chemical shift

Author contributions: J.M.T., N.G.S., and D.B. designed research; J.M.T. and N.G.S.
performed research; J.M.T., N.G.S., G.L., P.R., Y.T., J.L.M., T.S., and G.T.M. contributed new
reagents/analytic tools; J.M.T., N.G.S., T.S., G.T.M., and D.B. analyzed data; and J.M.T.,
N.G.S., G.T.M., and D.B. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.
1J.M.T. and N.G.S. contributed equally to this work.
2To whom correspondence should be addressed. E-mail: dabaker@u.washington.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/
doi:10.1073/pnas.1202485109/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1202485109 PNAS ∣ June 19, 2012 ∣ vol. 109 ∣ no. 25 ∣ 9875–9880

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1202485109/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1202485109/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1202485109/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1202485109/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1202485109/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1202485109/-/DCSupplemental


data together with the Rosetta energy functions provides a robust
and reliable method for distinguishing correct from incorrect
homology information and for generating accurate homology-
based models of protein structures.

Results
To investigate the utility of restraints derived from homologous
structures in guiding CS-Rosetta calculations, which we refer to
here as the CS-HM-Rosetta method, we carried out structure cal-
culations for four proteins of known structure using experimen-
tally measured chemical shifts and between 8 and 12 independent
sets of distance restraints based on individual alignments ranging
from very remote (10% sequence identity) to significant (30%
sequence identity) homology (Fig. 1 and Fig. S1). Several of the
input alignments contained significant errors that would, in the
absence of experimental information, result in incorrect homol-
ogy-based models. CS-Rosetta with chemical shift information
alone (15) (no homology information) fails to converge to a well-
defined structural ensemble in all four cases. As indicated in
Fig. 1A, structures generated using correct alignments (green)
have lower Rosetta full-atom energies than structures generated
using either no evolutionary information (blue) or information
from incorrect alignments (red). Structures generated using re-
straints from correct alignments are closer to the native structure

(Fig. 1B), and the lowest-energy models closely matched the con-
ventionally determined NMR structure (Table 1). The observa-
tion of lower energies in the restrained calculations is nontrivial,
as restrained optimization generally results in poorer energy
minimization than unrestrained optimization. Improved optimi-
zation with restraints suggests that the reduced conformational
freedom, due to the use of restraints, is more than compensated
by improved sampling nearer the low-energy native state (17).
Thus, the decrease in energy compared to unrestrained calcula-
tions provides a first metric for evaluating the structures gener-
ated by the CS-HM-Rosetta method.

We reasoned that calculations based on accurate alignments of
the correctly identified fold should converge more strongly than
calculations based on incorrect alignments, as restraints derived
from incorrect alignments are likely to be in conflict with the ex-
perimental chemical shift data and the full-atom energy function.
Such conflict should result in a rugged landscape for optimiza-
tion, as biasing the calculations toward the incorrect fold by the
restraints likely results in structures with poorly optimized back-
bone, side-chain, and solvation energy terms. Indeed, for each
case illustrated in Fig. 1 and Fig. S1, the convergence of the cal-
culations increased with increasing alignment quality [Fig. 1C;
compare accuracy (x axis) of blue (poorly converged) and yellow
(highly converged) calculations]. Taken together, the decrease in

Fig. 1. Influence of alignment quality on CS-HM-Rosetta calculations. (A, B) Starting from the sequence of the proteasome protomer, remote homology
searches were carried out and alignments to two distant homologues (less than 20% sequence identity) were selected which covered at least 70% of the
sequence; one of these was basically correct, and the other incorrect (different fold than the native structure). CS-HM-Rosetta calculations were carried
out using no homology restraints (blue lines), the correct remote homology information (green lines), or the incorrect remote homology information
(red lines). (A) Restraints from remote homologues with the correct fold allow Rosetta to more effectively minimize the full atom energy. The energy dis-
tribution is shifted to lower energies in the correctly restrained calculations (green) than in the incorrectly restrained (red) or unrestrained (blue) calculations.
(B) Lower backbone rmsd (relative to the X-ray structure) models are produced using accurate restraints than with no restraints or inaccurate restraints.
(C) Relationship between calculation accuracy and the extent of convergence and energy drop relative to unconstrained calculations. Each point represents
an independent calculation using chemical shift data and restraints from single alignments to different templates with various levels of accuracy. The x axis:
fraction of residues that superimpose within 2.0 Å backbone rmsd to the native structure; y axis: average Rosetta full atom energy (y axis) of the lowest energy
ten models from each calculation. The color scale represents the extent of convergence of the calculation (the percent of residues that superimpose to an
average structure with less than 2.0 Å rmsd). The blue line represents the average Rosetta energy of models built without homology restraints, and the dashed
lines show the improvement in accuracy over models built using only homology information (35). Using chemical shift data and accurate homology information
gives the most accurate models, and successful simulations consistently yield both lower Rosetta energies and a highly converged structural ensemble. The
rmsds on the x axis are to the X-ray structures for the monomeric α subunit extracted from the proteasome complex structure (36) (PDB ID 1ya7). Chemical shift
assignments were obtained from previous work (9).
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energy relative to unconstrained calculations (y axis in Fig. 1C;
the energy of the unconstrained calculation is indicated by the
horizontal blue line) and the convergence clearly discriminate ac-
curate structures (yellow points at bottom right) from inaccurate
structures (purple points at top left).

We defined two criteria for assessing structure calculations
using homology information: first, the lowest energy 10 models
should converge to within 2.0 Å over at least 75% of the protein,
and second, the energy should be lower than in unrestrained cal-
culations. Over the 48 simulations performed, structure calcula-
tions which satisfied these two criteria (Fig. 2A, solid line) were
almost always quite close to the independently determined con-
ventional NMR or X-ray crystal structure, while structure calcu-
lations which did not satisfy one or both of the criteria were in
some cases quite inaccurate (Fig. 2A, dotted line). The two va-
lidation metrics successfully diagnose even a pathological case
where the evolutionary information, despite being based on very
high sequence identity, is catastrophically wrong (Fig. S2). A fail-
ure to satisfy both criteria using information from homologous
structures is a clear indication that additional experimental data
are required to solve the structure of a protein. When comple-
mentary data such as RDCs are available, they can provide an
additional validation metric (Fig. S3).

The joint optimization of the largely orthogonal evolutionary
restraints, backbone chemical shift data, and the physically rea-
listic energy function surmounts many inaccuracies (incorrectly
placed insertions and deletions, register shifts, etc.) in the input
sequence alignments. Models generated with homology informa-
tion and chemical shift data are almost always better than the
models generated using homology information alone (Fig. 1 C
and Fig. S3, dashed lines connect models generated without and
with chemical shift information; and Fig. 2B). The improvement
in model quality due to the chemical shift information holds over
the full range of sequence identity (Fig. 2 B and C). There are
large improvements for very low-identity sequence alignments
(yellow and red points, Fig. S4B, left-hand section of Fig. 2C),
but these calculations often fail the two metrics and hence the
resulting models are likely to be useful only in the context of

additional experimental data (e.g., with additional selected label-
ing NOESY-derived restraints; manuscript in preparation). For
sequence alignments of 20% sequence identity or above, there
are also clear improvements over models based on homology in-
formation alone (Fig. S5, green and blue points above diagonal in
Fig. S4), and calculations that pass the two metrics consistently
are reasonably accurate (Fig. 2B, y axis). Employing the valida-
tion criteria rescues (Fig. 2B, dashed line, and C) the steep fall-off
in model accuracy below 20% sequence identity (Fig. 2 B, dotted
line, and C) that has plagued comparative modeling since its
inception. Similarly, the calculations performed using chemical
shift data alone do not converge to near-native conformations
due to the magnitude of the conformational sampling problem
and generally result in a low-precision ensemble with higher full-
atom energies (blue lines in Fig. 1 and Fig. S1). Overall, the
CS-HM-Rosetta method is a clear improvement over previous
methods using either chemical shift data alone (CS-Rosetta) or
conventional homology modeling.

After establishing the two validation measures, we carried out
CS-HM-Rosetta structure calculations on a benchmark of 13
proteins, with experimentally determined structures using back-
bone chemical shifts and distance restraints from template struc-
tures with less than 20% sequence identity to the query (Table 1
and Fig. S4). We focused on alignments with less than 20% se-
quence identity, as for closer homologues, good models can be
generated using homology information alone (Fig. 2 A and B
and Fig. S4). We selected larger proteins where the standard
CS-Rosetta method fails to converge due to sampling limitations,
even with the use of RDCs. For all of the targets meeting both
validation criteria, we obtain models that are consistently very
similar (1.25–2.5 Å backbone rmsd) to structures determined
previously using conventional NMR protocols. In the five cases
where high-resolution X-ray structures are available (bottom of
Table 1), the accuracy of the CS-HM-Rosetta ensembles falls
within 0.9–1.6 Å backbone rmsd for well-defined regions of the
structure. This compares well with backbone rmsds of 0.5–1.5 Å
observed in a case study of some 230 pairs of NMR/X-ray crystal
structures of identical proteins (33), particularly considering that

Table 1. Convergence and accuracy of models generated with chemical shift data and homology information

Target PDB code (NMR/X-ray) Convergence* Accuracy (NMR/X-ray) Fold type Backbone rmsd†

CsR251 N/A 104/126 2.26 α/β 2.0
HR4403E 2lni 108/122 1.95 α/β 0.4
LpR145J 2lfc 107/138 1.95 α/β 2.0
HR5460A 2lah 114/146 1.29 α/β 1.0
Tpx 2jsz 122/167 1.69 α/β 1.0
ER553 2k1s 111/143 1.62 α/β 0.9
WR73‡ 2kwb 109/139 2.52 α/β 1.8
CgR26a 2kpt 114/115 1.46 α/β 2.0
T0475 2k54 91/120 1.29 α/β 1.2
SeR147 2l9p 116/151 1.56 α/β 0.8
RhoA NA/1a2b 143/181 1.60 α/β 2.0
Rhodopsin 2ksy/1f88 159/222 1.89/1.48 (1.76) α 1.5
SgR145‡ 2kw5/3mer 134/152 2.37/1.16 (2.38) α/β 1.3
fgf2 1bla/1bas 98/125 1.45/1.41 (0.75) β 2.0
Antigen-1 1dgq/1zon 147/189 1.23/1.03 (1.04) α/β 1.0
Ribonuclease 2aas/1kf5 93/124 1.25/0.90 (0.98) α/β 1.5
Hemoglobin 1vre/1jf4 106/147 1.84/1.64 (1.43) α 1.3

Structures determined using chemical shifts and restraints from homologs <20% sequence identity (CS-HM-Rosetta, first two columns) are compared
to conventionally determined NMR or X-ray structures. All targets reported pass the convergence and energetic validation metrics (see article text).
Accuracy is the median backbone rmsd to the NMR/X-ray structure over the converged part of the structure (numbers in parentheses are backbone
rmsds between X-ray and NMR structures). Names of blind cases are italicized (first four rows). For all benchmark cases, the standard CS-Rosetta method
fails to converge over more than 50% of the target structure. While high-resolution structural ensembles are obtained using remote homology
information for 11/17 cases (category 1 in main text), for the remaining 6/17 cases (highlighted in bold) the resulting ensembles are not as well-
converged and are perhaps best used as preliminary models toward refinement using additional experimental data (category 2 in the main text).
N/A, not applicable.
*Convergence here is the fraction of total residues that superimpose within the rmsd threshold of column 6 in the low-energy CS-HM-Rosetta ensemble.
†Rmsd computed for the backbone of ordered portions of the CS-HM-Rosetta ensemble.
‡Regions disordered in the NMR ensemble were excluded from this analysis; convergence values are reported relative to the adjusted sequence length.
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most of the proteins assessed in this previous case study were
smaller than the proteins used in this CS-HM-Rosetta study.
In cases where X-ray structures of the same targets are also avail-
able (Table 1), the structural ensemble modeled using the CS-
HM-Rosetta method is often closer (in terms of backbone rmsd)
to the X-ray structure than the conventionally determined NMR
ensemble (Table 1 and Fig. 3D). Moreover, the CS-HM-Rosetta
structures show a high degree of side-chain convergence to the
rotamers observed in the X-ray or NMR structures (Fig. 3 C
and D); indeed, the CS-HM-Rosetta structures have more side-
chains in the same rotamer conformation as in the X-ray struc-
tures than the conventional NMR structure (Table S1). The ob-
servation that highly converged CS-HM-Rosetta ensembles have
accurate side-chain conformations suggests the classification of
CS-HM-Rosetta ensembles into three categories (Table S2): (1)
lower energy after adding restraints and convergence to <1.5 Å
over at least 75% of the structure: as well determined as conven-
tional NMR structures; (2) lower energy after adding restraints
and convergence between 1.5 and 2.0 Å over 75% of the struc-
ture: correct overall structure, but less accurate than conventional
NMR; and (3) energy not lower with restraints and convergence
worse than 2.0 Å over 75% of the structure: more experimental
data required. Class (2) ensembles can be very useful intermedi-
ate steps in structure determination using additional experimen-
tal data, and could provide valuable starting points for automated
NOE-assignment methods.

In order to assess the practical performance of CS-HM-Roset-
ta, we calculated structures for four mid-size targets whose struc-
tures had not yet been published (or in some cases even solved)
using backbone chemical shift data (but no other experimental
data) from expert laboratories. These particular cases were
selected for this study because they do not converge using the
standard CS-Rosetta protocol. The low energy converged struc-
tures were subsequently sent to the laboratories who had inde-
pendently solved the same structures by conventional NMR
methods, including extensive analysis of side-chain assignments
and NOESY data, for evaluation. For all four targets (Table 1
and Fig. 3), the CS-HM-Rosetta calculations converged on an
ensemble in good agreement with the structures determined

independently in the expert laboratories. According to the vali-
dation criteria, two of the ensembles are category 1 (high accu-
racy) and two are category 2. The CS-HM-Rosetta structures
agree as well with unassigned NOESY data as conventional NMR
models determined using assigned NOEs (Table S3). When un-
assigned NOESY data are available, metrics such as the DP score
which assess the fit between structure models and unassigned
NOESY peak lists can provide a third criterion for assessing

Fig. 3. Structural comparison of high-resolution CS-HM-Rosetta structures
with conventionally determined NMR (A, B, and D) and X-ray (C) structures.
CS-HM-Rosetta structures are shown in red, and conventionally determined
structure is shown in blue. (A) Proteasome monomer. (B) HR5460a.
(C) SgR145. (D) ER553.

Fig. 2. Validation metrics allow discrimination of accurate from inaccurate calculated structures. Independent calculations were performed using chemical
shift data and homology modeling restraints derived from templates of varying evolutionary distance (37) (10–30% sequence identity) using the benchmark
targets described in Table 1. From each simulation, the lowest 10 models by Rosetta full atom energy were used as a structural ensemble. (A) Calculated
structures satisfying both validation criteria are close to the native structure. Ensembles from CS-HM-Rosetta were validated using two metrics: the lowest
10 models must superimpose within 2.5 Å over at least 75% of the structure, and the same models must be lower in Rosetta energy than any models from an
unrestrained simulation that fails to converge. Accuracy was measured as the percentage of residues that superimpose to the ordered NMR ensemble. En-
sembles that are valid by both criteria (solid line) are significantly more accurate than ensembles that fail at least one of the criteria (dashed line).
(Kolmogorov-Smirnov one-sided P-value ¼ 1.477e-10). (B) Calculated structures satisfying both validation criteria avoid the sharp drop in model accuracy
at low sequence identity. Cases were deemed successful if they superimposed within 2.5 Å over 75% of the native structure. Each low-energy ensemble
was placed in a bin defined by the sequence identity of the homologous structure used in the simulation. At 20% sequence identity, there is a sharp
drop-off in accuracy for both homology modeling (dotted line) and CS-HM-Rosetta (solid line), which is rescued by application of the validation criteria
(B, dashed line). (C) Over the full set of alignments from 10–30% sequence identity, the variance in model accuracy is quite high (left bar), but with the
application of the validation criteria (right bar), the variance decreases considerably and the average accuracy increases dramatically
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model quality (34). The CS-HM-Rosetta models also showed
good agreement with the RDC data (Fig. S3).

Discussion
We have shown that reasonably accurate models of proteins up to
25 kDa can be obtained by using remote homology information to
guide CS-Rosetta structure calculations (30). For proteins larger
than 100 residues, the CS-HM-Rosetta method is a significant
improvement over CS-Rosetta. The final structures agree well
with structures determined using state-of-the-art conventional
NMR methods and X-ray crystallography. The validation metrics
(ensemble convergence and improved optimization of the full-
atom energy) distinguish between cases where the method pro-
duces an accurate structure and cases where the protocol fails
due to inadequate sampling or incorrect homology information
(arising from inaccuracies in the input sequence alignments), al-
lowing confident utilization of the wealth of structural data cur-
rently available for structure determination. Overall, this method
is a powerful approach for protein NMR data analysis that does
not require determination of side-chain resonance assignments.
The CS-HM-Rosetta method provides high-quality models of
protein structures, with accurate core side-chain structures, ap-
proaching the quality that is obtained with full side-chain assign-
ments and much more extensive NOESY analysis.

Methods
CS-HM-Rosetta Input Data. Alignments to templates were generated using
standard methods. Interatomic distance restraints were derived from tem-
plates using a previously described method (27) that models restraints as a
mixture of Gaussian probability densities, where the weight and width of
each restraint is based on the estimated probability that the restraint is cor-
rect. In this method, restraints operating on the same pair of atoms are com-
bined from multiple templates by awarding higher weight to restraints that
are more likely to be correct. Fragments were derived using the standard
CS-Rosetta method (15), which scores candidate fragments by measuring
their agreement with the observed sequence profile, predicted secondary

structure, and chemical shift data. The use of RDC data from an arbitrary
number of alignment media is also supported in a simple input format.

CS-HM-Rosetta Simulations. Full-atommodels were constructed using the pre-
viously described CS-Rosetta procedure (15, 17), with one modification to in-
clude the restraints from template structures as an extra scoring term (27).
The protocol consists of a low-resolution stage in which side-chains are repre-
sented by a centroid atom with radius depending on the amino acid residue
identity. Structures are assembled starting from an extended chain by frag-
ment insertion under a low-resolution force field that favors structural com-
pactness and formation of secondary structure elements. In order to avoid
frustration of the optimization process, restraints are gradually incorporated
into the protocol by activating restraints between adjacent residues early in
the simulation and progressively including restraints between residues more
distant in sequence. Low-resolution modeling is followed by a high-resolu-
tion refinement stage during which all heavy and hydrogen atoms in the pro-
tein are explicitly represented, and the backbone and side-chain torsion
angles are refined in the presence of the Rosetta full-atom energy function.
The use of RDCs during the low-resolution and high-resolution refinement
stages is optionally performed through the addition of a pseudoenergy term
that measures the back-calculated RDCs from the current structure with the
experimental RDCs. Models are selected according to the Rosetta full-atom
energy function (30), and convergence is measured as the proportion of re-
sidues superimposable within 2.0 Å among the lowest 10 models by Rosetta
energy. CS-Rosetta models were generated using the same procedure with-
out homology restraints, and homology models were generated using Mod-
eller (35). Software and data are available upon request from the authors,
and a detailed description of the method is available in the SI Text and
Table S4.
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