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INTRODUCTION

There are two sources of information available for prediction of

protein structure in the absence of direct experimental data. The

first source is based on physical chemistry, in particular, our under-

standing of the energetics of interactions within macromolecules.

Folded protein structures are likely to be at global-free energy mini-

mum, and, given a sufficiently accurate description of the ener-

getics, structures can be accurately predicted by searching for very

low energy conformations of the polypeptide chain. The second

source is evolutionary: evolutionarily related proteins nearly always

have similar structures,1 and, with the very large number of protein

structures already solved, there is likely to be information from

structures of homologous proteins that can be used to predict the

structure of a protein of interest.2 The Rosetta program developed

in our group primarily uses the first source of information, and

structure prediction is essentially a search for the lowest energy

structure in a physically realistic all-atom force field. In contrast,

the Modeller program, developed by Andrej Sali and coworkers,

uses primarily the second source of information; structure predic-

tion with Modeller focuses on the satisfaction of spatial restraints

derived from homologous protein structures.3 In this work, we

combine the strengths of the two approaches by incorporating spa-

tial restraints derived from homologues into the Rosetta high-reso-

lution modeling protocol.

METHODS

Structural databases

A nonredundant database of 7786 proteins solved by X-ray crys-

tallography was selected using the PISCES server.4 Alignments

between all pairs of proteins were created using HHSearch,5 and

alignments with statistically insignificant similarities (HHSearch

e-value >1) were discarded. HHSearch was configured to com-

pare predicted secondary structure of the query sequence against a
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ABSTRACT

Prediction of protein structures from sequences is

a fundamental problem in computational biology.

Algorithms that attempt to predict a structure

from sequence primarily use two sources of infor-

mation. The first source is physical in nature: pro-

teins fold into their lowest energy state. Given an

energy function that describes the interactions gov-

erning folding, a method for constructing models

of protein structures, and the amino acid sequence

of a protein of interest, the structure prediction

problem becomes a search for the lowest energy

structure. Evolution provides an orthogonal source

of information: proteins of similar sequences have

similar structure, and therefore proteins of known

structure can guide modeling. The relatively suc-

cessful Rosetta approach takes advantage of the

first, but not the second source of information dur-

ing model optimization. Following the classic work

by Andrej Sali and colleagues, we develop a proba-

bilistic approach to derive spatial restraints from

proteins of known structure using advances in

alignment technology and the growth in the num-

ber of structures in the Protein Data Bank. These

restraints define a region of conformational space

that is high-probability, given the template infor-

mation, and we incorporate them into Rosetta’s

comparative modeling protocol. The combined

approach performs considerably better on a bench-

mark based on previous CASP experiments. Incor-

porating evolutionary information into Rosetta is

analogous to incorporating sparse experimental

data: in both cases, the additional information

eliminates large regions of conformational space

and increases the probability that energy-based

refinement will hone in on the deep energy mini-

mum at the native state.
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database of sequences with DSSP-assigned secondary

structure. All alignment pairs with significant e-values

were considered, independent of structural similarity

between pairs in order to simulate a situation in which

structural templates are found for a protein of unknown

structure. We used these sequence-based alignments

between proteins of known structure to estimate parame-

ters for inferring spatial restraints. A set of 250 proteins

was excluded in order to benchmark different probabilis-

tic models for generating restraints (see Fig. 2 and Model

Calibration on an Independent Test Set). Any proteins

involved in the CASP7 experiment6 were discarded from

both the training and testing sets, so that these proteins

could be used to benchmark structural prediction using

the spatial restraints.

Distance restraints from a single template

For deriving distance restraints, pairs of amino acids

aligned by HHSearch5 were examined. HHSearch aligns

protein sequences with protein structures; therefore, the

alignments of pairs of proteins are not symmetric. Fol-

lowing standard procedure, we refer to the protein used

to search the database as the query and the structures

found in the database search as templates. We computed

statistics over all pairs of aligned residues with Ca
atoms less than 10 Å apart in the template structure

that was separated by more than 10 residues along the

query sequence. For each of these pairs, the magnitude

of the difference in distances between the C atoms at

the two positions in the aligned structures was com-

puted (|R1ij 2 R2i0j0| where R1ij is the distance between

atoms i and j in structure 1, and R2i0j0 is the distance

between the equivalent atoms i0 and j0 in structure 2).

These distance deviations were placed in a bin based on

the sequence similarity and structural context of the two

residues. The bins are defined by the global alignment

quality (G—the negative log of the HHSearch e-value),

the residue-pair alignment quality (L—the BLOSUM627

score for aligned residue pair), the average distance to

an alignment gap (D—the distance in number of resi-

dues from the aligned pair to the nearest gap in the

sequence alignment), and the burial in the template

structure (B—number of Cb atoms within 8 Å of the

template residue Cb). The value for G is a constant for

all residues from a given alignment, and values for L, D,

and B are averaged over the pairs of aligned residues, as

there are two residues involved in each distance calcula-

tion. These features are similar to the features used in

the original Modeller paper,3 which were sequence iden-

tity, average per-residue solvent accessibility, local

sequence similarity, and distance from an alignment gap.

In our approach, we have replaced solvent accessibility

with burial and sequence identity with HHSearch e-

value, in addition to drastically increasing the database

size. The dependence of the distance deviations on each

variable is shown in Figure 1.

Following the tabulation of the distance deviations,

pseudocounts were added to each bin in order to reduce

artifacts arising from small counts:

PðDrjG; L;B;DÞ ¼ NobsðDrjG; L;B;DÞ þ CFðDrÞ
NobsðG; L;B;DÞ þ C

ð1Þ

P(Dr | G, L, B, D) is the distribution of deviations

between template and native Ca–Ca distances given par-

ticular values of G, L, B, and D. F(Dr) is the observed

distribution of distance deviations across all values of G,

L, B, and D. N is the total number of observations in the

bin, Nobs(Dr | G, L, B, D) is the number of observations

with distance deviation Dr, N(G, L, B, D) is the total

number of observations with the given values of G, L, B,

and D, and C is the number of pseudocounts. Zero-mean

Gaussians were fitted to the smoothed distributions in

each bin. The 10,000 fitted standard deviations, one for

each bin, are the parameters of our model.

Given this model, the prediction of restraints from a sin-

gle alignment to a single input template is straightforward:

1. Iterate over all pairs of query residues that are sepa-

rated by more than 10 residues along the linear

sequence.

2. If a residue pair is unaligned to the template

structure, or the distance between the equivalent

atoms in the template structure is >10 Å, assign to

these atoms a restraint given by the expected distance

distribution given only sequence separation in the

linear chain.

3. Otherwise, calculate the values of four predictor varia-

bles based on the alignment and the template struc-

ture. Assign a Gaussian restraint to these residues with

mean given by the distance between the equivalent

atoms in the template structure and standard devia-

tion from the table based on the values of G, L, B,

and D.

Combining predictions from multiple
templates

More accurate distance predictions can potentially be

obtained if the sequence of interest can be aligned to

more than one template. The procedure for deriving dis-

tance restraints can be extended to incorporate predic-

tions for multiple templates by combining predictions on

the same pair of atoms using a weighted mixture of

Gaussians. The most straightforward approach would be

to weight the contributions equally. Alternatively, predic-

tions can be weighted based on the probability that the

alignment is locally correct:
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PðdÞ ¼
X

i

PðalignmentiÞPðdjalignmentiÞ ð2Þ

The second term is the single sequence model from the

previous section. The first term is the confidence in the

alignment i compared to all other alignments. As in the

Modeller approach, we estimate the first term in (2) using:

PðalignmentiÞ ¼
r�k
iP

j

r�k
j

ð3Þ

where ri is the distance between the equivalent atoms in

template i, and ri is the standard deviation associated with

that distance. The parameter k determines the extent to

which predictions with lower standard deviations domi-

nate over those with higher standard deviations, with a

value of k 5 0 giving all predictions equal weight. Experi-

ments were performed on an independent set of data to

find a value of k that maximized the probability of observ-

ing the data (see Model Calibration on an Independent

Test Set). This approach to combining information from

multiple templates is similar to the Modeller approach,3

but the weights here are based on all predictor variables

rather than just the local sequence similarity, and the

parameter k can be set using the independent data.

The restraint potential for a pair of positions, given a

set of aligned templates, is then a mixture of Gaussians

with weights dependent on the standard deviation:

PðrÞ ¼
X

i

r�k
iP

j

r�k
j

e
�ððr�riÞ2

2r2
i

Þ
ffiffiffiffiffiffiffiffiffiffi
2pr2

i

p ð4Þ

In the equation above, ri is the distance between the

equivalent atoms in template i, and sdi is the standard

deviation associated with that distance. As the denomina-

tor of the Gaussian term is constant with respect to ri,

it can be ignored or precomputed to speed up

computation.

Model calibration on an independent test set

The models as currently defined have several free

parameters, including the choice of which predictor vari-

ables to use in deriving restraint potentials and how to

combine predictions from multiple templates. Before

populating the histograms with data from the training

set, a random subset of 250 proteins was set aside. Align-

ments of the proteins in this independent set to all

proteins in the training set were generated. A random

Figure 1
Dependence of distance deviations on individual features. Conditional probability distributions were calculated using the features and approach

outlined in Methods section, which follows the Modeller approach for deriving distance restraints.3 Each panel shows the distribution of distance

deviations conditioned on a single feature (A—global sequence similarity, B—local sequence similarity, C—burial in the template structure, and

D—distance from an alignment gap). Lines represent the distribution of deviations for quantiles of the feature (red, 0–25%; orange, 26–50%; green,

51–75%; blue, 76–100%). Boundaries that define quantiles for each variable are listed in Supporting Information Table SI.
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subset of 50,000 residue pairs for which at least one tem-

plate made a distance prediction was examined. Models

were evaluated using the log-likelihood of observing the

independent data given each model (Figures 2 and 3).

This quantity avoids rounding error associated with mul-

tiplying many small numbers, and will approach 0 as the

predictions approach perfection.

Comparative modeling with spatial
restraints

In previous work,8 our group previously described an

approach to homology modeling that uses an input protein

sequence, a template protein structure, and an alignment

relating the two. This approach has the following steps:

1. Generation of incomplete models by copying coordi-

nates over aligned regions.

2. Completion of the models by building unaligned

regions using the Rosetta fragment-based loop-model-

ing protocol.9 This step uses a centroid representation

of the protein side chains and explicit backbone

atoms, a low-resolution energy function, fragments

from known protein structures, and kinematics that

allow rebuilding of the unaligned regions without per-

turbing coordinates in the aligned regions.

3. Refinement of the Rosetta full-atom energy function

using discrete optimization of side-chain rotamers,

small perturbations to the local backbone followed by

gradient-based minimization, and a ramping repulsive

function to allow atomic clashes to be resolved

smoothly.10

4. Iterative rebuilds of randomly selected sections of the

chain, followed by refinement. Model selection at each

stage alternates between diversification and intensifica-

tion.

Here, a single iteration (steps 1–3) is carried out for

computational efficiency. The restraints are combined

with the Rosetta energy function during optimization by

adding to the calculated energy:

� lnðPðstructurejrestraintsÞÞ ¼
X

i;j

� lnðPðdi;j jri;jÞÞ ð5Þ

The subscript pair i,j denotes a pair of residues i and j,

di,j is the distance between the Ca atoms of residues i

and j, and ri,j is the restraint operating on those atoms.

The probability of this distance given the restraint is esti-

mated using the Gaussian mixture from Eq. (4). A weight

on the restraint term of 0.1 gives the restraints approxi-

mately half the contribution of the Rosetta full-atom

energy. Restraints with mean distance > 10 Å were dis-

carded in order to speed up evaluation of the restraint

score. The restraint potential was also shifted downward

by subtracting the value of the potential at 10 Å in order

to make the scores negative for structures that agree well

with the restraints.

To test the modified version of the Rosetta rebuild and

refine protocol that incorporates restraints, a set of 20

proteins from the CASP7 experiment was used as a test

set; these were excluded from both the original training

set and the independent test set. Alignments were gener-

ated to template structures using HHSearch, considering

a maximum of 10 alignments with e-values less than 1

and used the approach outlined above to derive distance

restraints. We tested protocols that incorporated

restraints into the rebuilding and model refinement por-

tions of the protocol, and, as a control, performed the

same procedure without restraints. An ensemble of

10,000 models was generated for each protocol.

RESULTS

Derivation of restraint functions from
HHSearch alignments

Modeller-style distance restraints were derived using

the procedure outlined earlier, which takes advantage of

several developments since the approach was first

described.3 Two modifications to the original approach

take advantage of the large increase in the number of

known structures, which results in a massive increase in

the number of residue pairs in homologous proteins that

can be structurally aligned.2,11 First, a fraction of the

aligned pairs was held out as an independent test set.

This data was used to make choices on model structure

and parameters based on the log-probability of observing

the independent test data. Second, data-intensive nearest

neighbor methods were used to obtain the residue dis-

tance probability distributions, given a set of observables

rather than parametric models, which assume a specific

functional form unlikely to hold exactly throughout the

range of possible observable values. Finally, the powerful

HHSearch remote homologue detection software was

used to generate alignments between proteins with more

distant evolutionary relationships compared to the align-

ments used in the original Modeller paper.3,5,6

As described in Methods, the differences in distances

for over 150 million pairs of aligned residues were classi-

fied into one of 104 bins based on the global sequence

similarity, burial, local sequence similarity, and sequence

distance to the nearest gap, and standard deviations were

computed for each bin. The original Modeller approach

used a parametric fit to such a table to extract relation-

ships from sparse training data, while we use a nonpara-

metric approach to estimating deviations that should in

general fit the data better. The model with 104 bins is

difficult to visualize; instead the influence of each vari-
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able on the expected deviation from the template struc-

ture is illustrated in Figure 1, which shows the expected

deviation from templates, given the value of a single pre-

dictor feature. The lines within each panel show the

extent to which knowledge of individual variables influ-

ences the expected divergence between query and tem-

plate structures. For example, the most confident predic-

tions were from those with very low e-values (Fig. 1,

panel A).

To measure the effectiveness of the different statistical

models for estimating restraints, given the input align-

ment data, the likelihood of an independent test set of

data was calculated. In this work, likelihood denotes the

probability of observing a set of data under a given sta-

tistical model. To avoid rounding error associated with

multiplying many small numbers, the sum of the nega-

tive log-probabilities for each distance was tabulated. A

schematic of this approach is shown in Figure 2(A)—the

likelihood is maximized when sharply peaked distribu-

tions are assigned to predictions with small distance devi-

ations, and wide distributions are assigned to predictions

with large distance deviations. The log-likelihood of the

independent dataset for models conditioned on different

features is shown in Figure 2(B). The leftmost bar shows

the likelihood of the native distances under a Gaussian

model conditioned only on sequence separation in the

polypeptide chain. The next four bars show the log-likeli-

hood associated with the single-variable predictors

(shown in Fig. 1). Each single variable predictor

improves on the first model by a wide margin, with the

HHSearch e-value being the most informative feature

and burial being the least informative. The next three

panels show the performance of predictors conditioned

on two, three, and four features, each of which improves

the probability of sampling the independent test set. The

likelihood test suggests that the variables are all informa-

tive individually, and the most effective model uses all

four variables.

Next, we investigated different ways of combining in-

formation from multiple templates. Different models for

combining information from multiple templates were

compared using the likelihood of the independent test

data under each model. One free parameter in the con-

struction of these models is the weight on the Gaussian

mixture term (Methods section), and different

approaches for setting this parameter were investigated

(Fig. 2, Methods). A model in which predictions were

weighted equally was compared to models in which the

weight was a function of the standard deviation. The

number of templates used in prediction was varied along

with the degree to which high-confidence (low-standard

deviation) predictions dominated over low-confidence

(high-standard deviation) predictions. The importance of

preferentially up-weighting high-confidence predictions

from different templates is illustrated in Figure 3 (panel

A). For each aligned residue pair in the test set, the

aligned templates were sorted based on their HHSearch

e-values, and the top scoring alignments (x-axis) were

selected for restraint derivation. If all alignments are con-

sidered as independent and equally likely (hatched bars),

the joint probability of observing the test set becomes

worse with increasing numbers of templates as poorer

alignments contribute more and more noise. However, if

the feature-dependent weighting described in Methods

section is used to weight the contributions from different

alignments (open bars), the likelihood of the test data

improves as the number of alignments is increased.

Beyond 10 alignments, there is little further improvement

as the relative contribution from the poorer templates

becomes very small.

Use of the same set of features to determine both

the weighting of the component Gaussians and their var-

iances may appear to count these features twice. However,

the two contributions are distinct: the weighting reflects

the probability that a particular alignment is correct at the

Figure 2
Model evaluation based on likelihood of independent test set. A:

Illustration of model evaluation with distance predictions based on two

Gaussians. Both Gaussians have a mean of 7.0 Å and a standard

deviation of 1.0 (solid line) or 2.0 Å (dashed line). If the native

distance occurs at 6.5 Å, the sharper Gaussian (solid line) is a better

model. If the native distance occurs at 9.5 Å, the wider Gaussian

(dashed line) is a better model. B: Different models were assessed based

on the likelihood of distances from an independent set of aligned

proteins. Each bar shows the likelihood of sampling a set of atom-pair

distances using a fixed set of alignments and different variables to

construct the models. The letters below each bar list the input features

used to construct the model (B—burial in template structure, L—local

sequence similarity, D—distance from a gap, and G—global sequence

similarity). The prior model is a Gaussian model based only on

sequence separation of the residues in the linear sequence (see Methods
section) and is shown here as a negative control. The middle four bars

show the performance of models based on single features, while the

final three bars represent models based on two, three, and four features.

All four single-variable models out-perform the prior model. Adding

predictors to each model improve the likelihood of sampling the native

atom-pair distance, which supports the use of all four variables in

estimating deviations from template structures.
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aligned pair of positions, while the variance reflects the

breadth of the distributions expected for the residue pair

if that alignment is correct. On the other hand, the mutual

exclusivity assumption is obviously false, and weighting

methods that take into account relatedness between tem-

plate structures could perhaps yield improved predictions.

The importance of basing both the shape of the indi-

vidual distributions and their overall weights on the

available indicators of local alignment accuracy is further

demonstrated in Figure 3 (panel B). The likelihood of a

model with fixed-width Gaussians and no weighting of

the component Gaussians is clearly worse than a model

with variable-width Gaussians, which is in turn worse

than a model with both variable-width Gaussians and

weighting. For comparison, Figure 3 (panel B) also shows

the results with a perfect classifier model that re-weights

the template-inferred Gaussians and the prior Gaussian

in order to maximize the probability of sampling the

native. The perfect knowledge model describes the query

distance using a Gaussian with mean set to the query dis-

tance and a standard deviation of 1.0. The perfect knowl-

edge and perfect classifier models give upper bounds for

the performance of any inferential method in the bench-

mark. The two models are distinct, because some parts

of proteins are never aligned to any templates, and the

difference in likelihood for two models illustrates the de-

pendence of our models on the completeness and accu-

racy of the input alignments to template structures.

Rosetta modeling and refinement using
distance restraints

The incorporation of the restraint potential into

Rosetta is straightforward and outlined in Methods. A set

of 20 proteins from the CASP7 experiment was selected,

and alignments to templates were made to pre-CASP7

databases using HHSearch.5,6 Restraints were derived

from these alignments using the multitemplate Gaussian

mixture model outlined in Methods section. For each

protein, 10,000 models were made using the Rosetta

rebuild and refine protocol8,9 both with and without

restraints. The GDTMM distribution of models con-

structed with restraints improved in most cases, and the

lowest energy models were more accurate in the restrained

runs compared to the unrestrained runs (Table I, Support-

ing Information Text 4).

Although the restraints improved sampling, they pro-

vide poor discrimination near the native state as the

native structure generally violates a number of restraints

due to structural differences within the various templates.

To investigate the contribution of the spatial restraints

more thoroughly, blind predictions were made for target

T0569 in the CASP9 structure prediction experiment.

Figure 4 shows the average values of the Rosetta full-

atom energy and the restraints described in this work as

a function of the GDTMM, which varies from 0 to 1 as

model quality increases (Supporting Information Text 4).

Panel A shows that the Rosetta full-atom energy is very

flat until the GDTMM values are in the 0.6–0.7 range,

and hence the Rosetta full-atom energy function has dif-

ficulty distinguishing between medium (GDTMM

between 0.5 and 0.3) and low-quality (GDTMM between

0.3 and 0.1) models. However, the average energy of

models with GDTMM > 0.7 drops sharply, and if sam-

Figure 3
Likelihood increases using weighted predictions from multiple

templates. Each bar represents the likelihood (negative log-probability)

of sampling the native distance between two Ca atoms under different

Gaussian mixture models. A: Gaussians were derived using the

approach outlined in Methods section and evaluated using the

likelihood test outlined in Figure 2, and Gaussians restraining the same

pair of atoms were combined to produce a Gaussian mixture model.

The probability of sampling the native distance was calculated from the

resulting probability distribution. Each bar plots the negative log-

likelihood of sampling the native distance, which decreases as
predictions become more accurate. Shaded bars represent a model in

which all predictions are given equal weight, and open bars represent a

model in which predictions are given a weight proportional to sd210. B:

Probabilistic models are compared using the likelihood test outlined in

Figure 2. Prior is a Gaussian model that models query distances based

solely on the sequence separation between residues in the query

sequence, fixed_harmonic is a Gaussian mixture model that assigns a

fixed-width standard deviation to each template’s prediction and an

equal weight for each prediction, unweighted represents a model with

standard deviations given by the predictor described in Methods section

and an equal weight for each prediction, and weighted is a model with

standard deviations estimated by the same predictor and weights

estimated as a function of that standard deviation. The perfect_classifier

model represents a model that adjusts weights for each prediction in

order to maximize the probability of observing the native distance, and

perfect_knowledge represents a model in which the query distances are

modeled using a Gaussian model with a standard deviation of 1.0 Å.
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ples are generated close enough to the native structure,

the Rosetta energy is very effective at selecting these

high-quality models. The spatial restraints are qualita-

tively different in behavior—they are very effective at dis-

criminating between low-quality and medium-quality

models, but they are quite poor at discriminating high-

Figure 4
Full-atom energy and homology-derived spatial restraints distinguish between models in different accuracy regimes. We constructed models for a
protein of unknown structure during the CASP9 experiment (CASP9 target T0569). Models were made using the Rosetta rebuild and refine

protocol supplemented with the evolutionary restraints as described in Methods section. After obtaining the experimentally determined structure of

T0569, we calculated the GDTMM of each model, which approaches 1.0 as a model become more similar to the native (Supporting Information

Text 4). The same statistics were calculated for an ensemble of Rosetta refined native structures. Models were assigned to GDTMM bins, which

ranged from 0.1 to 1.0 in. increments of 0.1. In each plot, the points connected by lines represent the statistics calculated on each bin, and the gray,

red, and blue points represent individual structures. A: Median GDTMM versus median Rosetta full-atom score, with a circle surrounding the bin

containing the refined native structures. B: Median GDTMM versus median spatial restraint score. The Rosetta full-atom energy is very effective at

discriminating the high-quality from medium-quality models, while less effective at discriminating medium-quality from low-quality models.

Conversely, the restraints discriminate medium-quality from low-quality models very well, but are not effective at discriminating high-quality

models from natives and can even provide a barrier to sampling the native conformation. C: A combination of the two scores is effective at

discrimination independent of model quality.

Table I
Results on CASP7 Structures

Target Length %(ID) Method

GDTMM of low-energy models from each protocol

No restraints Restrained rebuild Restrained relax Restrained rebuild and relax

T0293 250 16.8 X-ray 34.8 45.0 49.8 47.1
T0324 208 21.7 X-ray 71.3 70.0 79.1 73.2
T0297 211 21.74 X-ray 73.8 72.1 72.1 72.5
T0348 68 21.8 X-ray 47.4 46.8 50.3 46.2
T0329 239 22.13 X-ray 69.3 79.7 77.8 76.6
T0373 147 22.52 X-ray 61.8 60.8 66.1 66.6
T0303 224 22.77 X-ray 77.0 76.9 78.5 79.4
T0374 160 23.22 X-ray 76.9 71.8 75.3 78.0
T0380 145 24.66 X-ray 82.3 83.9 83.7 83.3
T0332 159 27.67 X-ray 85.9 84.9 87.5 79.8
T0288 93 29.59 X-ray 85.2 84.9 84.5 84.1
T0317 163 30.54 X-ray 87.2 85.0 89.9 86.1
T0366 106 36.45 X-ray 80.6 80.2 84.0 83.0
T0308 165 41.82 X-ray 89.7 89.6 87.5 89.5
T0359 97 52.51 X-ray 77.3 79.0 79.0 76.9
T0340 90 57.61 X-ray 88.4 94.3 91.6 91.1
T0346 172 59.88 X-ray 93.7 95.7 98.8 97.3
T0290 173 61.27 X-ray 92.9 94.3 97.1 97.7
T0345 185 66.83 X-ray 93.0 95.8 95.6 94.8
T0302 132 97.73 NMR 79.2 81.2 81.5 80.0
Average GDTMM 77.4 78.6 80.5 79.2
P(first model best). 45% 50% 65% 40%

Proteins were selected from the CASP7 experiment6 that had between 60 and 250 residues and at least one template identified from the PDB with >15% sequence iden-

tify. Three protocols were run—spatial restraints incorporated during loop-building, spatial restraints incorporated during full-atom relax, and a control with no

restraints. Adding restraints to the refinement portion of the Rosetta comparative modeling protocol improved results significantly. Following refinement, we clustered

the lowest 1000 models by Rosetta full-atom energy and calculated GDTMM statistics on the five biggest cluster centers. For each protocol we also examined the number

of times that the cluster center with the best GDTMM also had the lowest energy of the five cluster centers.
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quality from medium-quality models. These scores solve

different model discrimination problems; and, a combina-

tion of the scores decreases almost monotonically as mod-

els become more nativelike (Panel C). Thus, the joint opti-

mization of the Rosetta energy and the spatial restraints

should be effective across the conformational landscape,

even though the native structure violates some restraints,

and the Rosetta energy has little ability to discriminate

conformations that are far from native.

DISCUSSION

Derivation of probabilistic restraint models

This work describes incorporation of homologous struc-

ture-derived restraints into the Rosetta structural modeling

methodology. The restraint derivation follows the

approach taken by Modeller,3 with modifications to take

advantage of more recent advances in database growth and

sequence alignment software. A similar set of features was

used, but probability estimates used a non-parametric esti-

mation method. This method should in general fit the data

more closely as it makes no underlying assumptions about

dependencies between the features. This is possible because

of the recent growth of the protein structural databases—

thousands of proteins of known structures were used here,

while Modeller used less than 100 structures due to the size

of the database at the time.3 Also, the sensitive HHSearch

method used to generate alignments for this work will

allow structural models to be constructed based on more

distant evolutionary relationships.5,6

A probabilistic benchmark was used to assess alternate

formulations of the comparative modeling restraints.

This benchmark shows that the features used in the

models are useful both individually and jointly, and the

best models investigated are parameterized on a combi-

nation of these features (Fig. 2, panel B). The same

benchmark demonstrates that improved performance can

be achieved by combining predictions from multiple

templates using weights dependent on the confidence of

each prediction (Fig. 3). This treatment of the problem

formulates restraint derivation as an exercise in statistical

inference and decouples restraint derivation from compu-

tationally expensive structure prediction benchmarks.

Progress in this area is thus not restricted to those with

access and expertise in structural modeling tools.

Our approach models each restraint as the mixture of

two Gaussians, one short-range with mean given by the

template distance and a long-range Gaussian with mean

dependent only on the sequence separation between the

two restrained atoms. The weight on the first component

represents our confidence that the alignment is locally cor-

rect. Explicitly accounting for the case represented by the

long-range Gaussian in which the template-based distance

predictions are incorrect allows the optimization process

to become more robust to alignment errors. The quadratic

penalty associated with a short-range Gaussian becomes

extremely large at high distances (Supporting Information

Fig. 1, panel B) and would present an inappropriately

strong force during model optimization. Incorporating the

long-range Gaussian into the mixture model prevents this

penalty from dominating structure optimization and

refinement (Supporting Information Fig. 1, panel D),

allowing Rosetta to disregard inaccurate restraints if they

disagree strongly with the current low-energy model.

Joint optimization of energy and evolutionary
information

The restraints as outlined earlier were incorporated into

the refinement portion of the Rosetta rebuild and refine

protocol. The restraint potential for the entire protein was

formulated as the negative log-probability of the structure

given the restraints. As this term is differentiable with

respect to the backbone torsion angles, it can be combined

with the Rosetta all-atom energy function and used during

full-atom refinement. On a benchmark set of 20 proteins

from the CASP7 experiment, inclusion of the restraints led

to a clear improvement in model quality (Table I). This is

a stringent benchmark for success, as the standard Rosetta

rebuild and refine protocol copies coordinates from the

same alignments from which restraints are derived. Hence

the improvement upon adding restraints to the standard

Rosetta comparative modeling protocol must result from

confining the optimization to a smaller region of conforma-

tion-space that is closer to the native structure (Fig. 4). We

also experimented with the incorporation of restraints into

the rebuilding portion of the protocol. In general, the results

were worse than using the restraints only during refinement

(Table I). This may be because rebuilding protocol only

moves a part of the protein structure, and satisfaction of the

restraints can require moving parts of the protein fixed by

this protocol. Also, many of the residues that are flexible

during rebuilding are not aligned to any protein, and so

there is no restraint information available to guide sampling

during this stage of the protocol (Fig. 3, panel B).

Comparative modeling restraints and
conformational sampling

There is clear analogy between the results using com-

parative modeling restraints and previous work incorpo-

rating sparse experimental restraints into Rosetta. Protein

structures can be determined using datasets too sparse for

conventional methods by using the sparse data to increase

sampling near the native conformation.12 The experimen-

tal data does not completely determine the native confor-

mation due to experimental noise and a lack of data for

some parts of the protein chain, but is sufficient in many

cases to guide sampling to the native protein conforma-

tion. Similarly, comparative modeling restraints generally

do not cover the entire length of the protein and will be

inaccurate where the native structure differs from the

Evolutionary Information in Rosetta Comparative Modeling
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homologous templates. In both cases, the restraints can be

used to focus optimization on the most likely region of

conformation-space, and the Rosetta full-atom optimiza-

tion method can be used to find the lowest energy struc-

ture within that region. Comparative modeling restraints

are expected to have more systematic errors than those

from experimental data, as comparative modeling derives

restraints based on statistically inferred relationships

between proteins, while experiment can directly query

properties of the protein structure. On the other hand,

comparative modeling restraints can be derived at essen-

tially no cost for arbitrary protein sequences, and structure

determination could in principle begin with structures

built by comparative modeling followed by sampling

guided by experimental data. If incorporated properly, a

combination of evolutionary, experimental, and physical

sources of information could significantly decrease the

amount of experimental data and computation necessary

to determine protein structures.

Software availability

Results for this manuscript were produced using

Rosetta 3.2 (SVN version r37323), which is available

from http://www.rosettacommons.org/software/. Struc-

tural models and input files are available upon request

from the authors. Flags for running each protocol are

listed in Supporting Information Text S1 and Table SII.
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