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The CAPRI (Critical Assessment of Predicted Interactions) and CASP
(Critical Assessment of protein Structure Prediction) experiments have
demonstrated the power of community-wide tests of methodology in
assessing the current state of the art and spurring progress in the very
challenging areas of protein docking and structure prediction. We sought to
bring the power of community-wide experiments to bear on a very
challenging protein design problem that provides a complementary but
equally fundamental test of current understanding of protein-binding
thermodynamics. We have generated a number of designed protein–protein
interfaces with very favorable computed binding energies but which do not
appear to be formed in experiments, suggesting that there may be important
physical chemistry missing in the energy calculations. A total of 28 research
groups took up the challenge of determining what is missing: we provided
structures of 87 designed complexes and 120 naturally occurring complexes
and asked participants to identify energetic contributions and/or structural
features that distinguish between the two sets. The community found that
electrostatics and solvation terms partially distinguish the designs from the
natural complexes, largely due to the nonpolar character of the designed
interactions. Beyond this polarity difference, the community found that the
designed binding surfaces were, on average, structurally less embedded in
the designed monomers, suggesting that backbone conformational rigidity
at the designed surface is important for realization of the designed function.
These results can be used to improve computational design strategies, but
there is still much to be learned; for example, one designed complex, which
does form in experiments, was classified by all metrics as a nonbinder.
© 2011 Elsevier Ltd. All rights reserved.
Introduction

Protein–protein interactions underlie all biologi-
cal processes. Despite the availability of many co-
crystal structures of complexes, our understanding
of the energetics of protein association is incom-
plete, and this limits our ability to consistently
predict the structures of complexes from mono-
mers, predict the energetic effects of mutations at
protein interfaces, and engineer high-affinity and
high-specificity interactions. An improved under-
standing of binding energetics therefore holds the
key to resolving some of the most important
problems in protein biophysics and molecular
biology.
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A recently developed method for de novo binder
design produced two proteins that interacted with a
sterically hindered surface on Spanish influenza
hemagglutinin (SC1918/H1 HA; hereafter referred
to as HA).1 Following in vitro evolution, two to four
mutations in the periphery of each of these interfaces
improved binding to low nanomolar dissociation
constants and one of the proteins inhibited HA
function. However, 71 other designed proteins
which expressed robustly in yeast cell surface
display experiments2 and were predicted to bind
did not experimentally interact with HA. The Baker
group has had similar low success rateswith other de
novo interface design problems (to be published),
highlighting limitations in the understanding of
protein-binding energetics and their repercussions
for the ability to design novel protein functions.
More sensitive experimental detection methods
could identify additional binders in this set (the
current method requires dissociation constants
better than 10 μM and binding off-rates less than
10 s−1), but the ability to computationally generate
high-affinity interactions is vital for engineering new
protein functions.
We asked the protein-docking community to help

identify what was missing in our protein-modeling
calculations. This article describes the benchmark
tests we established and summarizes the insights
from the many interface-modeling experts who took
up the challenge.

mailto:dabaker@uw.edu
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Results

A protein-interface design benchmark

The computational interface design protocol con-
sists of (i) pre-computing a set of high-affinity amino
acid residue interactions with the target surface, (ii)
redesigning natural protein scaffolds to incorporate
a number of these amino acids, and (iii) designing
the remainder of the interface to enhance binding
affinity.1 This protocol can produce protein com-
plexes with computed binding characteristics that
rival natural complexes. For instance, the distribu-
tions of interface buried surface areas and computed
binding energies of designed and naturally occur-
ring protein complexes overlap (Fig. 1; Table S1). In
many cases, designed protein complexes show more
favorable values than do natural complexes. This is
despite the fact that the vast majority of the designed
complexes do not experimentally bind. The discrep-
ancy between prediction and experiment is the focus
of this study: our goal is to identify the missing
components in binding-energy calculations to im-
prove both our ability to design high-affinity
interfaces and, more generally, our understanding
of protein-association thermodynamics.
We set out to identify thermodynamic compo-

nents of binding that are poorly modeled and could
be the underlying cause of the low success rate of de
novo binder design. In a preliminary experiment, a
set of 20 designed binders of several targets that did
not show detectable binding to their targets was
provided to participants in the community-wide
experiment on the Critical Assessment of Predicted
Interactions (CAPRI),3 alongside one experimental-
ly determined but, at that time, unpublished co-
crystal structure of two proteins that bound with a
low-nanomolar dissociation constant.4 The partici-
pants were asked to rank the 21 complexes accord-
ing to their propensity to bind in the modeled or
experimentally determined binding mode. In this
preliminary experiment, only 2 of 28 participating
groups (Groups 1 and 6, Table 1) clearly identified
the co-crystal structure as the true binder—a
performance that is not significantly different from
chance at 5% confidence (to be discussed in the next
Special Issue on CAPRI). The successful groups
relied on metrics that were largely based on
electrostatics calculations. Notably, the Rosetta
energy function, which was used in the design
process, explicitly treats hydrogen bonding and
solvation, but because of difficulties in accurately
modeling long-range electrostatics interactions does
not attempt to model these explicitly.5 These results
suggested that the task of identifying complexes that
are likely to bind is nontrivial and that a larger-scale
community-wide investigation could provide con-
siderable insight into this problem.
To set up a benchmark for a more comprehensive
community-wide investigation into the elements that
are missing in our evaluation of binding thermody-
namics, we prepared a set of 87 designed proteins
targeting three different proteins of interest (models
are available as Supplemental Data, and plasmids
encoding genes for expressing the designs using yeast
cell-surface display are available†). The three target
proteins were Spanish influenza HA [62% of the
designed complexes; chains A and B of Protein Data
Bank (PDB) entry 3GBN6], the acyl-carrier protein 2
fromMycobacterium tuberculosis (25%;MtACP2; PDB
entry 2CGQ), and the Fc region of human IgG1
antibodies (13%; PDB entry 1L6X7). The structures of
the scaffold proteins for binder design were taken
from the PDB, and their surfaces were redesigned for
binding using the computational method mentioned
above.1 As a reference set of solved co-crystal
structures, we used the docking benchmark 3.08

comprising 120 protein complexes with experimen-
tally determined dissociation constants9 ranging
from 10−5 to 10−14 M. These sets of natural and
computationally designed complexes were provided
to participants in CAPRI, noting in each case whether
a complex was designed or natural. At the beginning
of the experiment, nine designed proteins had not
been experimentally tested for binding and these
served as unmarked blind cases.
Each participating group (Table 1) was asked to

provide a method for ranking the complexes accord-
ing to their binding energy (all of the values provided
by participants are available as Supplemental Data).
To get at the underlying physical chemistry of
binding, we asked groups not to train their methods
on the data; that is, the information on whether a
complexwas designed or natural could not be used in
training the parameters used in the evaluation
strategy. Otherwise, the groups were free to choose
which metrics or combinations of metrics to use.
Figure 2 shows a receiver operator characteristic
(ROC) curve for each participating group, plotting the
true-positive rate versus the false-positive rate. The
area under the curve (AUC, in percentage) is marked
in each panel. The participating groups were addi-
tionally asked to categorize each complex according
to the following criteria: the two partners (i) bind, (ii)
are likely to bind, (iii) are likely not to bind, (iv) do not
bind, and (v) unknown (Fig. S1). They were also free
to choose thresholds to maximize discrimination.
The methods used by participating groups span a

wide spectrum. Many groups computed binding
energies, typically dominated by electrostatics,
solvation, and knowledge-based pair terms (Groups
1, 5, 6, 11, 12, 14, 20, 23, 26, 28, 29, 31, 33, and 36);
Groups 1 and 6 used continuum solvation methods
to compute binding energies, similar to widely used
molecular mechanics/Poisson–Boltzmann surface



 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

700
1100

1500
1900

2300
2700

3100
3500

>3500

 0

 5

 10

 15

 20

 25

 30

 35

C
ou

nt
s 

(d
es

ig
ns

)

Buried surface area (A2)

natives
designs

 0

 2

 4

 6

 8

 10

 12

 14

-42
-38

-34
-30

-26
-22

-18
-14

-10
-6 >-6

 0

 5

 10

 15

 20

 25

C
ou

nt
s 

(n
at

iv
es

)

Computed binding energy (Rosetta energy units)

(a) (b)

Fig. 1. Natural and designed complexes have similar overall properties. (a) Buried surface area at the interface; (b)
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Adobe Illustrator. In all figures, native refers to natural complexes in the docking benchmark.8
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area approaches for computing binding affinities.10

Others utilized features such as hydrogen-bonding
patterns and buried surface area (Groups 16, 21, 23,
24, 30, 32, and 35). Groups 2 and 22 used machine
learning to determine which features discriminate
previously published Rosetta models from natural
complexes. Groups 8 and 17 used the sequence
conservation at the protein interface as a discrimina-
tor. Group 10 analyzed low-frequency dynamics, and
Group 7 tested the low-resolution compatibility of the
surfaces compared to randomly docked decoys of the
same partners.

Discrimination between the designed interfaces
and some, but not all, categories of natural ones

Many different metrics provide useful posteriori
discriminators between designed and naturally oc-
curring complexes (Fig. S1), with several groups
achieving AUC values above 85% (Fig. 2). However,
the ROC curves also point out that even well-
performing metrics suffer from poor discrimination
between designs and many native complexes; many
of the best discriminators rank a large fraction of the
natural complexes as better binders than the designed
complexes but still rank many designed and natural
ones equally. Consequently, many of the native
complexes were predicted as unlikely to bind or as
not binding by most groups. These results suggest
that the designs share some features with a substan-
tial fraction of the natural complexes but not with all.
To get a more detailed view of the individual

features that contribute most to discrimination, we
compared the distributions for designed and natural
interfaces of the two most heavily weighted terms
given by several participating groups (Fig. 3a). As
with the full metrics (Fig. 2 and Fig. S1), the
individual-score values for natural complexes span
and exceed the range of designed complexes, and
hence, no single or indeed pair of scores unambigu-
ously discriminates designed from natural com-
plexes. Nevertheless, the designed complexes
typically stand out as having, on average, less optimal
values than a majority of the natural complexes in
terms of their van der Waals contacts, solvation self-
energy, and electrostatic complementarity. To under-
stand the commonalities between designed and
natural complexes that were predicted not to bind,
we analyzed in detail the results fromGroup 6, one of
the best-performing participants (Fig. 2). We found
that those natural interfaces that scored more
favorably than designs according to the two-metric
analysis (Fig. 3a) were typically larger and contained
many salt bridge or backbone-mediated interactions
(see per-group two-metric analysis in Supplemental
Data). By contrast, the natural interfaces that were
predicted not to bind were smaller, more hydropho-
bic, and contained few, if any, charges and paired
backbone atoms. The de novo designed interfaces
share many of the same features as the latter category
of smaller, more hydrophobic natural interfaces,
explaining why many metrics showed natural com-
plexes to span the range of values for the designs but
did not clearly discriminate the two groups (Figs. 2
and 3a). Many of these natural hydrophobic protein
complexes bind quite strongly, implying that even the
best-performing metrics do not fully reflect binding
thermodynamics. This is highlighted by the fact that
the natural complex best separated from the designs
(predicted most strongly to be a binder) was a
structure, which after its publication was deemed by
several studies to be likely incorrect,11 and was



Table 1. List of participating groups and a brief explanation of the methods

Group
numbera Affiliationb

van der Waals
packingc Solvationc Pair termsc Electrostaticsc Othersc

Use of prior
knowledged

1 2 1 Electrostatic interaction
free energy, calculated

on the transient complex,
by solving the Poisson–
Boltzmann equation

a

2 3, 4 NA NA NA NA Support-vector machine
(SVM)

b

5 5 1 a

6 6 0.1 0.4 0.16 c

7 7 — — ATTRACT score of
the minimized
complex (0.33)
in RT units

— Rank of minimized
complex relative to

docking solutions from
systematic search (0.33);

deviation of complex from
nearest minimum (0.33)

a

8 8 0.18 Sequence conservation
score (0.52)

a

Side-chain entropy (0.13)
9 9–14 NA NA NA NA Genetic algorithms a

10 15, 16 DiffColl (1.0) a

The difference in the
increase in degree
collectivity between

chains A and B

11 17 0.41 (van der Waals
attractive)

0.42 0.13–0.21
(four independent
weights for short/
long/attractive/
repulsive; average

is 0.16)

c

12 18 0.5 0.5 a
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14 19 0.056 Sum of weights for
18 terms of DeLisi–

Zhang atomic
solvation (0.563)

Dfire
(0.369)

0.013 Sum of linear fitting
weights for DeLisi–

Zhang atomic solvation
(4.101), for pair solvation

and hydrogen bond
(−1.167), and for many-
body graph (−3.712)

a

16 20 0 0 rpscore3
(1.0)

0 Interface area
≥1200 Å2;

a

Interface patch
analysis1

17 21 — — — — Relative sequence entropy
score comparing the

degree of conservation
of the interface core
versus the rim (1.0)

a

20 22 0 0 1 0 0 a

21 23 NA NA NA NA Interface descriptors: polar
solvent-accessible surface
area buried at the interface

is smaller in designs

c

22 24 0.2 0 0.2 0.2 0.2 b

23 25–28 0.09 0.28 0.44 SCRsurf a
−0.19 a

24 29, 30 NA NA NA NA Interface intra- and
intermolecular energies
scaled to differentiated
total energy, and scaled
surface area buried at

the interface

a

26 31 0 0 1 0 0 a

28 32 0.3 0.26 (Lazaridis–
Karplus solvation+
buried surface area)

0.24 Hydrogen bonding a

0.2

(continued on next page)
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Table 1 (continued)

Group
numbera Affiliationb

van der Waals
packingc Solvationc Pair termsc Electrostaticsc Othersc

Use of prior
knowledged

29 33 0.25 0.25 0.25 Internal energy a

30 34 NA NA NA NA Interface area per residue
of the complex

c

31 35 0.75 0.05 0.2 a

32 36 NA NA NA NA Frequency and geometric
similarity of interaction
patterns of interfacial
residues to the native

(classical) ones

a

33 37 van der Waals
attractive (0.49)

0.01 0.35 Short range
attractive (0.06)

Hydrogen bonding a

Short range
repulsive (0.07)

35 38 NA NA NA NA Binding energy (dG) per
surface area (PSA) (0.25),
hydrogen-bond energy

per dG (0.25), cavity score
(0.25), unsatisfied hydrogen

bonds PSA (0.25)

a

36 39 NA NA ITScore/PP NA NA a

A complete description of each method is provided in Supplemental Methods.
a The group number refers to the numbers in the main text and figures.
b The affiliation number in the author affiliation section.
c Weights on the major score terms used by the discriminators all terms including minor ones are listed in Supplemental Methods. The weights in the table are reported after normalizing

the sum of all weights used by each group to 1.0.
d Extent to which prior knowledge was used: (a) none; (b) score was trained on Rosetta models provided in the past, but not on the design benchmark; (c) different discrimination models

or parameters were tested and the best-performing one was selected.
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recommended for retraction by the University of
Alabama (PDB entry: 1BGX12). In retrospect, the bias
towards hydrophobic interfaces was a failing of our
design benchmark set. We remedied this failing in
twoways (below): by addingmore polar interfaces to
the design set and by contrasting the designs with the
most apolar natural interfaces in the docking data set.

Reducing the polarity discrepancy between
natural and designed interfaces identifies
methods that discriminate designs based
on binding site rigidity

To address the problem of unequal polarities in
designed and natural interfaces, we reoptimized the
sequences of 87 designed complexes, increasing the
contributions from residue pairwise-interaction
probabilities and Coulomb electrostatics to the
energy function used by RosettaDesign, and select-
ed 29 designs with high buried surface area and
favorable binding energies. In these redesigned
interfaces, the distributions of contributions to
binding from electrostatic and pairwise-interaction
probabilities are comparable to those of natural
interfaces (Fig. 3b). While these new redesigned
complexes have many flaws (side-chain packing is
not ideal and their interfaces contain many unsa-
tisfied hydrogen-bond donors and acceptors), the
addition of interfaces with higher charge comple-
mentarity reduces the polarity discrepancy between
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designed and natural interfaces in our set andmakes
the benchmark more representative of the physical–
chemical diversity of natural interfaces. We have
added these new, more polar complexes to the
benchmark set (Supplemental Data). The improved
benchmark set should provide an even better test of
current understanding of binding physical chemis-
try than the original set.
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To isolate metrics that discriminate the designs
from a set of apolar natural interfaces, we selected
the 25 natural interfaces with the lowest electrostatic
desolvation penalty according to the Rosetta all-
atom energy (Table S2). As expected, the AUC of
many of the metrics deteriorated in this analysis
compared to the results of Fig. 2, while a few
methods performed as well on this stricter test as in
the one shown in Fig. 2 (Table S3). Group 7
(AUC=81% in this analysis) used low-resolution
docking and favored those complexes where close-
to-native conformations had lower interaction ener-
gies than far-from-native ones. An analysis of the
worst- and best-performing designs according to
this method showed that it penalized designs with
poor low-resolution shape complementarity and
conversely favored designs with intricate “knobs-
into-holes” features, which allow more residue-to-
residue interactions. Group 10 (AUC=79% in this
analysis) used a single feature based on the
compatibility of the low-frequency vibrational
modes of the partner proteins. Interfaces where the
Fig. 4. Average number of neighbors (average degree)
discriminates some designed complexes from native comple
comprise segments, including unstructured regions, which a
surfaces with high average degree (top) comprise seconda
structurally connected to the host monomer. Following seque
conformations from those seen in the wild-type protein struc
designs to experimentally bind their targets. Average degree is
represent designs 47, 59, 78, and 77 (coordinates are available i
in cyan. The backbones of the designedmonomers are colored a
green, loop). Designed interfacial residues are shown in sticks
blue, respectively. Molecular representations were produced w
vibrational modes of the two partners were incom-
patible were penalized. An analysis of the worst-
performing designs according to this method
showed that it penalized designs where the binding
surface was positioned on loops or secondary
structural elements that were poorly embedded in
the designed monomer and conversely favored
interfaces that integrated the designed surface
through many interactions in the host monomer.
Group 10 found that a simpler related metric based
on the average degree of connectivity of interfacial
residues on the designed monomer (see Computa-
tional Methods) performed more poorly than the
analysis of vibrational modes but was also discrim-
inatory. Indeed, in following up on the Group 10
results, we found that most designed proteins with
an average degree of less than 8.5 residue neighbors
at the interface (∼15% of designs in the set) utilize
loops or secondary structural elements that are
poorly anchored to the designed protein and,
retrospectively, are unlikely to form the modeled
surfaces in experiment (Fig. 4). That such a high
of interface residues within the designed monomer
xes. Surfaces with low average degree (bottom) tend to
re poorly embedded in the host monomer. By contrast,
ry structural elements and short loops that are better
nce design, poorly connected surfaces might have altered
ture, providing some explanation for the failure of these
marked on each panel. Clockwise from top left, the panels
n the online supplement). The target proteins are rendered
ccording to secondary structure (red, helix; yellow, strand;
with carbon, oxygen, and nitrogen, colored green, red, and
ith PyMOL.20
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fraction of designs employ backbones that are
poorly anchored in the designed monomer is
unsurprising given that binding to a target surface
is typically hindered by other surfaces on the target
molecule; designed surfaces that are less embedded
in their host monomers suffer less from such
hindrance. We have implemented this degree of
connectivity metric in the Rosetta software and
expect it to improve the likelihood of obtaining
active designed binders in the future.

Failure to identify an experimentally validated
designed binder as such

Of the 87 designed interfaces provided to partic-
ipants for ranking, 9 designs had not been tested for
binding at the start of the experiment and thus serve
as a blind test of the ranking methods. Of these nine,
one has been experimentally confirmed to bind its
HA target surface (herein numbered design 45 or
HB80 in Ref. 1). In vitro selection of design 45 variants
for higher affinity identified four substitutions at the
periphery of the interface that together produced an
experimentally determined dissociation constant of
38 nM, rivaling many of the affinities in the docking
benchmark of naturally occurring binders.8 Despite
this high affinity, none of the groups predicted that
design 45 binds, and a majority predicted that it is
unlikely to bind or that it would not bind (Fig. S2).
Design 45 has a small nonpolar interface, which, as
noted above, confounds discrimination of binders
from nonbinders by most of the methods reported
here. The failure with design 45 and the general
difficulty in distinguishing the designs from nonpo-
lar natural interfaces suggest that considerable work
remains in refining models of protein-interface
thermodynamics.
Discussion

Defining the structural and energetic determinants
of high-affinity binding is crucial for our under-
standing of protein-interaction networks and the
ability to intervene in physiologically important
systems. Our analysis provides a snapshot of current
understanding of binding energetics. While certain
features emerge as discriminators between designs
and a majority of the natural protein complexes in
our data set, all of the metrics misclassify some
natural complexes as nonbinders. In many areas of
computational biology, ranging from sequence
alignment13 to function annotation,14 the availabil-
ity of comprehensive benchmarks has provided
strong impetus to method development and a
powerful means of gauging progress. The bench-
mark provided here, the first to contain complexes
that are predicted to associate but have been
experimentally determined not to interact, provides
a valuable orthogonal axis for evaluating both the
relative and absolute performance of alternative
approaches.
The design discrimination test is complementary

to traditional docking tests. In this test, large-scale
sampling of rigid-body or backbone freedom is not
needed, allowing more direct focus on the energy
function. On the other hand, it must be kept in mind
that the failure of a computational design to
experimentally bind its target could be related not
only to overestimation of the computed binding
energy due to energy function inaccuracies but also
to imperfect design at the monomeric protein level:
the design may not actually fold to the target
structure. The high likelihood of designed side
chains to adopt binding-incompatible conforma-
tions in the unbound state has been suggested to
play a role in the failure of design calculations to
produce active binders.15 Here, we find that changes
to backbone structure in designed surfaces might
play an equally significant role in compromising
designs. Indeed, in the design of hemagglutinin
binders, the two active designs used largely helical
and conformationally restricted surfaces.1 Our
conclusion that surfaces that are not well anchored
are poor choices for design can be easily used to
eliminate such surfaces from design.
The 28 participating groups found many differ-

ences between the designed and natural complexes.
In particular, several metrics employing electrosta-
tics and solvation show promise as discriminators,
perhaps unsurprisingly, given that the three surfaces
targeted in the design set were largely hydrophobic,
whereas natural interfaces span the range of
hydrophobicity and charge. On the other hand,
most all-atom metrics fail to discriminate natural
and designed hydrophobic interfaces, even though
most of the designs do not bind. This result
underscores the importance of developing improved
force fields for protein interfaces that are able to
discriminate binders from nonbinders in all catego-
ries. One result of the community-wide testing is that
our original benchmark set could be “tricked”
because of its very strong focus on nonpolar
interfaces. We have now supplemented the bench-
mark with more polar and charged interfaces to
remedy this deficiency and by suggesting a subset of
25 apolar natural interfaces for comparison to
designs; we look forward to the improved metrics
that will be developed to solve the discrimination
problem posed by this more inclusive benchmark.
Solving the discrimination problem by all-atom

methods may require explicit treatment of the
various conformational-entropy penalties of bind-
ing, such as side-chain and backbone freezing.15,16

Additional aspects such as water molecules at the
interface and the likelihood that the designed
protein adopts its target conformation may also
need to be addressed. The availability of a
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comprehensive data set should enable the develop-
ment of improved energy functions, yielding a more
complete understanding and formulation of the
energetic contributions to binding free energy and
increasing the reliability of tools for predicting and
engineering protein interactions.

Materials and Methods

Experimental materials and methods and the computa-
tional methods used in discrimination are provided in the
online supplement.

Computational methods

Preparation of input files

Designed and natural complexes were subjected to the
same computational protocol consisting of full side-chain
repacking and refinement of the rigid-body and side-
chain conformations using the local-refine mode of
RosettaDock.17 All calculations were conducted in the
Rosetta all-atom force field (score12), which is dominated
by van der Waals, hydrogen bonding, and solvation
terms.5 A RosettaScript for complex-structure refinement
is available in the online supplement. Refined structures
were provided to the participants and are available in the
online supplement.

Computed binding energy and buried surface
area calculations

The binding energy and buried surface area (Fig. 1;
Table S1) were computed within the Rosetta software
suite. For the natural complexes, the biologically relevant
interface was extracted from information provided with
the docking benchmark.18 Binding-energy calculations
(using score12) were computed by subtracting the energy
in the unbound complex from the energy in the bound
complex, in each state allowing for repacking of interface
side chains. Binding energies were averaged over three
repeats for numerical stability. A RosettaScript for
computing the binding energies and buried surface areas
is available in the online supplement.

ROC and the AUC

The raw scores from each group were numerically
sorted from high to low propensity to bind, irrespective of
the type of complex (natural or designed). For each natural
complex in the sorted list, a step was taken along the y-axis
to plot the ROC, and conversely, for each designed
complex, a step was taken along the x-axis. Step sizes
were normalized such that the total lengths of the x- and y-
axes were 1.0. The AUC was computed by summing the
area added under the curve for each x-axis increment.
Scripts for computing the AUC and plotting the ROC are
available in the online supplement.

Degree of connectivity at the interface

For each interface residue on designed monomers and
all interface residues on natural binders, we calculate the
number of residue neighbors on the host monomer within
8 Å of the interfacial residue (ignoring the partner protein).
We find that below 8.5 residue neighbors, designed
surfaces are poorly anchored in their host monomers
(examples in Fig. 4). Residues within 8 Å of the partner
protein were considered to be interfacial. This metric is
implemented in RosettaScripts19 (see Supplemental Data).

Redesign for improved electrostatics

The 87 designed complexes served as starting structures
for three iterations of side-chain design of scaffold
interface residues followed by minimization of rigid-
body, backbone, and side-chain degrees of freedom.
During design and minimization, the Rosetta all-atom
force field was augmented with a Coulomb electrostatic
interaction term with a distance-dependent dielectric
(weight=1.0) and pair potential (weight=0.98, compared
to 0.49 in the default all-atom force field). The 29 designs
burying the highest surface areas were selected.
Pairwise and electrostatic contributions to binding (Fig.

3b) were these energetic components of binding-energy
calculations (see above) and were computed assuming
weights of 0.49 for the pairwise potential and 0.25 for
Coulomb electrostatics. A RosettaScript for the design
trajectory is available as Supplemental Data.

Source code

The Rosetta software suite is available online free of
charge to academic users‡. Scripts used in analyzing the
data and producing the graphics are provided in the
online supplement.

Supplementary materials related to this article can be

found online at doi:10.1016/j.jmb.2011.09.031
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