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Proteins mediate the fundamental processes of life, and the beau-
tiful and varied ways in which they do this have been the focus of 
much biomedical research for the past 50 years. Protein-based 

materials have the potential to solve a vast array of technical chal-
lenges. Functions that naturally occurring proteins mediate include: 
the use of solar energy to manufacture complex molecules; the ultra-
sensitive detection of small molecules (olfactory receptors1) and of 
light (rhodopsin2); the conversion of pH gradients into chemical 
bonds (ATP synthase3); and the transformation of chemical energy 
into work (actin and myosin4). Not only are these functions remark-
able but they are encoded in sequences of amino acids with extreme 
economy. Such sequences specify the three-dimensional structure of 
the proteins, and the spontaneous folding of extended polypeptide 
chains into these structures is the simplest case of biological self-
organization. Despite the advances in technology of the past 100 years, 
human-made machines cannot compete with the precision of func-
tion of proteins at the nanoscale and they cannot be produced by 
self-assembly. The properties of naturally occurring proteins are even 
more remarkable when considering that they are essentially accidents 
of evolution. Instead of a well-thought-out plan to develop a machine 
to use proton flow to convert ADP to ATP, selective pressure operated 
on randomly arising variants of primordial proteins, and there were 
also hundreds of millions of years in which to get it right.

In this Review, we propose that if the fundamentals of protein fold-
ing and protein biochemistry and biophysics can be understood, it 
should become possible to design from the ground up a vast world 
of customized proteins that could both inform basic knowledge of 
how proteins work and address many of the important challenges 
that society faces. We focus specifically on the problem of de novo 
protein design: the generation of new proteins on the basis of physical 
principles with sequences unrelated to those in nature. We describe 
the methodological advances that underlie progress in de novo pro-
tein design as well as provide an overview of the diversity of designed 
structures for which the high-resolution X-ray crystallography struc-
ture or nuclear magnetic resonance (NMR) structure is in atomic 
agreement with the design model. Almost all protein engineering so 
far has involved the modification of naturally occurring proteins to 
tune or alter their function using techniques such as directed evolu-
tion5–7, which involves cycles of generating and selecting variation in 
the laboratory. Because these efforts have been extensively reviewed8,9 

and are essentially extensions of evolutionary processes, they will not 
be discussed here.

It is useful to begin by considering the fraction of protein sequence 
space that is occupied by naturally occurring proteins (Fig. 1a). The 
number of distinct sequences that are possible for a protein of typical 
length is 20200 sequences (because each of the protein’s 200 residues 
can be one of 20 amino acids), and the number of distinct proteins that 
are produced by extant organisms is on the order of 1012.  Evidently, 
evolution has explored only a tiny region of the sequence space that is 
accessible to proteins. And because evolution proceeds by incremental 
mutation and selection, naturally occurring proteins are not spread 
uniformly across the full sequence space; instead, they are clustered 
tightly into families. The huge space that is unlikely to be sampled 
during evolution is the arena for de novo protein design. Consequently, 
evolutionary processes are not a good guide for its exploration — as 
discussed already, they proceed incrementally and at random. Func-
tional folded proteins have been retrieved from random-sequence 
libraries10–12 but this is a laborious (and non-systematic) process. 
Instead, it should be possible to generate new proteins from scratch on 
the basis of our understanding of the principles of protein biophysics.

Our approach is built on the hypothesis that proteins fold into the 
lowest energy states that are accessible to their amino-acid sequences, 
as originally proposed by Christian Anfinsen13. Given a suitably accu-
rate method for computing the energy of a protein chain, as well as 
methods for sampling the space of possible protein structures and 
sequences, it should be possible to design sequences that fold into new 
structures. There are two challenges in implementing this approach:  
first, the energy of a system cannot be computed with perfect accuracy; 
and second, the space of possible structures and sequences is very large 
and therefore difficult to search comprehensively. In this Review, we 
describe the physical basis for the energy function used in the design 
calculations and the approaches that are used to overcome the sam-
pling problem. The discussion is based on our experience of develop-
ing the Rosetta structure prediction and design methodology14; other 
de novo protein design software is described elsewhere15–17.

Considerable recent progress in protein design is attributable not 
only to the advances in understanding and computational methods 
that are the focus of this Review, but also to advances in two other 
areas. The first is computing: de novo protein design is computation-
ally expensive, and the steady increase in the availability of computing 

There are 20200 possible amino-acid sequences for a 200-residue protein, of which the natural evolutionary process has 
sampled only an infinitesimal subset. De novo protein design explores the full sequence space, guided by the physical 
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power has greatly enabled the work that we describe, much of which 
was completed using volunteer computing through the Rosetta@home 
project. The second advance is the synthetic manufacture of DNA. 
Because the proteins that are being designed do not exist in nature, 
genes that encode their amino-acid sequences also do not exist. To 
produce designed proteins in an organism such as Escherichia coli, 
synthetic genes that encode the designed amino-acid sequences must 
first be manufactured. Methods for DNA synthesis have improved 
dramatically in the past 10 years, greatly reducing the cost of synthe-
sizing genes for de novo designed proteins and increasing the number 
of computational designs that can be tested experimentally.

Physical principles that underlie protein design
The driving force for protein folding is the burial of hydrophobic 
residues in the protein’s core, away from the solvent. To minimize 
the size of the cavity that the protein occupies in water, and to maxi-
mize van der Waals forces, the side chains in the core must be packed 
closely but without energetically unfavourable atomic overlaps. Polar 
groups that interact with the solvent in the unfolded state that become 
buried upon protein folding must form intra-protein hydrogen bonds 
to compensate, otherwise the large energy cost of stripping water 
will disfavour folding18. The hallmark features of globular protein 

structures follow from these considerations: α-helical and β-sheet 
secondary structures, in which the polar carbonyl and amide groups 
of the polypeptide backbone can form hydrogen bonds, assemble in 
such a way that non-polar side chains fit together like the pieces of a 
jigsaw puzzle to form densely packed cores. Interactions of amino-acid 
side chains with neighbouring backbone atoms also contribute to the 
free energy of folding: these include hydrogen bonds at the termini of 
α-helices and steric and torsional effects that favour certain backbone 
geometries and disfavour others. For example, the amino acid proline 
has a rigid internal ring and is compatible with only a narrow range 
of backbones, whereas glycine, which lacks a side chain, enables tight 
bending of the backbone in loops between secondary structures.

This picture of protein folding is implemented in an energy function 
that captures the interactions of the atoms in proteins with each other 
and with the solvent. The main contributors to this energy function 
are van der Waals forces that favour close atomic packing, steric repul-
sion, electrostatic interactions and hydrogen bonds, solvation and the 
torsion energies of backbone and side-chain bonds. Predicting and 
designing protein structures using such an energy function requires 
methods for sampling alternative backbone and side-chain confor-
mations to identify structures and sequences with very low energy. 
Different methods are used for backbone and side-chain sampling 

Figure 1 | Methods for de novo protein design.  a, A schematic of the protein 
sequence space. Evolution has sampled only a tiny fraction of the total possible 
sequence space (blue), and the incremental nature of evolution results in 
tightly clustered families of native proteins (beige), which are analogous 
to archipelagoes in a vast sea of unexplored territory. Directed evolution is 
restricted to the region of sequence space that surrounds native proteins, 
whereas de novo protein design can explore the whole space. b, Structure 
prediction, fixed-backbone design and de novo protein design are global 
optimization problems with the same energy function but different degrees 
of freedom. In structure prediction, the sequence is fixed and the backbone 
structure is unknown; in fixed backbone protein design, the sequence is 
unknown but the structure is fixed; and in de novo protein design, neither is 
known. c, Example of an energy landscape generated from fixed-sequence 

protein-structure prediction calculations. The red dots represent lowest-energy 
structures from independent Monte Carlo trajectories, which are plotted 
according to their similarity to the target structure (black dot) along the x axis; 
structural similarity is measure by root-mean-square deviation (r.m.s.d.). In 
de novo design efforts, designed sequences for which the calculations converge 
on the target designed structure are selected for experimental characterization. 
d, Blind, de novo structure prediction (left) for the critical assessment of 
protein structure prediction (CASP)11 target T0806, which has no sequence 
similarity to any protein of known structure, using coevolution-derived contact 
constraints27. The crystal structure (Protein Data Bank accession code 5CJA) 
is shown for comparison (right). The ability to predict the structure of proteins 
with new folds with this level of accuracy enables large-scale structural 
genomics by means of computer calculation rather than experiment.
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(Fig. 1b). In side-chain sampling, discrete combinatorial optimiza-
tion is used to identify amino acids and side-chain conformations 
(known as rotamers) that lead to low-energy, closely packed protein 
cores19–22. If the amino-acid sequence is known in advance, such as in 
the protein structure prediction problem (predicting the structure of 
a protein from its amino-acid sequence), the amino-acid identities 
have already been fixed and the search covers the discrete rotameric 
states of each side chain. But if the sequence is unknown, such as 
in the protein design problem (finding a sequence that folds into a 
specified structure), both the amino-acid identities and the rotameric 
states are sampled. Backbone sampling often frames the initial stages 

of the search as a discrete optimization problem by taking advan-
tage of biases in the local sequence towards a subset of possible local 
structures. In the later stages of refinement, continuous optimization 
methods such as quasi-Newton minimization are used to fine-tune 
the packing and the electrostatic interactions and hydrogen bonding 
of the structure.

Protein-structure prediction
It is useful to first consider the ab initio structure prediction problem: 
finding the lowest energy structure for fixed amino-acid sequence 
in the absence of information about the structures of evolutionarily 
related proteins. Because the amino-acid sequence is fixed, side-chain 
combinatorial optimization covers only the various rotameric states 
and the backbone can be built from short fragments with similar local 
sequences23. An advantage of this approach is that sampling is very 
focused in regions where the local sequence strongly favours a par-
ticular local structure yet broad in regions where the local sequence 
is compatible with many conformations. It is still difficult to predict 
protein structures without homologues of known structure for all but 
the smallest proteins. The main challenge is the size of the backbone 
conformational space that must be sampled: the correct structure usu-
ally has a lower computed energy than all alternative structures, but 
it is very hard to find. However, if the sampling is guided by extra 
sources of information, such as co-evolution-based distance con-
straints24,25, structure-prediction calculations can find the native-state 
energy minimum (Fig. 1c). In such cases, accurate, blind predictions 
of complex protein structures can be made26,27 (Fig. 1d).

De novo protein design
Unlike in the structure-prediction and fixed-backbone design 
problems, in the general (de novo) protein design problem, both 
the sequence and the exact structure of the backbone are unknown 
(Fig. 1b). Given this, how do we effectively sample backbones from 
scratch? Because only a small proportion of backbone conformations 
can accommodate sequences with almost-perfect core packing and 
hydrogen bonding between the buried hydrogen-bond donors and 
acceptors, design calculations generally begin with a large set of (more 
than 10,000) alternative conformations. These initial backbones can 
be made either by assembling short peptide fragments28,29 or by using 
algebraic equations to specify the geometry parametrically30–35. For 
each designed backbone conformation, combinatorial sequence-
optimization calculations are used to identify the lowest-energy 
sequence for the structure. Ab initio structure-prediction calculations 
are then carried out to determine whether the designed structure is 
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Figure 2 | Designing αβ proteins.  a, Sampling alternative backbones for a β-strand-turn-α-helix blueprint through fragment assembly. b–g, De novo designed 
ideal αβ proteins with high-resolution NMR or X-ray structures that are in very close agreement with design models28,36,37. b, Top7. c, Ferredoxin folds of varying 
shapes and sizes. d, Rossmann 2×2 folds. e, IF3-like fold. f, P-loop 2×2 fold. g, Rossmann 3×1 fold. h, Larger, more complex structures that were generated from 
domains in b and c38.

Figure 3 | Designing proteins with internal symmetry.  a, The propagation 
of a single repeat unit generates a larger structure. b–d, De novo designed 
repeat proteins with high-resolution X-ray structures that are in very close 
agreement with design models. b, De novo α-helical toroids41. c, An ideal 
TIM barrel with four-fold symmetry. Packing features (white) and polar-
fold determinants (pink spheres) are shown42. d, Tandem repeat proteins 
with a variety of twists and curvatures that go beyond the topologies that are 
observed in nature43.
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the lowest-energy state of the designed sequence — this is an impor-
tant in silico consistency check. De novo designs are usually experi-
mentally characterized only if structure-prediction calculations that 
start from the designed sequence strongly converge on the designed  
structure (Fig. 1c).

Only a finite number of backbones can be sampled computation-
ally. To tackle the important challenge of sequence-independent 
backbone construction, it is necessary to reduce the enormous 
space of possible backbone structures to those that are capable of 
being designed — that is, to those for which there is a reasonable 
probability that a sequence exists whose lowest-energy state is the 
structure. Progress towards this goal has required the investigation 
of sequence-independent constraints on backbone geometry. One 
such constraint comes from the connectivity of the polypeptide 
chain and the requirement that the polar atoms of the backbone 
either make hydrogen bonds within the chain in α-helices or β-sheets 
or come into contact with the solvent in exposed loops. This con-
straint immediately restricts the length of the secondary structures 
that are permitted for a given topology36. Another constraint comes 
from the limited flexibility of the polypeptide chain, which restricts 
the lengths of the loops that connect α-helices and β-sheets in vari-
ous packing orientations37. Simulations and analyses of protein 
structures have revealed sequence-independent design principles 
that relate the lengths of helices, strands and loops when packed 
together that greatly facilitate the construction of topologies that 
consist of α-helices and β-sheets36,37.

Even with these constraints, the space of possible backbones is still 
large. To meet the twin goals of bringing the principles that underlie 
protein folding and structure into sharp focus and generating robust 
and stable scaffolds for future functional design efforts, much de novo 

protein-design work has placed an emphasis on designing ideal pro-
tein structures with unkinked α-helices and β-strands and minimal 
loops. By contrast, most naturally occurring proteins contain irregu-
lar, non-canonical features that arise either from selection for function 
or from neutral drift. Such features complicate the structural analysis 
of proteins and reduce the free energy of folding. (During evolution, 
there was probably little pressure to optimize the free energy of folding 
beyond 8 kcal per mol, which corresponds to a folded-state population 
of more than 99.999%.)

Ideal αβ folds
A wide range of ideal αβ protein structures have been designed using 
the sequence-independent design principles36,37 (Fig. 2). The design 
approach consists of several steps. First, an overall topology ‘blueprint’29 
that is consistent with the backbone design principles is created to 
specify the lengths, packing arrangement and order of the constituent 
α-helices and β-strands, as well as the lengths of the connecting loops. 
Second, protein backbones that are compatible with the blueprint are 
assembled from protein structure fragments using a Monte Carlo 
approach (Fig. 2a). Third, combinatorial rotamer optimization is used to 
identify a low-energy amino-acid sequence for each backbone. Fourth, 
alternating cycles of backbone relaxation and sequence optimization are 
performed to achieve a sequence–structure pair with very low energy. 
Last, sequences that converge on the corresponding designed struc-
ture in structure prediction calculations are tested experimentally. This 
design approach was applied to the idealized backbones shown in Fig. 2. 
Synthetic genes encoding the new designed proteins were generated, 
and the proteins were produced in E. coli. The purified proteins were 
found to be extremely stable and had structures that were almost identi-
cal to those of the design models28,36–38 (Fig. 2).
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Figure 4 | De novo design using parametric backbone generation.   
a, Parameters that describe helical bundle geometry. b, The first de novo 
designed helical bundles to be structurally validated: α3D (ref. 48) (left) and RH4 
(ref. 30) (right), a right-handed coiled coil. c, Functional de novo helical bundles: 
a carbon nanotube-binding helix53 (left), and a Zn2+ antiporter membrane 
protein (known as Rocker)34. d, Single-chain hyperstable helical bundles33: a 

right-handed four-helix bundle (left) and untwisted three-helix bundles (right). 
e, Homo-oligomeric single-ring helical bundles31,33,51,52. f, Homo-oligomeric 
de novo helical hairpins that form double-layered channels with hydrogen-bond 
network-mediated specificity63; the polar networks are shown as expanded 
cross-sections. Cn indicates an n-fold cyclic symmetry operation: for example, 
C2 structures are homodimers and C3 structures are homotrimers.
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Repeat proteins
The effort to construct de novo proteins with ideal backbone arrange-
ments has led to the design of proteins with internal symmetry in 
which a single idealized unit is repeated numerous times39–41 (Fig. 3). 
Internal symmetry reduces the size of the sequence space that must be 
searched and enables a relatively small unit with a known sequence–
structure combination to be reused repeatedly to build larger proteins 
(Fig. 3a). The constraint of internal symmetry is particularly strong 
for closed structures in which the final repeat unit is juxtaposed with 
the first, such as in α-helical toroids41 (Fig. 3b) and the TIM barrel42 
(Fig. 3c). In the TIM barrel, the backbone design principles, together 
with the geometry of closed β-sheets, makes four-fold symmetry 
the highest that can be attained and forces the two α-helices in each 
α–β–α–β unit to differ in length42. Both closed-repeat and open-repeat 
protein designs have been produced by introducing synthetic genes 
into E. coli, followed by experimental characterization of the purified 
proteins. High-resolution X-ray crystallography structures for the 
designs were found to be almost identical to the design models. The 
α-helical repeat structures have sequences and structures (Fig. 3d) that 
differ greatly from those found so far in nature, which suggests that 
naturally occurring proteins sample only a tiny fraction of the stable 
protein structures that can be realized43. These new repeated proteins 
are exceptionally stable; several of the open structures are denatured 
only by guanidine hydrochloride at concentrations of more than 6 M 
(D. Barrick, personal communication). By contrast, an approach 
to ‘stitch’ protein structures together from large helix-containing 
fragments of naturally occurring proteins generates structures with 
irregularities that are similar to those found in native structures44 that 
present opportunities for the subsequent design of function. Contact 
information from native structures has also been used to guide the 
design of new backbone arrangements45, including a scaffold that 

presents an epitope from respiratory syncytial virus to elicit a neu-
tralizing immune response46.

Parametric helical bundles
The use of parametric equations is a complementary approach to gen-
erating ideal backbone arrangements that provides considerable control 
over the global structure. Equations developed by Francis Crick enable 
the generation of idealized bundles of α-helices in parallel or antiparal-
lel orientations in which the helices have arbitrary lengths, phasing, 
relative orientations and twists47 (Fig. 4a). The helical bundles can be 
used directly in sequence-design calculations, yielding multiple-subunit 
oligomeric structures, or the helices can first be connected with loops 
to yield a single chain. Many helical bundles have been designed in this 
way30,31,33,34,48–52 (Fig. 4), including a peptide that binds to carbon nano-
tubes53, parallel self-assembling helical channels31, an ion transporter34, 
cages54 and an α-helical barrel with installed hydrolytic activity55. The 
combination of parametric backbone generation with combinatorial 
side-chain optimization has enabled the design of larger, more diverse 
helical bundles33; like many de novo designed proteins, these parametri-
cally designed proteins are extremely stable, remaining folded in 7 M 
guanidine hydrochloride at 95 °C.

Hydrogen-bond networks
The principles we have outlined for the de novo design of monomeric 
folds are necessary but not sufficient for controlling the specificity of 
protein interactions, which despite progress56–60 remains a challenge61. 
Binding is driven by the balance between the burial of hydrophobic 
packing residues and peripheral polar interactions that help to solvate 
the monomeric state and provide structural specificity. In contrast to the 
double helix of DNA, in which regular arrays of central hydrogen bonds 
lead to the formation of a high-specificity heterodimer, the hydrogen 

Figure 5 | Designing self-assembling nanomaterials.  a, C2, C3, C4 
and C5 symmetric homo-oligomers (ref. 78 and J. Fallas and G. Ueda, 
personal communication). b, Two-dimensional hexagonal lattice81. 
c–f, Self-assembling cages. c, A one-component tetrahedron (left) and 
a one-component octahedron79 (right). d, Two-component tetrahedral 

nanoparticles80; the two asymmetric components are coloured in blue and 
yellow. e, A one-component hyperstable icosahedron with a de novo helical 
bundle (red helices) fused in the centre of the face82. f, Two-component 
megadalton-scale icosahedra83; the two components of each are coloured in 
blue and yellow.
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bonds that form at the interfaces of naturally occurring proteins are 
placed irregularly and are very difficult to design62.

A challenge when designing polar interactions is to ensure that all 
buried hydrogen-bond donors and acceptors form intraprotein hydrogen 
bonds. In the past year, it has become possible to design with atomic-level 
accuracy extensive networks of hydrogen bonds in which almost all of 
the donors and acceptors are satisfied63. This approach has enabled heli-
cal-bundle oligomers to be generated with a specificity that is determined 
by regular arrays of central hydrogen-bond networks, analogous to Wat-
son–Crick base-pairing in DNA64. Identification of the rare backbones 
that can harbour more than one network of hydrogen bonds required the 
parametric generation of thousands of backbones. In the field of DNA 
nanotechnology61, the limited set of Watson–Crick hydrogen bonds has 
been harnessed to build a wide range of shapes65,66; it should become 
possible to use similar ‘digital’ design principles to build structures from 
proteins using modular hydrogen-bond networks to encode specificity.

The design of new functions
The advances described in this Review, most of which were made in 
the past 3 years, demonstrate that a fundamental understanding of the 
principles of protein structure and protein folding has been achieved. 
This knowledge has enabled a wide variety of exceptionally stable 
protein structures and assemblies to be designed with atomic-level 
accuracy. (The high-resolution structures for all of the protein designs 
described in this Review, as determined by NMR, X-ray crystallography 
or electron microscopy, are in close agreement with the design models.) 
The potential for designing new functions on the basis of these scaf-
folds and the more general use of de novo backbone design methods 
is underscored by the achievements of computational protein-design 
efforts, in which scaffolds from naturally occurring proteins have been 
repurposed to carry out different functions. Such efforts have yielded 
enzymes that have attained high catalytic efficiencies through directed 
evolution67–73, inhibitors of protein–protein interactions that can protect 
animals from viral infection74 and small-molecule binding proteins that 
can be incorporated into in vivo biosensors75–77. The design of precise 
interfaces between protein subunits has enabled the creation of self-
assembling, cyclic homo-oligomers (ref. 78 and J. Fallas and G. Ueda, 
personal communication), tetrahedra79,80, octahedra79 and open two-
dimensional assemblies81 (Fig. 5). Protein interface design methods have 
been used to create one- or two-component assemblies with icosohedral 
symmetry and 60 subunits82 or 120 subunits83, respectively. The high 
symmetry of these assemblies enables the multivalent presentation of 
antigens for vaccine applications, and the large volumes of their interior 
are well suited to packaging cargo for delivery to targets.

The design of constrained peptides
Because of the level of control that de novo protein design offers, the 

capabilities of the next generation of designed functional proteins could 
greatly exceed those of first-generation designed proteins based on native 
scaffolds. There is also the tremendous potential for de novo protein 
design to go beyond nature to discover new folds by incorporating new 
chemistries and unnatural amino acids. An example of this is the design 
of hyperstable peptides, which are constrained by disulfide crosslinks 
and cyclic peptide linkages that connect the N and C termini84. In this 
case, extensions to the design methodology enabled the use of l-amino 
acids and d-amino acids within the same protein design (Fig. 6). The 
structures of these peptides, determined experimentally through NMR 
and X-ray crystallography, are in close agreement to the design models, 
and despite the peptides being only 15–50 residues in length, most are 
extremely resistant to thermal and chemical denaturation.

Improving the robustness of de novo design
A limitation of de novo protein design is that only a fraction of protein 
designs adopt stable folded structures when produced in E. coli. The 
most frequent reasons for failure are insolubility and the formation 
of unintended oligomeric states (polydispersity) — experimentally 
determined high-resolution structures of soluble and monodisperse 
designs are almost always very similar to those of the design models. 
Insolubility and polydispersity probably arise from unanticipated 
intermolecular hydrophobic interactions. Increasing the robustness of 
designs will require improvements in the accuracy of the energy func-
tion that underlies the design process (for example, explicit modelling of 
the interactions of protein atoms with specific bound water molecules), 
more explicit negative design to disfavour alternative states and other 
advances in computational methodology. As the decreasing cost of 
synthesizing DNA enables the experimental characterization of larger 
numbers of protein designs, it should become increasingly possible to 
identify the features that differ between soluble and insoluble designs. 
Insight can be obtained by considering the success rate for each class of 
design that is described in this Review. The highest success rate from 
the work of our group was obtained for the cyclic and disulfide stapled 
peptides84, for which seven of eight designs were soluble and mono-
disperse and had structures that were almost identical to the design 
models; the chemical staples limit alternative conformations of the 
designs in this class. These designs were also synthesized chemically 
— the lower success rate for proteins that are expressed recombinantly 
might be due in part to the toxicity of such proteins in E. coli or to 
other complexities of the bacterium’s biology. The α-helical bundles that 
are mediated by networks of hydrogen bonds had a solubility of about 
90%, and more than 60% of the bundles were monodisperse and in the 
designed oligomerization state63. Because a large energetic penalty is 
incurred if buried polar groups do not form hydrogen bonds, altered 
core-packing arrangements in which hydrogen bonds are not formed 
are disfavoured. Of the α-helical repeat designs43, 90% were soluble and 

Figure 6 | Designing 
hyperstable de novo constrained 
peptides.  a, b, Disulfide 
crosslinked miniproteins with 
two (a) or three (b) disulfide 
linkages (yellow spheres). 
c, Cyclic peptides with 
covalently linked N termini and 
C termini. An asterisk denotes a 
heterochiral design that contains 
a mixture of l-amino acids and 
d-amino acids.

a

b c

* * *

* *
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64% were monodisperse. Almost all of the monodisperse designs had 
small-angle X-ray scattering data that were consistent with the design 
models84. Here, the sequence repetition probably favours structures 
with internal repeats over alternative structures.

Outlook and challenges
A fundamental problem encountered when redesigning naturally 
occurring proteins to deliver new functions such as catalytic sites is 
that the alteration of a large number of amino-acid residues to intro-
duce the function will inevitably change aspects of the structure; this 
is demonstrated by crystal structures of designed enzymes that have 
unanticipated loop reconfigurations85. Native proteins are often margin-
ally stable, and sequence changes can lead to unfolding or aggregation. 
The very high stability of de novo designed proteins should make them 
more robust starting points for creating new functions.

The next steps in protein design are not without challenges. The ide-
ality of almost all of the de novo structures designed so far probably 
contributes to their stability, and the introduction of functional sites 
and binding interfaces will inevitably compromise this ideality. Proteins 
that bind to other proteins usually have hydrophobic residues on their 
surface and are therefore more prone to aggregation than the idealized 
polar surfaces of most of the proteins that have been described in this 
Review, and the active sites of enzymes have some mobility to enable 
substrates to enter and products to leave. Recessed cavities, which are 
not incorporated into most de novo designed proteins at present, will be 
required for ligand and substrate binding. Naturally occurring proteins 
provide numerous examples of the rich functionality, including allostery 
and signalling, that can emerge in protein systems with multiple low-
energy states and moving parts that can be toggled by external stimuli. 
To achieve such capabilities, which could have widespread applications 
in the design of molecular machines to tackle problems ranging from 
tumour recognition to computing, will require proteins to be designed 
with multiple, distinct energy minima. (By contrast, the de novo designs 
in Figs 2–6 each have a single, deep energy minimum (Fig. 1c).) The 
creation of a zinc-transporting transmembrane protein that has two 
alternative states demonstrates that protein design can now start to 
achieve such complexity34.

Overcoming these challenges in the years ahead is an exciting pros-
pect. Success would signal a technological advance that is analogous to 
the transition from the Stone Age to the Iron Age. Instead of building 
new proteins from those that already exist in nature, protein designers 
can now strive to precisely craft new molecules to solve specific prob-
lems — just as modern technology does outside of the realm of biology. ■
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