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Based on the crystal structure of the cross-� spine formed by the
peptide NNQQNY, we have developed a computational approach
for identifying those segments of amyloidogenic proteins that
themselves can form amyloid-like fibrils. The approach builds on
experiments showing that hexapeptides are sufficient for forming
amyloid-like fibrils. Each six-residue peptide of a protein of interest
is mapped onto an ensemble of templates, or 3D profile, generated
from the crystal structure of the peptide NNQQNY by small dis-
placements of one of the two intermeshed �-sheets relative to the
other. The energy of each mapping of a sequence to the profile is
evaluated by using ROSETTADESIGN, and the lowest energy match for
a given peptide to the template library is taken as the putative
prediction. If the energy of the putative prediction is lower than a
threshold value, a prediction of fibril formation is made. This
method can reach an accuracy of �80% with a P value of �10�12

when a conservative energy threshold is used to separate peptides
that form fibrils from those that do not. We see enrichment for
positive predictions in a set of fibril-forming segments of amyloid
proteins, and we illustrate the method with applications to pro-
teins of interest in amyloid research.

amyloid � prediction � ROSETTADESIGN � lysozyme � myoglobin

Amyloid-like fibrils of protein are common to deposition
diseases such as Alzheimer’s, the spongiform encephalop-

athies including Creutzfeldt-Jakob disease and bovine spongi-
form encephalopathy, and the protein-based heredity of [PSI�]
and other prions in yeast. Thus understanding the range of
protein sequences that can undergo fibrillization and the basis
for stability of fibrils could have wide significance. We address
these problems with a computational method for predicting
which segments of a given protein might form the cross-� spine
in the fibrillar form.

The ability to form amyloid fibers is not restricted to those
proteins associated with amyloid or prion disease. Otherwise
innocuous proteins can be fibrillized by altering the pH, tem-
perature, or composition of their native solvent (1–3). In addi-
tion, numerous short peptides (e.g., four to seven residues) are
found to form amyloid-like fibrils in isolation from the rest of the
protein (4–11). De novo-designed synthetic peptides have also
been shown to form fibers (12–14).

The question of how both full proteins and short peptides can
form fibrils was illuminated by the crystal structures (11) of
NNQQNY and GNNQQNY, which showed that the fundamen-
tal structure of the protofibril is a pair of �-sheets, which mate
at a dry interface where their side chains tightly interdigitate in
a ‘‘steric zipper.’’ To form this steric zipper, the strands in the
sheets need be only four to six residues in length. Therefore, we
would expect that short peptides with a tendency to fibrillize can
do so, either when cleaved from the rest of the protein chain, as
for the �-amyloid (Abeta) peptide of Alzheimer’s disease, or
when they are unmasked from an inaccessible position in a native
protein. In this article we demonstrate a method that identifies
which hexameric peptides have this tendency to fibrillize.

This method for predicting which peptides will fibrillize is
enabled by a growing body of examples of proteins and peptides
that either form fibrils or do not form fibrils, providing a library
of positive and negative examples for method development. The
diversity in sequence of these examples makes difficult work for
traditional sequence-based approaches (e.g., regular expres-
sions, motifs, hidden Markov models, etc.) to predict fibril
formation. For example, a regular expression or ‘‘sequence
pattern’’ was derived by Lopez de la Paz and Serrano (14), by
recording the positive and negative results of fibrillization assays
of all 19 point mutations for all positions of the amyloidogenic
peptide STVIIE. This straightforward approach relies on the
assumption that residue preferences at a given position in the
sequence are independent of the residue types at other positions.
This assumption likely generates large numbers of false positives
because of its lack of restrictions on interacting residue types.
Also the pattern fails to recognize known fibril-forming
hexapeptides (e.g., NFGAIL, NNQQNY, and VQIVYK). Tak-
ing a different direction, Pawar et al. (15) developed a property-
based method for identifying ‘‘aggregation-prone’’ segments of
proteins based on a linear function of hydrophobicity, charge,
and helical and �-sheet propensity derived from entire proteins.
The values of these properties are summed, again assuming that
positions in the sequence are independent. The primary con-
tributor to this function is hydrophobicity, so this approach will
overpredict amyloid in hydrophobic segments of proteins and
miss some polar amyloidogenic segments such as NNQQNY
(11). An indirect structure-based approach was developed by
Yoon and Welsh (16, 17) for predicting the �-sheet propensity
of a span of residues conditioned on its tertiary structure context.
Sequences with a strong propensity for �-strand structure con-
tingent on a tightly packed environment were taken to be likely
fibril formers.

A direct structure-based approach to prediction of fibril
formation is possible, starting from the crystal structure of the
fibril-forming peptide NNQQNY (and its isomorphic variant
GNNQQNY) from the sup35 prion protein of Saccharomyces
cerevisiae (11). To the extent that this structure is representative
of cross-� spines, we can explore the energetic space of peptides
capable of adopting this structure. There is no need to equate
amyloidogenicity with hydrophobicity or to assume that se-
quence positions in a protein are independent of one another. To
scan protein sequences and identify those segments that might be
capable of fibrillization, we use an approach similar to 3D
profiling (18) by mutating the side chains in the cross-� spine of
NNQQNY to those of the sequence of interest and evaluating
the energetic fit by using ROSETTADESIGN (19). We provide a
quantitative assessment of the predictive utility of this method in
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addition to several examples of its application to proteins of
interest in amyloid research.

Results
Prediction of Fibril-Forming Hexapeptides. The computational
method for predicting amyloid-forming hexapeptides from
amino acid sequences of amyloid-forming proteins is illustrated
in Fig. 1 and discussed at greater length in Methods.

Results from applying the method to the AmylHex data set of
hexapeptides known either to form fibrils or not to form fibrils
(see Methods) are shown in Fig. 2 in the form of a receiver-

operator characteristic plot. We can see from Fig. 2 that simply
using a single template of the native structure of NNQQNY and
the ROSETTADESIGN energy function does a fair job of separating
peptides that form fibrils from those that do not. This is largely
because of the favorable energetic fit of the STVIIE-derived
peptides (14) within the cross-� spine. A random predictor
would follow the diagonal in the plot. We also see that the use
of the near-native template ensemble provides a substantial
improvement in prediction performance, because changes in
side-chain volumes and alternative packing arrangements are
allowed. For the predictions made with the template ensemble,
the probability of obtaining the results at each energy threshold
at random was computed by using the hypergeometic distribu-
tion. The logarithm of this P value is also plotted in Fig. 2 (read
off the y axis on the right) where we see that it has two minima.
We will use these minima as energy thresholds in our discussion
of specific applications to full-length amyloid proteins in the
following sections. The right-hand vertical line corresponds to an
energy threshold of �19.0 kcal�mol on the ROSETTADESIGN
energy scale. The P value for the prediction results obtained by
using this ‘‘permissive’’ threshold is 10�10, where 100% of the
positives have been recovered and 60% of the negatives have
accumulated, giving a false-positive error rate of 45%. The black
vertical line in Fig. 2 corresponds to an energy threshold of �25.5
kcal�mol. The P value for the predictions obtained by using this
‘‘conservative’’ threshold is 10�12 where 69% of the positives
have been recovered and 14% of the negatives have accumu-
lated, giving a false-positive error rate of 22%.

Enrichment for Predictions in Amyloidogenic Segments of Proteins.
One would expect that an accurate method for identifying
fibril-forming segments of proteins would make more positive
predictions in the set of experimentally determined, fibril-
forming segments of amyloid proteins (our AmylFrag data set;
see Methods), than in a control set of sequences not known to
form fibrils. We took this challenge of predicting fibril-forming
segments from amyloid-forming proteins as a second quantita-
tive test of our approach, and the results are displayed in Fig. 3.
First, for a given energy threshold for declaring a hexamer as a
fibril-forming positive hit we computed the fraction of positive

Fig. 2. Prediction performance of the 3D profile method with ROSETTADESIGN

energy for predicting fibril-forming sequences from the AmylHex database,
shown as receiver-operator characteristic curves. The percentage of correct
predictions is shown as a function of percentage of wrong predictions, as the
energy threshold is raised from a very low value (good energetic fit) to a very
high (poor energetic fit). The curve with circles shows the fit of hexapeptides
to the NNQQNY crystal structure; the curve with squares shows the fit by using
the entire near-native ensemble (variations of the NNQQNY structure). The
diagonal line shows how a random predictor would perform. The curve
plotted with triangles (read off the right y axis) traces the probability that the
results at each point on the curve plotted with squares could have been
obtained by chance. The two minima of the probability curve are indicated by
the black and gray lines.

Fig. 1. Schematic representation of the 3D profile method with ROSETTADESIGN energy for detecting fibril-forming segments. From the crystal structure of the
NNQQNY peptide (Upper Left), a set of near-native templates is generated by translations of one of the two �-sheets relative to the other, along three orthogonal
directions, as shown (Center). A sequence of interest (Lower Left) is scanned by sliding a window of six residues and mapping each peptide onto the templates
in the ensemble. Each mapping of sequence to template is evaluated energetically with ROSETTADESIGN. Finally, a putative prediction is made by taking the
best-scoring (lowest energy) fit between peptide and template (Right). The putative prediction is accepted as a prediction if its energy is lower than the threshold
energy.
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hits in the AmylFrag data set. Each unique hexameric peptide
was counted only once in the event that it occurred in more than
one fragment found in AmylFrag. To represent a control set (or
background) of predictions, we computed the fraction of positive
hits in a set of full-length proteins (lysozyme, myoglobin, ribo-
nuclease, tau, calcitonin, �2-microglobulin, and amylin), exclud-
ing those peptides that occurred in AmylFrag or AmylHex.
There were a total of 359 unique peptides in AmylFrag and 648
unique peptides in the control set.

Results are shown in Fig. 3; the circles and squares give,
respectively, the fractions of peptides with energies less than or
equal to the thresholds for the background and AmylFrag sets of
peptides. Notice that the AmylFrag curve is shifted to lower
threshold energies than the control (background) curve. The
significance of this shift is evident when the ratio of the fraction
of AmylFrag peptides to the fraction of background peptides is
plotted as the curve with triangles in Fig. 3. We see that for most
of the range of energy thresholds, the ratio of the two curves is
one; that is, the predictions appear random. Below the permis-
sive energy threshold of �19.0 kcal�mol, we see a rise in the
ratio, indicating enrichment of predictions in the AmylFrag set
at lower energies. The curve peaks around our conservative
threshold of �25.5 kcal�mol with an enrichment factor of
�2-fold. That is, peptides found to match a template with energy
less than the conservative threshold are twice as likely to be fibril
formers as are random peptides.

Examples. Having quantified the predictive utility of our ap-
proach, we now examine specific examples of known amyloid
proteins in more detail. The bar graphs of Fig. 4 depict the lowest
energy matches (on the ensemble of templates) for each six-
residue peptide in each protein. The energy is plotted at the
position of the initial residue of each peptide. The potential
disulfide bond of cysteine might present problems in a cross-�
spine, and proline residues are penalized heavily at all positions
except the first because of their inability to donate a backbone
H bond. Thus, to avoid energy calculations likely to yield
ambiguous results in the following examples, we ignored all
peptides containing cysteine or proline residues. This accounts
for some residue positions where an energy bar is missing in Fig.
4. Where the structure of the protein is known, the sequence

positions of �-strand and �-helical secondary structure elements
are shown in Fig. 4.

Lysozyme. Lysozyme is the amyloid-forming protein in patients
with non-neuropathic systemic amyloidosis (20). Fig. 4a shows a
scan of the lysozyme sequence by our 3D profile method
evaluated with ROSETTADESIGN, where we see relatively few
predictions passing even the permissive threshold. The black
bars correspond to a segment of the protein experimentally
identified as fibril-forming (21). The strongest predictions are
localized to this segment, including the peptide IFQINS where
the initial isoleucine, if mutated to threonine, is known to
enhance the fibrillization of this protein (20). Additionally, this
peptide is located in spatial proximity to the active site in the 3D
structure of the protein (22). It is known that enzymatic activity
is lost upon fibrillization. Thus, our predictions agree with what
is currently known about the fibrillization of lysozyme. Notice,
also, that the lower energy matches occur in various types of
secondary structure, indicating the method is not merely iden-
tifying �-strands as putative fibril-forming segments of the
protein.

Myoglobin. Muscle myoglobin is not associated with an amyloid
pathology, but it can be induced to form amyloid-like fibrils (3).
In Fig. 4b, the black bars correspond to an experimentally
verified fibril-forming segment (23). Nearly all of the six-residue
peptides in this segment score well, with a couple of them
surpassing the conservative threshold. Thus our method identi-
fies experimentally established fibril-forming segments of a
protein with precision. As the myoglobin structure is predomi-
nantly helical, the ability of the method to identify fibril-forming
segments in helical proteins is borne out in this example.

Abeta(1–42). Abeta(1–42) is the primary component of the
extracellular fibrillar aggregates of protein found in the brains of
patients with Alzheimer’s disease (24). A scan of this peptide is
shown in Fig. 4c. The black bars are those segments of the
peptide that have been found to be important in fibril formation
or the formation of � structure either by proline scanning
mutagenesis, solid-state NMR, site-directed spin labeling, or
fibril assays of smaller peptides in those segments (6, 25–29). The
lowest energy matches are found in the C terminus of this
42-residue peptide with the best-scoring predicting at the C-
terminal six residues (GGVVIA). This finding is consistent with
kinetic data showing that the 42-residue peptide fibrillizes faster
than the truncated Abeta(1–40) (30).

Tau. The microtubule-associated tau protein localizes to the
neurofibrillary tangles of Alzheimer’s disease (31). A scan of the
tau protein is shown in Fig. 4d where light gray bars are
predictions for which we do not have experimental data. The
black bars correspond to a segment of the protein (PHF43)
implicated in the aggregation of tau (4). There are several
predictions in this segment below the conservative energy
threshold. One of these peptides, VQIVYK (indicated by the
black bar), is known to form fibrils (4). In this example, our
approach was able to identify a known fibril-forming segment of
a large protein with precision.

Discussion
Our structure-based, computational approach to identifying
fibril-forming segments of proteins is based on two experimental
findings. The first is that short peptides of four to seven residues
can themselves form amyloid-like fibrils (4–14). Therefore the
capacity for self-complementation of proteins that leads to
fibrilization of the amyloid type must somehow be encoded in
even short sequences. The second finding is the atomic structure
(11) of NNQQNY, which reveals one pattern of interpeptide

Fig. 3. Enrichment of fibril-forming sequences predicted in the AmylFrag
database of sequences compared with a reference set of sequences. The curves
plotted with squares and circles show the fractions of predictions with ener-
gies below the threshold energy on the x axis obtained for the AmylFrag and
control sets of peptides, respectively. The triangle curve (read off the right y
axis) gives the ratio of these two fractions, Fa for AmylFrag and Fb for
background, as a measure of enrichment. Energy thresholds ��19.5 do not
provide enrichment, whereas an energy threshold of �25.5 provides substan-
tial enrichment.
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bonding in which the cross-� spine of amyloid-like fibrils can be
realized.

By using a 3D profile consisting of an ensemble of templates
derived from the structure of NNQQNY by small perturbations,
we have been able to identify other hexapeptide segments that
fit well into the template, as judged by the ROSETTADESIGN
energy function. This function includes contributions from apo-
lar interactions, hydrogen bonds, and steric overlaps. Because it
includes these various contributions, it can accept sequences that
form fibrils, but would not be selected on the basis of simple
properties, such as hydrophobicity or �-strand propensity. In
fact, segments that form fibrils, such as NNQQNY, are recog-
nized by our template method, but are not by simple residue
properties. Also fibril-forming segments are found in �-helical
and coil segments of native proteins, as well as in �-sheets, as is
evident in Fig. 4. In short, our template method is capable of
detecting amyloid-forming segments that property-based meth-
ods may miss.

The present approach shows promise in discriminating be-
tween segments of proteins that form fibrils and those that do

not. Its performance is easily quantified and is based on non-
arbitrary thresholds using P value calculations. The utility of the
method is demonstrated by its enrichment of hits in the set of
fibril-forming fragments of amyloid proteins over those in a
control set of background proteins. Moreover, the positive
predictions made for the full-length proteins in the examples
tend to localize with precision to experimentally established
fibril-forming segments and are not restricted to � secondary
structure.

The 3D profile algorithm will improve as more template
structures become known. In the case of the tau protein and
myoglobin, we saw that the template method was able to localize
predictions to experimentally determined fibril-forming seg-
ments. A likely interpretation of our positive predictions is that
these segments form cross-� cores that share certain features
with the structure of the NNQQNY peptide such as two parallel
�-sheets with like-faces packed tightly together. The structures
of other fibril-forming peptides will soon be available, and their
addition to our ensemble of templates will likely improve the

Fig. 4. Application of the 3D profile method with ROSETTADESIGN energy for detecting fibril-forming segments of proteins known to form fibrils. (a) Lysozyme.
The vertical bars represent the lowest energy template matches for each hexapeptide, with the black bars indicating a known fibril-forming segment of the
protein (21). Notice that the hexamer predicted to have the lowest energy is within the known fibril-forming segment. Gray and black horizontal lines indicate
the permissive and conservative thresholds, respectively, taken from Fig. 1. (b) Myoglobin. The gray vertical bars represent the lowest energy template matches
for segments of the protein where there are no experimental data. The black bars indicate the segment of the protein that forms fibrils in isolation (23), and
these include the segments with the lowest energies. Gray and black horizontal lines indicate the permissive and conservative thresholds, respectively. (c)
Abeta(1–42). The vertical bars represent the lowest energy template matches for each hexapeptide with those colored gray representing residue positions for
which there is no experimental data. Black and gray horizontal lines indicate the permissive and conservative thresholds, respectively. Black vertical bars indicate
those segments of the peptide for which there is experimental evidence of fibril formation or ordered �-structure. The experimental evidence for fibril formation
of various segments is shown above the plot with the hatched boxes representing NMR�EPR (6, 27, 28), the cross-hatched box representing proline-scanning
mutagenesis (29), and the solid lines representing positive fibrillization assays (26, 30). Notice that the lowest energy segment is the C-terminal segment known
to be important for fibril formation. (d) Tau. The vertical bars represent the lowest energy predictions for each hexapeptide. Gray bars represent positions where
there is no experimental data. Black bars indicate the segment of the protein (PHF43) implicated in aggregation, including the position of the known
amyloidogenic peptide VQIVYK (4). Notice that this segment is one of the lowest energy segments. Gray and black horizontal lines indicate the permissive and
conservative thresholds, respectively.
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prediction performance of our template approach. For instance,
if the core structure of some of the fibrils was composed of
antiparallel �-sheets, we would likely miss them with our current
ensemble of parallel �-sheet templates. With additional tem-
plates and analysis of individual predictions, we can also consider
adjusting the energy function to cater to the problem of fibril
prediction.

Methods
Data Sets. A data set of six-residue peptides including positive and
negative examples of fibril formation was compiled from the
literature. From the point mutations of the peptide STVIIE, we
gleaned 56 true positives and 38 true negatives after peptides
with chemically protected termini were excluded (13, 14). From
the Islet amyloid protein (amylin) and the cytoskeletal tau
protein we obtained three true positives and two true negatives
(4, 5, 32). An additional 51 true negatives and 8 true positives
were obtained from 59 hexameric peptides from insulin and
�2-microglobulin (33). Thus in total we have a set of 158 peptides
of which 67 have been shown to form fibrils and 91 have yielded
negative results in fibril-forming assays. We term this data set
AmylHex and use it to quantify the performance of our method.
This data set is listed in Table 1, which is published as supporting
information on the PNAS web site.

From the literature, we also compiled a set of 45 amyloido-
genic fragments of proteins identified by various researchers,
although roughly half of these are slight variants of one another
or overlap substantially (e.g., NFGAIL and AFGAILSS). The
lengths of these fragments vary considerably and peptides with
lengths �6 residues were excluded. We term this data set
AmylFrag, and it is found in Table 2, which is published as
supporting information on the PNAS web site.

Near-Native Template Ensemble. Using the structure of the
NNQQNY peptide, we created a profile or ensemble of 2,511
near-native templates. Each template comprises two �-sheets,

one with three strands and one with four strands. We consider
the three-stranded sheet to be fixed in space, whereas the
four-stranded sheet is shifted translationally with respect to the
fixed sheet. In this way, the central strand of the three-stranded
sheet, to be used for energy scoring, is always buried, and its
environment is completely defined. The distance between
�-sheets varies from 5 to 11.5 Å in 0.25-Å increments, the shift
along the strand axis covers 7.5 Å in 0.25-Å steps, and the shift
along the fibril axis spans 2.4 Å at 1.2-Å increments (Fig. 1, where
the three double-headed arrows indicate translations along one
of the fiber axes). The templates retain the basic topology of two
parallel �-sheets oriented antiparallel to one another with the
interface formed by the like-sides of each sheet.

Scoring. Each six-residue peptide is threaded onto each of the
near-native templates, and the energetic fit is evaluated by using
the ROSETTADESIGN program. The fibril is treated as an infinite
periodic system, by computing energy terms using a peptide
chain in the center of the template, and then applying these
energies to symmetric positions in each of the other chains.

The terms used in the energy function are the Lennard-Jones
potential, an orientation-dependent hydrogen-bonding potential,
an amino acid-dependent backbone and side-chain torsional po-
tential, a solvation energy based on the generalized Born model
(34), and amino acid-specific reference energies representing av-
eraged interactions in the unfolded state. Each of the terms has an
associated weight (19). The ROSETTADESIGN program is freely
available for academic use (www.rosettacommons.org).
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