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RNA tertiary structure prediction has been based almost entirely on
base-pairing constraints derived from phylogenetic covariation anal-
ysis. We describe here a complementary approach, inspired by the
Rosetta low-resolution protein structure prediction method, that
seeks the lowest energy tertiary structure for a given RNA sequence
without using evolutionary information. In a benchmark test of 20
RNA sequences with known structure and lengths of �30 nt, the new
method reproduces better than 90% of Watson–Crick base pairs,
comparable with the accuracy of secondary structure prediction
methods. In more than half the cases, at least one of the top five
models agrees with the native structure to better than 4 Å rmsd over
the backbone. Most importantly, the method recapitulates more than
one-third of non-Watson–Crick base pairs seen in the native struc-
tures. Tandem stacks of ‘‘sheared’’ base pairs, base triplets, and
pseudoknots are among the noncanonical features reproduced in the
models. In the cases in which none of the top five models were
native-like, higher energy conformations similar to the native struc-
tures are still sampled frequently but not assigned low energies.
These results suggest that modest improvements in the energy
function, together with the incorporation of information from phy-
logenetic covariance, may allow confident and accurate structure
prediction for larger and more complex RNA chains.

ab initio � energy-based � fragment assembly � nucleic acid � Rosetta

The biological roles of RNA molecules range from carrying
simple messages to sensing, modifying, and creating a wide

array of biomolecules (1). The latter tasks typically require the
attainment of complex, three-dimensional structures, and it has
long been noted that the problem of predicting the folds of stable,
structured RNA molecules should be significantly easier than the
analogous puzzle for proteins (2). A limited alphabet of chemically
similar side-chains ensures that a fairly complete picture of the
common conformations and preferred interactions for each nucle-
otide can be obtained. Further, the accuracy of secondary structure
prediction algorithms (3) effectively reduces the RNA folding
problem to one of determining the non-Watson–Crick base pairs
and the backbone trajectories that interconnect canonical Watson–
Crick double helices. There has been much recent progress in the
careful classification of base-pairing interactions (4–6) and of
backbone conformations (7, 8). Along with these insights and
advances, several powerful software packages have been developed
to model RNA tertiary folds (see refs. 9–15; reviewed in ref. 3).

The success of each of these RNA fold prediction algorithms
relies on harnessing experimental data, evolutionary informa-
tion, and interactive input from expert users to select and
position noncanonical tertiary features in the final models. In
principle, however it should be possible to predict RNA tertiary
structures by minimizing the free energy estimated for each
chain configuration. Indeed, widely used methods for RNA
secondary structure prediction are founded on such a ‘‘thermo-
dynamic hypothesis’’ for RNA structure (16). Such a purely
energy-based prediction of tertiary structure has perhaps not
been attempted because of concerns about sufficient conforma-
tional sampling and a sufficiently accurate energy function for
noncanonical RNA interactions.

In this study, we explore a fully automated and energy-based
approach to RNA tertiary structure prediction inspired by the
Rosetta low-resolution protein structure prediction method. Frag-
ment assembly of RNA (FARNA) guided by a knowledge-based
energy function takes into account both the backbone conforma-
tional preferences and side-chain interaction preferences seen in
experimentally determined RNA structures. The FARNA meth-
odology is a de novo approach in the sense that phylogenetic
information, secondary structure predictions, experimental data,
and structures of direct homologs are not used as inputs to the
method. We present an initial benchmark of the method on 20 small
RNA sequences. The results indicate that the method effectively
samples and frequently selects the canonical and noncanonical
features found in the native structures. We find excellent recapit-
ulation and discrimination of native structures for approximately
half of the test set, and sampling of near-native structures for nearly
the whole set. Most importantly, better than one-third of nonca-
nonical base pairs, the crucial interactions that define RNA tertiary
motifs, are recovered in the benchmark.

Results
Tertiary structure prediction for biopolymers requires an effective
method for efficiently sampling plausible conformations and an
energy function which approximates the physics underlying folding.
We first describe a fragment assembly strategy that greatly simpli-
fies conformational sampling and then the components of a simple
energy function to guide this sampling. To illustrate the approach,
we describe how each of these ingredients contributes to an
accurate all-atom structure for a small model system, a hairpin with
a GCAA tetraloop. We then describe results of applying this
automated method to a larger benchmark of RNA sequences. We
conclude by discussing prospects for extending the methodology to
higher resolution and longer sequences.

Assembling Subfragments from RNA Structures to Limit Conforma-
tional Space. At first glance, RNA folding seems to involve an
‘‘astronomical’’ number of conformations, analogous to Levinthal’s
paradox for protein folding. With seven torsion angles per residue
and a deformable ribose ring, the conformational space available to
a small 12-residue RNA chain comprises nearly one hundred
dimensions. Even if only two potential states are assumed per
torsion angle, there are �1028 potential conformations to search, in
the absence of correlations between the torsion angles. In reality,
however, there are strong limitations on the sets of sampled
nucleotide torsion angles because of covalent closure of the sugar
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ring, strong steric penalties against atom overlap within each
nucleotide and between adjacent nucleotides (see, e.g., ref. 17
and references therein), and other physical/chemical factors like
inter-nucleotide hydrogen bonding. In this study, we model these
sequence-dependent contributions by assuming that the distribu-
tion of conformations observed in known RNA structures for a
given trinucleotide sequence provides a reasonable approximation
to the conformations sampled by the sequence during folding,
following the approach used in Rosetta protein structure prediction
(18). This approach captures local conformational correlations,
including those between side chain and backbone degrees of
freedom, in a straightforward empirical manner.

In benchmarks of de novo protein folding algorithms, great
care must be taken to avoid contamination of fragment libraries
by proteins that are related by evolution to the targets of interest.
In the RNA case, the problem is conveniently avoided by
drawing fragments from a single crystal structure containing just
over 2,700 ribonucleotides from the large ribosomal subunit
from Haloarcula marismortui [1FFK (19)]. Because of the lim-
ited four-letter alphabet of RNA (here further reduced to a
two-letter pyrimidine/purine alpabet to diversify the fragment
library), this single source still provides �300 potential three-
residue fragments for each position of any new RNA sequence.
Relative to what is sampled by isolated RNA chains, the library
is presumably enriched for diverse, noncanonical conformations
because of the RNA/protein interactions in the ribosome [see,
e.g., studies of DNA double helix conformation in the presence
and absence of proteins (20)]. We note that peptide fragments
for protein structure prediction are similarly drawn from mol-
ecules that interact with different partners, including ligands,
nucleic acids, and other proteins.

Deriving a Knowledge-Based Energy Function for RNA Tertiary Struc-
ture. To guide conformational sampling, an energy function is
required that encodes the physical interactions most important for
stabilizing RNA tertiary structure with reasonable accuracy and at
a resolution appropriate to the molecular representation. As in
protein structure prediction (18), the RNA energy function used
herein includes a term weakly favoring compactness (proportional
to radius-of-gyration) and a term to penalize steric clashes between
atoms [see Methods and supporting information (SI) Fig. 5]. The
remaining terms of the potential are specially designed for RNA
interactions.

Even before the earliest crystal structures of long folded RNA
chains were obtained, base pairing and base stacking were
recognized as critical interactions that stabilize native nucleic
acid structures. Taking into account their effects led to astound-
ing predictions of three-dimensional structures for molecules
including double-stranded DNA (21) and transfer RNA (22). To
capture these important interactions in an internally consistent
manner, we have developed a knowledge-based base-pairing
potential and a base-stacking potential, similar to the potential
proposed by Sykes and Levitt (6). In particular, rather than
modeling hydrogen bonds in atomic detail, the potential has a
coarse-grained form whose resolution has been chosen to match
the coarse resolution offered by assembly of discrete fragments.

A coordinate system is set up on each base (Fig. 1A), with the
origin at the centroid of the base heavy atoms, the x axis passing
through the Watson–Crick edge at the N1 atom (purines) or N3
atom (pyrimidines), and the z axis perpendicular to the base
plane. Base pairs in the ribosome crystal structure 1FFK generally
have coplanar bases (��z� � 3 Å) whose centroids are close to each
other (��x2 � �y2 � 8 Å). To encode the observed pairing
geometries, we constructed a low-resolution knowledge-based in-
teraction potential proportional to the logarithm of the frequency
of finding the �x and �y of the base configurations in the ribosome
crystal structure.

As an example, the free energy for finding a uracil base at a given

position relative to an adenosine base is shown in Fig. 1B, with the
full base-pairing potential described in SI Fig. 6. This potential
encodes the geometries and relative strengths of possible interac-
tions with the Hoogsteen, sugar, and Watson–Crick edges of
adenosine (4, 6); each of these types of interactions is visible in Fig.
1B. The resulting potential is necessarily approximate as it ignores
the correlations between neighboring base pairs that shape the
distributions observed in the ribosome. In principle, the extensive
data on base-pairing energies from duplex melting experiments (16,
23) could also be used to calibrate this potential, as in secondary
structure prediction algorithms. However, the scarcity of thermo-
dynamic data on non-Watson–Crick interactions, as well as ambi-
guities in dissecting experimental energies into base stacking, base
pairing, and entropic components, led us to take a simple
knowledge-based approach, similar to the strategies long used in
protein structure prediction (18, 24, 25) and supported by the
apparently limited number of ways that bases pair with each other
(4, 6).

Use of the above base-pairing potential alone leads to pairs
that are not coplanar. We therefore include terms that are
dependent on the stagger between the bases (�z in Fig. 1 A) and
on the dot product of the two base normals (cos �). These terms
were derived from the log-odds ratio of the distributions of these
values in 1FFK versus a set of fragment-assembled decoys
without any such coplanarity terms (see gray and blue lines in
Fig. 1 C and D and SI Fig. 7). Addition of these terms brings the
model distributions in good agreement with the distributions
seen in the ribosome crystal structure (compare red and blue
lines in Fig. 1 C and D).

Finally, in addition to this base-pairing potential, base dou-
blets with �x2 � y2 � 4 Å, and 3 Å � ��z� � 6.2 Å are given a
bonus of �1 kT, as a reward for stacking. In practice, halving or
doubling the weight on this potential had little effect on the
results (data not shown).

Fragment Assembly Monte Carlo Tested on a Model System. We give
the overall automated procedure of Monte Carlo fragment assem-

Fig. 1. A simple energy function for RNA fragment assembly. (A) Coordinate
system set up on one base to define the potential. (B) Distribution of �x, �y
coordinates for a uridine residue near adenosine residues in the ribosome crystal
structure, smoothed with a 2-Å Gaussian filter. The logarithm of this distribution
provides a knowledge-based potential for de novo RNA structure prediction.
Interactions with the three different edges of adenosine (Watson–Crick, Hoogs-
teen, and sugar) correspond to positions in the three sectors of the map demar-
cated by the dotted lines and the negative x axis. (C and D) Distributions of angle
between base planes (C) and relative stagger of base planes (D) for base pairs
observed in the large ribosome crystal structure (blue) and models produced
without and with coplanarity terms (gray and red, respectively).
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bly guided by a simple energy function the acronym of ‘‘FARNA,’’
for fragment assembly of RNA. This section illustrates how the
addition of each of the energy components described above con-
tributes to improved predictions by FARNA for a small model
system. The system, a 12-residue sequence GGGCGCAAGCCU,
forms a short, stable hairpin capped by a GCAA tetraloop and is
well characterized by NMR spectroscopy [Fig. 2; (26)].

Fig. 2A displays a histogram of backbone rmsd (computed over
C4� atoms) from the native state for conformations produced by
Monte Carlo fragment assembly (gray line) beginning with a fully
extended chain. Remarkably, favoring compaction by use of a term
proportional to the chain’s radius of gyration produces a measur-
able fraction of models with global shape similarity to the native
state, with rmsd �4 Å to the native state (cyan line in Fig. 2A).
Further, disallowing clashes between RNA atoms produces con-
formations that are even more native-like, with the most probable
rmsd improving to 4 Å (magenta line in Fig. 2A; see Fig. 2C). In
this population, approximately one out of a thousand conforma-
tions has a nearly atomic-resolution backbone trace (rmsd �2 Å).
This is a far higher frequency than the rate of �10�28 expected from
the naive estimate given above and attests to the power of backbone
conformational preferences, generic compaction, and sterics in
favoring native conformations.

Inclusion of just the Watson–Crick-edge component of the
base-pairing potential gave a dramatic shift of nearly the entire
population to native-like structures (rmsd � 4 Å; see blue line in
Fig. 2A). The lowest energy conformations were nearly indistin-
guishable from the native state (Fig. 2C). These models reproduce
not only the four canonical base pairs in the stem but also the
‘‘sheared’’ G-A base pair (blue and orange bases in Fig. 2 B–E) and
the stacking pattern of the loop. Despite the absence of terms that
might directly favor the sugar-edge/Hoogsteen-edge G-A interac-
tion and base stacking, the native conformation is still selected
because of conformational preferences for the tetraloop present in
the ribosome-derived library. Inclusion of the database-derived
sugar-edge and Hoogsteen-edge base-pairing components and a
base stacking term slightly improves the population (green line in

Fig. 2A). A further improvement is obtained by including terms that
favor coplanarity of the two interacting base pairs (red line in Fig.
2A; see Fig. 2E).

A Benchmark for Fragment Assembly Monte Carlo. Do the results on
the simple hairpin model system generalize to other RNA se-
quences? We tested FARNA on a benchmark of 20 diverse
sequences with stable structures (27) that have been experimentally
characterized at high resolution, shown in Table 1. These RNA
structures contain non-Watson–Crick base pairs, triplets, and un-
usual backbone trajectories, and most have lengths �30 residues, to
ensure reasonable sampling. Because the database of RNA single-
chain structures solved by high-resolution crystallography is small,
the benchmark includes cases solved by NMR as well as several
crystallographic cases involving more than one chain. For several of
the multiple-chain cases, the separated chains are known to form
alternative single-chain structures in isolation but rearrange into
oligomer complexes at the high effective concentrations sampled by
crystallography (28–31). To avoid sampling the monomer config-
urations, the relative rigid body orientation of a single inter-chain
base pair (see Table 1) was held fixed in the simulation, similar to
a procedure recently developed for enforcing beta strand pairings
in proteins (32). We then assessed the subsequent recapitulation of
other canonical and noncanonical features.

We first discuss the overall accuracy of the models, and then
describe individual examples. The assessment of RNA structures
requires analysis of both base-pairing patterns (4, 5) and backbone
conformation (7, 8). The number of native Watson–Crick and
non-Watson–Crick base pairs and the backbone rmsd to the native
state are given in Table 1 for the best of five largest clusters of
models generated by fragment assembly (similar to the procedure
used in evaluating protein structure predictions; see Methods). We
first note that the majority of Watson–Crick base pairs (92%) are
recapitulated for the best of five models across the benchmark;
assessing the top cluster center, rather than the best of five, reduces
this value to 86%. These rates for FARNA are comparable with the
rate for state-of-the-art secondary structure prediction algorithms
for this set, e.g., 94% using Unafold (16). Such accurate secondary
structures might be expected to lead to excellent global backbone
shapes, as modeling regions predicted to be A-form double helices
is straightforward. Indeed, FARNA models for 11 of the 20
benchmark sequences agreed with the native state within a back-
bone rmsd of 4.00 Å (Table 1), with even better agreement if just
subsets of residues making Watson–Crick base pairs are considered
(SI Table 2).

The most interesting features of native RNA structures are
noncanonical backbone conformations and non-Watson–Crick
base pairs, but prediction of these features is difficult and typically
requires signatures from phylogenetic covariance culled by human
inspection (3, 5, 22, 33). It is therefore encouraging that the
automated FARNA methodology finds accurate conformations for
noncanonical regions for 13 of the 20 benchmark sequences (SI
Table 2). Low rmsd values, however, can be achieved by RNA
conformations with incorrect base interactions (see, e.g., 1KD5 in
Table 1) or can partly follow from the assumed pairings in multi-
chain cases. Thus, the most important result of this FARNA
benchmark is the accurate prediction of native noncanonical base
pairs, including information on which two base edges are interacting
in each base pair, at a significant rate of 36% (Table 1).

Accurate Prediction of Noncanonical Features. Fig. 3A shows an
example of a stack of four noncanonical G-A and A-A base pairs
observed in the native structure 283D (31) that is accurately
recapitulated in the FARNA model. The convergence of FARNA
to this model is particularly noteworthy because the symmetry of
this duplex was not imposed during fragment assembly. Further,
each chain is known to form a stable GAAA-tetraloop-capped
hairpin in isolation (31) (see, e.g., Fig. 2B), and indeed FARNA

Fig. 2. Finding the native structure of a small RNA hairpin by FARNA. (A)
Histograms of rmsd (calculated over C4� atoms) between models generated by
5,000 cycles of Monte Carlo fragment assembly without the influence of any
energy terms (gray) and with successive addition of the following terms to the
energy function: radius-of-gyration (cyan); steric penalties (magenta); Watson–
Crick-edge component of the base-pairing term (blue); Hoogsteen and sugar-
edge components of base pairing and base stacking (green); and coplanarity
terms (red). (B) Native structure of the hairpin [first model from NMR ensemble
1ZIH (26)]. (C–E) Lowest energy structures from simulations with radius-of-
gyration term and steric penalties (C), plus Watson–Crick-edge component of the
base-pairing term (D), and the full energy function (E). The residues G5 and A8,
which form a sheared base pair in the native structure, are highlighted. In this
figureandfollowingfigures, thecoloringschemeshowsrainbowcoloringfor the
backbone (cartoons); and adenosine, cytidine, guanosine, and uridine bases are
orange, green, blue, and red, respectively. Residues discussed in Results are
rendered with thicker lines. Figures of molecules prepared in Pymol (Delano
Scientific).
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reproduces this alternative structure when a single chain is modeled
(data not shown; see also Fig. 3C).

Platform motifs, in which two adjacent nucleotides are base-
paired, are commonly seen in RNA structures as mediators of RNA
interactions. Fig. 3B shows an example of an A-U platform forming
a part of an A-U-A base triplet from the NMR structure 1ESY of
the stem loop SL2 of the HIV PSI packaging signal (34). The
FARNA model reproduces this triplet motif and the resulting local
distortion of the helix. Atomic resolution details of this base triplet
such as hydrogen bonds and a potential coordinated water (34) will
likely require a description of RNA conformation and energetics
more finely grained than the current Monte Carlo fragment moves
and coarse-grained potential. The nucleotides at the top of the

structure seem to be incorrectly modeled by FARNA as stacked
rather than directed into solution as in the NMR structure; how-
ever, the backbone conformation is reasonably well modeled, and
the NMR ensemble displays large conformational variance for the
region.

The match-making tendency of FARNA to find base pairing or
base stacking partners for all nucleotides is not an absolute rule. Fig.
3C shows the NMR structure for Domain 5 from a group II intron
[2F88 (35)]. There is a ‘‘hole’’ in the middle of the structure where
the strands do not base pair across the helix. Further, the obser-
vation of different conformations in this same region for structures
solved for homologous molecules (35–38) suggests that the region
is dynamic in solution. The FARNA model leaves the bases in this

Table 1. Benchmark of 20 RNA molecules

PDB Method Len Pairing Cut

Native* Cluster center Lowest RMS model

ModelsWC NWC BUL RMS WC NWC BUL RMS WC NWC BUL

157D X-ray 24 7–18 12 10 2 0 2.96 10 2 0 1.15 10 2 0 53679
1A4D NMR 41 — — 12 7 1 6.48 11 1 0 3.43 4 3 0 28949
1CSL X-ray 28 12–14 13 9 3 2 4.03 9 2 2 2.26 8 2 1 45441
1DQF X-ray 19 9–10 9 9 0 1 2.75 9 0 1 1.31 9 0 1 66481
1ESY NMR 19 — — 6 3 4 3.98 6 1 0 1.44 6 1 0 69103
1I9X X-ray 26 13–14 13 12 0 2 4.46 12 0 0 1.93 12 0 2 51267
1J6S X-ray 24 † † 0 24 0 13.99 0 5 0 2.17 0 13 0 46815
1KD5 X-ray 22 10–12 11 6 6 0 3.58 4 1 0 1.61 3 0 0 59896
1KKA NMR 17 — — 5 3 0 4.14 5 1 0 2.08 5 0 0 81492
1L2X X-ray 27 — — 8 5 3 3.88 7 1 0 3.11 7 1 0 47958
1MHK X-ray 32 1–26, 14–31 12, 26 10 4 0 10.53 10 3 0 3.83 10 3 0 38179
1Q9A X-ray 27 — — 6 6 0 6.11 6 2 0 2.65 5 3 0 48817
1QWA NMR 21 — — 8 1 2 3.71 6 0 0 2.01 6 0 0 65977
1XJR X-ray 46 — — 13 9 3 9.82 10 4 0 6.25 11 1 2 24646
1ZIH NMR 12 — — 4 1 0 1.71 4 1 0 1.03 4 1 0 117104
255D X-ray 24 12–13 12 10 2 0 1.68 10 2 0 1.31 10 2 0 54701
283D X-ray 24 12–13 12 8 4 0 2.61 8 4 0 1.65 8 2 0 53062
28SP NMR 28 — — 7 6 1 3.20 7 3 0 2.31 6 3 0 46034
2A43 X-ray 26 — — 7 4 4 4.93 4 1 1 2.79 6 0 1 49972
2F88 NMR 34 — — 13 2 2 3.63 13 1 0 2.41 10 0 0 36664
Total‡ 154 89 25 142 32 4 131 34 7
Freq.‡ 1 1 1 0.92 0.36 0.16 0.85 0.38 0.28

For multi-chain targets, the Pairing column refers to residues that were connected by a Watson–Crick base pair (drawn from the ribosome crystal structure
1FFK) throughout the simulation (see, e.g., ref. 33), and the Cut column refers to the residue after which a new chain begins. RMS refers to rmsd in angstroms
from the native structure, calculated over C4� atoms. The shown cluster center is the best of five (in terms of the number of recapitulated non-Watson–Crick base
pairs) obtained when clustering the lowest energy 1% of all models. WC, the number of native Watson–Crick base pairs (here including G-U wobble pairs); NWC,
the number of native non-Watson–Crick base pairs; BUL, the number of native bulged residues recapitulated in the model; Len, number of residues.
*For NMR models, the first model of the ensemble was taken as the reference state for rmsd calculations.
†For 1J6S, assumed pairings were not Watson–Crick pairings but instead sugar-edge/Watson–Crick-edge G-U pairings (between residues 1,14; 8,13; and 7,20)
taken from the native crystal structure. Cut points were at 6, 12, and 18 for this four-chain complex.

‡Total and frequency rows do not include base pairs assumed during the simulations to bring multi-chain complexes together (see Pairing column).

Fig. 3. Best of five FARNA cluster centers (Left in each panel) and native structures (Right in each panel) for a curved RNA helix incorporating an internal loop with
G-A and A-A non-Watson–Crick base pairing [283D (31)] (A); stem loop SL2 of the HIV-1 PSI RNA packaging signal [1ESY (34)] (B); domain 5 from the Pyaiella littoralis
groupII intron[2F88(35)] (C);andtheframeshiftingRNApseudoknotfrombeetwesternyellowvirus [1L2X(39)] (D). (AandB)Magnifiedsuperpositionsofnoncanonical
base pairs (native in white; model in color) are displayed (Lower).
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region appropriately unpaired and predicts the other parts of the
structure accurately, including a GAAA tetraloop.

Finally, we investigated the ability of FARNA to model nontrivial
backbone trajectories. The test RNA molecules discussed so far are
hairpins or double helices with distortions due to noncanonical
interactions. More complex structures typically involve �40 nt,
beyond our current sampling ability (see Discussion). Among
smaller RNA molecules, however, pseudoknots are recurring mo-
tifs with complex topologies, typically involving a single chain
folding into two coaxial helices connected by loops, as shown in Fig.
3D [1L2X (39)]. The FARNA methodology recapitulates this
backbone conformation, guided by noncanonical base pairs that
form between loop residues and the Watson–Crick base pairs of the
helices.

Limits of the Current Methodology: Sampling or Energy Function? In
the FARNA benchmark, models for nine of the twenty RNA
sequences are not native-like, with rmsd to the native state �4.00
Å. Failure of a Monte Carlo prediction methodology can gen-
erally be traced to deficiencies in one or both of its intrinsic
components, conformational sampling and the energy function.

A hallmark of poor sampling is the inability of Monte Carlo
moves to find conformations that are lower in energy than a known
reference state. Inspection of energy versus rmsd plots (shown as SI
Fig. 8) immediately highlights three cases where the current sam-
pling strategy is not able to find any models with lower energy than
the native structure. A potential reason for insufficient sampling
might simply be an insufficient number of computational cycles for
searching the conformation space. For one case, 1J6S, an intricate
network of quadruplex interactions may hinder efficient confor-
mational sampling of this 24-nt motif. The other two examples,
1A4D and 1XJR, are the largest sequences in our test set with
lengths of 41 and 46 residues, respectively. Thus, more compre-
hensive or more efficient sampling may lead to successful recapit-
ulation of the native structures for these cases.

The remaining six problem cases involve nonnative FARNA
models with energies lower than the native structure, pointing to
inaccuracies in the simple energy function that guides the Monte
Carlo procedure. In each of these cases, however, the population of
�50,000 models produced by FARNA contains at least one struc-
ture (typically several structures) with backbone rmsd within 4.00
Å of the native state (Table 1 and SI Figs. 8 and 9). Thus, the
assumed energy landscape indeed contains these near-native struc-
tures as local minima. The conformations can be reached by the
fragment assembly procedure but are not visited frequently enough
or given low enough energies to be selected as one of the final five
candidate cluster centers.

Fig. 4 shows an example of such a case from the crystal structure
of the HIV-1 Rev response element (RRE) high-affinity site
(1CSL; Fig. 4 Center). The FARNA cluster center (Fig. 4 Left) fails

to predict one of two bulged nucleotides seen in the native structure.
On one hand, the crystal structure may reflect a nonphysiological
conformation; unpaired nucleotides that are bulged in crystal
structures of other molecules have been shown through NMR
experiments to be stacked into helices in solution (compare refs. 40
and 41 and compare refs. 42 and 43; see also SI Fig. 10 for an
example of crystal contacts influencing a ‘‘hook-turn motif’’ and its
prediction by FARNA). On the other hand, NMR studies of the
RRE high-affinity site in Fig. 4 support both bulges observed in the
crystal structure (44, 45). There are members of the FARNA
population that do contain these bulges (Fig. 4 Right), but they do
not have energies as low as the cluster center. The underprediction
of bulged nucleotides seems to be a general issue for FARNA
(Table 1) and may be ameliorated by a more realistic energy
function including side chain entropy and bound water molecules
that stabilize such backbone kinks.

Discussion
Prospects for a Highly Accurate Prediction Method for RNA. Based on
these initial results, the fundamental bottleneck for predicting
structures of RNA molecules �40 nt seems to be not conforma-
tional sampling but the development of a more sophisticated energy
function. The energy function presented herein already allows
sampling of native structures and base pairs, so the problem
becomes a tractable one of choosing from a few thousand confor-
mations rather than from the astronomical number of structures
that is theoretically possible.

We propose that the addition of a few fine-grained energy terms
may be sufficient to solve this problem. Currently, electrostatic
terms are not modeled. Use of Poisson–Boltzmann calculations, or
knowledge-based approximations, would provide an approximate
energy for these general effects of the counterion atmosphere (46);
direct interactions with metal ions might be treated by using a
rotamer sampling approach used for water in protein designs (47).
Explicit hydrogen bonds are also not modeled. An orientation-
dependent hydrogen bond potential [as is used for proteins (47)]
and explicit sampling of local water positions could supplant the
current coarse-grained base-pairing potential and would allow
modeling of 2�-OH and phosphate hydrogen bonds that are pres-
ently ignored. Each of these additions would likely require contin-
uous minimization of the RNA chain’s torsional degrees of freedom
rather than the coarse fragment moves used in FARNA. The
computational expense of such high-resolution minimization would
be justified, however, because an initial stage of FARNA could be
used to deliver a population of starting conformations that already
contain native-like (but inaccurately scored) conformations. A
similar philosophy underlies the current Rosetta approach to
protein structure prediction (48, 49).

Finally, the most interesting functional RNA molecules, includ-
ing ribozymes and riboswitches, are composed of sequences longer
than 40 nt, and their structures involve interactions between mul-
tiple double helices. Whereas the Monte Carlo sampling used by
FARNA is more computationally efficient than enumerative sam-
pling strategies (14), sufficient sampling by FARNA still becomes
difficult for sequence lengths beyond 40 nt (SI Fig. 9). Further
optimization of the code will likely allow an order-of-magnitude
more sampling for these large constructs. More generally, however,
we propose that seeding these fragment assembly simulations with
potential Watson–Crick base pairs given by secondary-structure
prediction algorithms (3) will be a powerful strategy for limiting the
conformational space that needs to be explored by FARNA.
Further, combining constraints from phylogenetic covariance with
the de novo methodology presented herein offers exciting prospects
for inferring functional structures of even the largest RNAs.

We have presented a fully automated algorithm for RNA struc-
tural modeling based on FARNA guided by a simple energy
function. Even in this first study, canonical and noncanonical

Fig. 4. Best of five FARNA cluster centers (Left), native structure (Center), and
model with best recovery of non-Watson–Crick base pairs from overall FARNA
population (Right) for the HIV-1 Rev response element high-affinity site [1CSL
(52)]. Residues discussed in Results are rendered with thicker lines.
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features of 20 RNA molecules have been recapitulated at significant
rates of 92% and 36%, respectively. Smaller RNAs in the test set are
accurately reproduced with a resolution of better than 4 Å. In the
remaining cases, we are encouraged to find that such near-native
structures are still sampled with reasonably high frequency by this
methodology.

Our efforts in RNA modeling have largely been guided by
insights drawn from the large and lively field of de novo protein
structure prediction. One of the important steps in the protein field
has been the publication of ‘‘decoy sets’’ that have challenged
investigators to find energy functions and refinement strategies to
robustly discriminate native-like structures from nonnative struc-
tures. In this spirit, we are making the population of ‘‘decoys’’ from
our study freely available, with the hope that other investigators will
join the search for a more accurate and sophisticated energy
function for RNA structures.

The prospect of blind, accurate structure prediction for small
RNAs, relying solely on the minimization of free energy, seems
feasible. Once this challenge is met, modeling efforts (potentially
combining the de novo strategies described herein and phylogenetic
information) become tantalizing possibilities for large ribozymes,
riboswitches, and protein/RNA complexes.

Methods
Fragment Library. For each position of the target RNA sequence, a
library of trinucleotide torsion angles (�, �, �, �, �, �, �, and sugar
pucker amplitude; see e.g., ref. 50) is drawn from three-nucleotide
segments of 1FFK that match the target in terms of the pattern of
pyrimidines and purines. For one case, 1Q9A (the sarcin/ricin loop),
the homologous sequence (residues 2684–2710) was excised from
the 1FFK structure before choosing this torsional library.

Energy Function. The energy function is a sum of six terms. The first
term, favoring the compact conformations seen in experimental
RNA structures, is the radius-of-gyration (in Å), with a weight of
1 kT/Å. The second term penalizes steric clashes between several
representative atoms on each nucleotide with steric radii inferred
from the third smallest distance observed in the ribosome crystal
structure 1FFK between atoms i and j, similar to the criteria used
to derive the Rosetta low-resolution energy function for proteins;
see SI Fig. 5. The third component of the energy function is a

base-pairing potential dependent on coordinates �x and �y (see Fig.
1 and SI Fig. 6). The fourth and fifth components of the energy
function enforce coplanarity of pairing bases and are dependent on
the variables �z and � shown in Fig. 1A (see SI Fig. 7). The final
component rewards base stacking, as described in Results.

Fragment Assembly. Simulations were initialized with an extended
chain. Ideal bond lengths and bond angles were taken from the
Nucleic Acid Databank website (http://ndbserver.rutgers.edu/
standards/ideal�geometries.html). At each Monte Carlo step, a
random position was chosen in the chain, and torsions for three
residues were replaced with those from a randomly chosen frag-
ment; the move was accepted or rejected based on the classic
Metropolis criterion (see, e.g., ref. 51). After an initial ‘‘heating’’
cycle of 1,000 random fragment insertions with no energy function,
50,000 fragment insertions were carried out with the RNA energy
function, with the weight on coplanarity terms set to zero, half
weight, and full weight for the first third, second third, and final
third of the simulation, respectively. Generation of a single model
takes �45 s for a 30-nt RNA on a Macintosh Intel 2 GHz processor,
similar to the computational expense for low-resolution de novo
structure prediction of proteins of comparable lengths (18). In-
creasing the number of fragment insertions by 10-fold to 500,000,
made possible by the distributed computing network
Rosetta@home, produces a slight improvement in model quality
for larger RNAs; data from these runs are presented in Table 1. The
best 1% by energy for �50,000 models were clustered with a 3 Å
pairwise rmsd threshold, and the five largest clusters were assessed.

The procedure and energy function are implemented as part of
Rosetta, whose source code and executable are available to aca-
demic users free of charge. Models are available at http://
faculty.washington.edu/rhiju/FARNA/farna�decoys.tgz.

We thank Phil Bradley and Jim Havranek for advice on nucleic acid
representations within Rosetta, Mike Tyka and John Karanicolas for
helpful comments on the manuscript, Keith Laidig and Chance Reschke
for excellent administration of computational resources, and the users of
Rosetta@home for enabling rapid tests of the presented ideas (top users
are listed in SI Table 3). We acknowledge the National Institutes of
Health, the Howard Hughes Medical Foundation, and a Jane Coffin
Childs Fellowship (to R.D.) for funding.

1. Gesteland RF, Cech TR, Atkins JF (2006) The RNA World: The Nature of Modern RNA
Suggests a Prebiotic RNA World (Cold Spring Harbor Lab Press, Cold Spring Harbor, NY).

2. Tinoco I, Jr, Bustamante C (1999) J Mol Biol 293:271–281.
3. Shapiro BA, Yingling YG, Kasprzak W, Bindewald E (2007) Curr Opin Struct Biol 17:157–165.
4. Leontis NB, Westhof E (2001) RNA 7:499–512.
5. Lescoute A, Leontis NB, Massire C, Westhof E (2005) Nucleic Acids Res 33:2395–2409.
6. Sykes MT, Levitt M (2005) J Mol Biol 351:26–38.
7. Murray LJ, Arendall WB, 3rd, Richardson DC, Richardson JS (2003) Proc Natl Acad Sci

USA 100:13904–13909.
8. Duarte CM, Wadley LM, Pyle AM (2003) Nucleic Acids Res 31:4755–4761.
9. Wang R, Alexander RW, VanLoock M, Vladimirov S, Bukhtiyarov Y, Harvery SC,

Cooperman BS (1999) J Mol Biol 286:521–540.
10. Macke T, Case D (1998) in Molecular Modeling of Nucleic Acids, eds Leontis NB, SantaLucia

JJ (Am Chem Soc, Washington, DC), pp. 379–393.
11. Zwieb C, Müller F (1997) Nucleic Acids Symp Ser 36:69–71.
12. Massire C, Westhof E (1998) J Mol Graphics Model 16:197–205, 255–7.
13. Jossinet F, Westhof E (2005) Bioinformatics 21:3320–3321.
14. Major F (2003) Computing in Science & Engineering 5:44–53.
15. Yingling YG, Shapiro BA (2006) J Mol Graphics Model 25:261–274.
16. Mathews DH, Sabina J, Zuker M, Turner DH (1999) J Mol Biol 288:911–940.
17. Murthy VL, Srinivasan R, Draper DE, Rose GD (1999) J Mol Biol 291:313–327.
18. Simons KT, Kooperberg C, Huang E, Baker D (1997) J Mol Biol 268:209–225.
19. Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) Science 289:905–920.
20. Olson WK, Gorin AA, Lu XJ, Hock LM, Zhurkin VB (1998) Proc Natl Acad Sci USA

95:11163–11168.
21. Watson JD, Crick FH (1953) Nature 171:737–738.
22. Levitt M (1969) Nature 224:759–763.
23. Xia T, SantaLucia JJ, Burkard ME, Kierzek R, Schroeder SJ, Jiao X, Cox C, Turner DH

(1998) Biochemistry 37:14719–14735.
24. Jernigan RL, Bahar I (1996) Curr Opin Struct Biol 6:195–209.
25. Zhang Y, Skolnick J (2004) Proc Natl Acad Sci USA 101:7594–7599.
26. Jucker FM, Heus HA, Yip PF, Moors EH, Pardi A (1996) J Mol Biol 264:968–980.
27. Suhnel J (1997) Trends Genet 13:206–207.

28. Leonard GA, McAuley-Hecht KE, Ebel S, Lough DM, Brown T, Hunter WN (1994)
Structure (London) 2:483–494.

29. Szep S, Wang J, Moore PB (2003) RNA 9:44–51.
30. Holbrook SR, Cheong C, Tinoco I, Jr, Kim SH (1991) Nature 353:579–581.
31. Baeyens KJ, De Bondt HL, Pardi A, Holbrook SR (1996) Proc Natl Acad Sci USA 93:12851–12855.
32. Bradley P, Baker D (2006) Proteins 65:922–929.
33. Lehnert V, Jaeger L, Michel F, Westhof E (1996) Chem Biol 3:993–1009.
34. Amarasinghe GK, De Guzman RN, Turner RB, Summers MF (2000) J Mol Biol 299:145–156.
35. Seetharaman M, Eldho NV, Padgett RA, Dayie KT (2006) RNA 12:235–247.
36. Zhang L, Doudna JA (2002) Science 295:2084–2088.
37. Sashital DG, Cornilescu G, McManus CJ, Brow DA, Butcher SE (2004) Nat Struct Mol Biol

11:1237–1242.
38. Sigel RK, Sashital DG, Abramovitz DL, Palmer AG, Butcher SE, Pyle AM (2004) Nat Struct

Mol Biol 11:187–192.
39. Egli M, Minasov G, Su L, Rich A (2002) Proc Natl Acad Sci USA 99:4302–4307.
40. Joshua-Tor L, Rabinovich D, Hope H, Frolow F, Appella E, Sussman JL (1988) Nature 334:82–84.
41. Patel DJ, Kozlowski SA, Marky LA, Rice JA, Broka C, Itakura K, Breslauer KJ (1982)

Biochemistry 21:445–451.
42. Miller M, Harrison RW, Wlodawer A, Appella E, Sussman JL (1988) Nature 334:85–86.
43. Roy S, Sklenar V, Appella E, Cohen JS (1987) Biopolymers 26:2041–2052.
44. Battiste JL, Mao H, Rao NS, Tan R, Muhandiram DR, Kay LE, Frankel AD, Williamson

JR (1996) Science 273:1547–1551.
45. Peterson RD, Feigon J (1996) J Mol Biol 264:863–877.
46. Woodson SA (2005) Curr Opin Chem Biol 9:104–109.
47. Jiang L, Kuhlman B, Kortemme T, Baker D (2005) Proteins 58:893–904.
48. Bradley P, Misura KM, Baker D (2005) Science 309:1868–1871.
49. Das R, Qian B, Raman VS, Vernon R, Thompson J, Bradley P, Khare S, Tyka MD, Bhat

D, Sheffler W, et al. (2007) Proteins, in press.
50. Bloomfield VA, Crothers DM, Tinoco I, Jr (1999) Nucleic Acids: Structure, Properties and

Functions (University Science Books, Sausalito, CA).
51. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1995) Numerical Recipes in C: The

Art of Scientific Computing (Cambridge Univ Press, Cambridge, UK).
52. Ippolito JA, Steitz TA (2000) J Mol Biol 295:711–717.

Das and Baker PNAS � September 11, 2007 � vol. 104 � no. 37 � 14669

BI
O

PH
YS

IC
S

http://www.pnas.org/cgi/content/full/0703836104/DC1
http://www.pnas.org/cgi/content/full/0703836104/DC1
http://www.pnas.org/cgi/content/full/0703836104/DC1
http://www.pnas.org/cgi/content/full/0703836104/DC1

