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Biological supramolecular systems are commonly built up by the
self-assembly of identical protein subunits to produce symmetrical
oligomers with cyclical, icosahedral, or helical symmetry that play
roles in processes ranging from allosteric control and molecular
transport to motor action. The large size of these systems often
makes them difficult to structurally characterize using experimen-
tal techniques. We have developed a computational protocol to
predict the structure of symmetrical protein assemblies based on
the structure of a single subunit. The method carries out simulta-
neous optimization of backbone, side chain, and rigid-body de-
grees of freedom, while restricting the search space to symmetrical
conformations. Using this protocol, we can reconstruct, starting
from the structure of a single subunit, the structure of cyclic
oligomers and the icosahedral virus capsid of satellite panicum
virus using a rigid backbone approximation. We predict the oligo-
meric state of EscJ from the type III secretion system both in its
proposed cyclical and crystallized helical form. Finally, we show
that the method can recapitulate the structure of an amyloid-like
fibril formed by the peptide NNQQNY from the yeast prion protein
Sup35 starting from the amino acid sequence alone and searching
the complete space of backbone, side chain, and rigid-body de-
grees of freedom.

Monte Carlo method � protein structure prediction � symmetry

Symmetry is a recurrent theme in nature, from macroscopic
objects like animals and plants to microscopic protein assem-

blies. A number of different point group and helical symmetries are
found in naturally occurring protein assemblies (1). The most
common type of symmetry is cyclic (Cn symmetry) where the
oligomeric structure can be described by a rotation around a single
rotation axis of one subunit. Cyclic symmetry generates ring
structures found in pores, chambers and molecular motors gener-
ating rotational motion. Another common point-group symmetry is
the dihedral group (Dn symmetry), which combines one rotational
symmetry axis with perpendicular axes of twofold symmetry. D2
symmetry is particularly suited for allosteric control because it
involves extensive contact surfaces between subunits (1). Icosahe-
dral symmetry produces roughly spherical assemblies that are often
used for storage and transport, as in virus capsids (1). Helical
symmetries are produced by rotation and translation along a single
symmetry axis and have been observed in microtubules, flagella and
actin filaments (1). Amyloid fibers displaying helical symmetry are
associated with a number of diseases, such as Creutzfeldt–Jacob’s
disease and Alzheimer’s disease, and are formed by a large number
of proteins (2).

The size of larger symmetrical assemblies can make it challenging
to obtain high-resolution structures of these biologically important
systems. Molecular modeling provides an attractive route to study-
ing symmetrical protein assemblies to provide structural models
and answer mechanistic questions. By enforcing symmetry the
number of degrees of freedom can be reduced, making calculations
on otherwise quite large systems tractable. To date, there have only
been a few attempts to predict the structure of larger protein
assemblies. Eisenstein et al. (3) assembled the helical protein coat
of tobacco mosaic virus by starting from a set of docked dimers. A
similar approach was later used to dock structures with Cn and Dn

symmetry (4, 5). Comeau and Camacho (6) developed a protocol
to predict symmetry type (Cn and Dn symmetry) and the structure
of oligomers given an oligomerization state by assembling sets of
docked dimers into alternative symmetric assemblies. Schneidman-
Duhovny et al. (7) developed a protocol for prediction of cyclic
symmetry and Huang and Mayo (8) implemented a method for
docking of C2 dimers for use in protein design. In these methods,
the side chain and backbone degrees were not sampled.

In this work, we present a general computational framework for
prediction of the structure of symmetrical protein assemblies im-
plemented in the computer program ROSETTA (9). Symmetry is
imposed in backbone, side chain, and rigid body degrees of free-
dom. The conformational search space is reduced by sampling only
symmetric degrees of freedom and the sizes of the systems are
effectively limited by only explicitly simulating a subset of the
interacting monomers. Using this method, we can accurately predict
the structure of protein assemblies with cyclic, helical, and icosa-
hedral symmetries from the structure of a single subunit while
keeping the backbone torsion angles fixed, and recapitulate the
structure of an amyloid-like fibril formed by the peptide NNQQNY
from the yeast prion protein Sup35 (10) starting from amino acid
sequence alone by searching the complete set of backbone, side
chain, and rigid body degrees of freedom.

Results
Overview of Method. We implemented a protocol for modeling of
symmetrical protein assemblies within the computer program
ROSETTA (9). In this work, we keep bond lengths and bond angles
fixed, and assume perfect symmetry of the subunits, and hence the
degrees of freedom are the backbone and side chain torsion angles
of a single subunit and the parameters describing the rigid body
transforms relating the subunits. The simulation starts from a
random symmetrical configuration. The conformational search
process is divided into low- and high-resolution phases. In the
low-resolution search, the backbone and rigid-body degrees of
freedom are optimized by using a reduced representation of the
complex in which each amino acid in the protein is described by the
position of the four backbone heavyatoms and a single ‘‘pseudoa-
tom’’ representing the side chain (referred to as a centroid).

In the more time-intensive, high-resolution search, side chains
are added to each protein copy using a Monte Carlo simulated
annealing algorithm together with a backbone-dependent rotamer
library (11). Then the backbone, side chain, and rigid body degrees
of freedom are simultaneously optimized by using a Monte Carlo-
plus-minimization (MCM) protocol in which each move consists of
three steps: (i) random perturbation of the rigid-body and backbone
degrees of freedom; (ii) optimization of side chain conformations
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by either full combinatorial repacking or by cycling through alter-
native rotamers for each side chain in a randomized order and
selecting the lowest energy conformation (referred to as rotamer
trials); and (iii) gradient-based minimization of the backbone, side
chain, and rigid body degrees of freedom. Moves are accepted or
rejected according to the standard Metropolis criterion; typical
simulations involve �100 MCM attempted moves. The lowest-
energy structures produced in a large number of independent
trajectories are clustered and the lowest-energy member of the
largest cluster is chosen. Typically, the global search is followed by
a local search where the free energy landscape is further explored
in the vicinity of the conformational space of the lowest energy
models.

Implementation of Symmetry. A symmetrical system is unchanged
under a symmetry transformation. These transformations can be
rotation, translation, inversion, and mirror operations. Due to the
chiral nature of amino acids, oligomeric proteins exhibit only
rotational and translational symmetry. Given the coordinates of a
single subunit together with a set of symmetry transformations
consistent with the desired symmetry, the position of all subunits in
an oligomer can be computed. This simple description of a sym-
metric system leads to difficulties in gradient computations (see
below). To avoid these difficulties, we take advantage of a recently
implemented a general kinematic framework for optimization of
molecular systems with rigid-body and torsional degrees of freedom
(12). We extended this tree-based framework to support symmetric
systems by including in the molecular description a set of local
reference frames, one frame associated with each subunit.

These local reference frames are related by symmetry transforms
(which may vary during the simulation); additional rigid-body
transforms link each subunit to its associated reference frame. The
latter transforms are identical for all subunits; equivalently, each
subunit has identical coordinates when viewed in its associated
reference frame. For example, in a cyclic system each reference
coordinate system can be chosen with the z axis along the rotation
axis, the x axis pointing toward the rotation parallel to the axis, and
with y perpendicular to the plane spanned by x and z. A translation
along x in one reference system will preserve symmetry if an
identical translation is applied to the other subunits. In this repre-
sentation, it is straightforward to preserve symmetry during gradi-
ent-based minimization and rigid-body perturbations. In addition,
the partial derivative of the energy function with respect to a
symmetric degree of freedom (rigid-body or torsional) can be
calculated by multiplying the corresponding derivative for a single
subunit by a factor of ns, where ns is the number of subunits in the
system. As an example, consider the partial derivative of the energy
E of a cyclic system with respect to the symmetric x-coordinate
introduced above

�E
�x

� �E � x3� �E��
i�1

ns

x̂i � �
i�1

ns
�E
�xi

� ns

�E
�x1

, [1]

where �E is the gradient of the full (nonsymmetric) system and x̂i
is the unit vector corresponding to translation of subunit i along the
x axis of its local frame.

Symmetry of side chain degrees of freedom is implemented by
modification of the combinatorial packing (described in ref. 13) and
rotamer trials algorithms. Insertions of rotamers are symmetrized,
leading to the insertion of identical rotamers at all symmetry-
related positions and the energy of insertion is evaluated for all
positions at once.

Cyclic Symmetry. A cyclic system has four rigid body degrees of
freedom; the subunits have three rotational and a translational
degree of freedom (the radius). For larger oligomers the system can
be fully described by a smaller subsystem. Systems with more than

three subunits are simulated with three subunits to avoid edge
effects. The global search starts with random orientations of the
subunits, which are brought into contact by a symmetric translation
toward the n-fold rotation axis. A total of 3 � 103 independent
models are typically generated in the global search, which is
followed by a local refinement (generating �1 � 103 models) to
explore the local energy landscape. In the test calculations de-
scribed here, the backbone torsion angles were kept fixed and the
search was done over the side chain and rigid-body degrees of
freedom.

We tested the symmetrical assembly protocol on a range of
randomly selected symmetrical oligomers from the Protein Data
Bank (14) containing noncrystallographic symmetry. The set in-
cludes a homodimer (dihydrofolate; ref. 15), two trimers [acyl
carrier protein (16) and Chorismate mutase (17)], one pentamer
(lumizine synthetase; ref. 18), one heptamer (archael sm protein;
ref. 19) and an oligomer with unknown oligomerization state from
the type III secretion system. These experimental structures do not
obey strict symmetry (the backbone rmsd between subunits in the
oligomers range between 0.2 and 1.0 Å) but deviations are relatively
small, with rotation angles between subunits differing 0.2–4.9%
relative to the values expected for perfect symmetry.

Plots of energy vs. root mean square deviation (rmsd, calculated
over all common C� for the simulated subsystem) relative to the
native structure for the models generated in the global search are
shown in Fig. 1, and lowest energy models after further refinement
are compared with the native structures in Fig. 2. The result for the
pentameric structure of lumizine synthetase (1ejb) serves as a
representative of the results obtained for all of the systems. The
global search (Fig. 1 Left) produced models with a large spread in
energy and rmsd and with a significant fraction of models with low
backbone rmsd relative to the native structure. The lowest-energy
model was subjected to a local refinement, in which the rigid body
orientation is randomly perturbed around the starting conforma-
tion and the MCM protocol is repeated to sample the local energy
landscape (Fig. 1 Right). The energy funnel is steep and narrow,
with a width of �3 Å. The lowest energy model is 0.3 Å away
from the experimentally determined structure (Fig. 2) calculated
over the full oligomer. A detailed analysis of the binding interface
of the best scoring model shows that the side chain conformations
for a large fraction of residues are correctly predicted. The fraction
of interface residues with native-like side chain conformations is
71% for this model (Fig. 3). The results for the other studied systems

Fig. 1. Energy versus rmsd distribution after global sampling (Left) and local
refinement (Right). x axis, rmsd over the studied subsystem versus the crystal
structure; y axis, Rosetta fullatom energy.
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are very similar to the results for lumizine synthetase and are
summarized in Table 1.

Modeling of the Type III Secretion System (TTSS) Component EscJ. The
docking protocol was also used to predict the structure of a
component of the TTSS. TTSSs are multicomponent macromole-
cules found in many Gram-negative pathogens that mediate secre-
tion and translocation of bacterial proteins into the cytoplasm of
eukaryotic cells (20, 21). The core of the TTSSs has been shown by
electron microscopy to resemble a needle and is referred to as the
needle complex. At the base of the needle several proteins form
ring-shaped structures. The structure of one of these base proteins,
EscJ from enteropathogenic Escherichia coli, has been solved (22).
In the crystal unit cell, protein subunits form a supramolecular
helix. Biochemical and electron microscopy data have indicated
that EscJ forms a 22 � 1.7 monomer ring in the biological setting.
By projecting the helix onto a plane, a model of the circular form
of EscJ could be constructed (with 24 subunits in the ring) (22).

We used the symmetrical docking protocol to predict the struc-
ture of the cyclical form of EscJ from the crystal structure of EscJ.
The structure of the ring was simulated with oligomerization states
ranging from 21 to 25 monomers. Lower energy models were found
for each case. The 24 membered ring, having lowest energy, was
chosen for further studies. The energy vs. rmsd plots display a sharp
energy funnel with a large drop in energy relative to the crystallized

form of the protein (Fig. 1). The similarity of the lowest energy
model (Fig. 2) with the crystal structure (0.9 Å calculated over three
subunits) suggests that the model is a reasonable representation of
the cyclical form of EscJ.

Helical Symmetry. Helical systems have six rigid body degrees of
freedom. The subunits have three rotational degrees of freedom
and a translational degree of freedom, which is the distance from
the center of a subunit to the n-fold rotation axis (the radius); one
degree of freedom specifies the rotation angle between subunits (�)
and the pitch of the helix is set by the sixth degree of freedom. The
pitch can have both positive and negative values corresponding to
right- or left-handed helices and is constrained because neighbors
along the helix axis cannot clash, although they are free to interact.
In the models, we assume that the interactions between consecutive
subunits are the primary driving force for helix formation and focus
on these interactions to reduce the computational complexity.
Three consecutive monomers were used to model the system. In the
test calculations described here we kept the backbone torsion angles
fixed and the search was done over the side chain and rigid body
degrees of freedom.

We tested the method by attempting to reproduce the helical
form of EscJ in the crystal structure starting with a single monomer.
All degrees of freedom were fully randomized except �, which was
initialized in the range corresponding to 20–26 monomers per helix
turn (which is consistent with experimental information; ref. 22) but
is allowed to move outside this range during the simulation. The
global search produces a handful of lower energy models. All of
these have a pitch corresponding to a left-handed helix except the
lowest energy model, which is close to 0 (0.8 Å). This model was
subjected to multiple independent refinement calculations followed
by filtering to pick out models without lateral clashes. The lowest
energy model after this procedure has an rmsd versus the crystal
form over three subunits of 0.7 Å (Table 1). The pitch is �2.6 Å,
close to the experimental values of �2.8 Å, and the handedness is
correctly predicted. The rotation angle between subunits is 13.3° in
the model compared with 15° for the crystal form. A reconstruction
of the helix can be seen in Fig. 4.

Icosahedral Symmetry. Icosahedra contain 20 triangular faces and
two-, three-, and fivefold symmetry axes. The icosahedral symme-
tries of virus capsids are classified by a triangulation number. The
simplest icosahedral viruses have a triangulation number of 1 (T1),
where all subunits have identical interactions with neighboring
subunits. Each of the 20 triangular faces of T1 viruses consists of
three subunits resulting in a macromolecule with 60 subunits. The
icosahedral system has six degrees of freedom. These correspond to

Table 1. Results for studied systems

System Symmetry
rmsd,

Å*
Fraction correct
side-chains, %†

Dihydrofolate reductase (1d1g) C2 0.2 91
Acyl carrier protein (1fth) C3 1.1 91
Chorismate mutase (1xho) C3 0.3 77
Lumazine synthase (1ejb) C5 0.3 71
Archael sm protein (1i8f) C7 1.3 75
YscJ/PrgK like protein (1yj7) C24

‡ 0.9 68
YscJ/PrgK like protein (1yj7) Helix‡ 0.7 78
Satellite panicum
Mosaic virus (1 stm) Icosahedral§ 2.1 68

*rmsd for lowest energy model calculated over all common C� for the full
oligomer.

†A side chain is defined as being correctly predicted if both �1 and �2 values are
�40° away from the native values. A side chain is defined as being in a
protein-protein interface if its C� is within 8.0 Å of any C� in the other subunit.

‡rmsd calculated over three subunits.
§rmsd calculated over six subunits.

Fig. 2. Comparison of the lowest energy models after refinement to the
complete native structures. Native structures are in red and models are in blue.

Fig. 3. Side chain prediction of selected residues at a subunit interface of
1ejb. The backbone and side chains for the crystal structure subunits A and B
are shown in yellow and green, respectively. Side chains for subunits A and B
for the lowest-energy models are shown in magenta and blue, respectively.
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three rotational degrees of freedom for the subunit, a translational
degree of freedom normal to the triangular face that determines the
size of the icosahedron, a translational degree of freedom corre-
sponding to the distance from the subunit to the threefold sym-
metry axis (a radius), and rotational degree of freedom that rotates
the threefold symmetry-related partners around their threefold
axis. The two last degrees of freedom are used to define the position
of the subunits on the face of the polyhedron.

By carrying out searches over all six rigid-body degrees of
freedom and the side chain degrees of freedom as in the previous
examples we attempt to reconstruct the T1 virus capsid of Satellite
panicum mosaic virus from the structure of its subunit capsid
protein (23). A subsystem of six subunits was simulated to avoid
edge effects, so that one subunit is completely encapsulated by
neighboring interfaces. Before entering the high-resolution phase,
models are filtered based on the number of intersubunit contacts,
which removes �25% of the population. In the energy vs. rmsd plot
for the global search an energy funnel can be distinguished (Fig. 1).
The lowest energy model is 2.4 Å away from the native structure
calculated over six subunits. After the local refinement, the lowest
energy model is 2.1 Å away from the native structure (Fig. 2).
Sixty-eight percent of the interface residues in this model are
correctly predicted. The refinement process produces a number of
models with lower rmsd values, but these have slightly higher
energies. The lowest rmsd model is only 0.7 Å away from the native
structure, but has significantly higher energy. The full model of the
reconstructed virus can be seen in Fig. 4.

Modeling an Amyloid-Like Fibril. The recent high-resolution struc-
ture of a microcrystal formed by the peptide NNQQNY from the
yeast prion protein Sup35 has been proposed as a model for the
cross-beta core of amyloid fibrils (10). In this structure, a single copy
of the six-residue peptide is replicated by a twofold screw symmetry
to form two parallel �-sheets that pack tightly together to form a dry
interface described as a steric zipper. A distinctive feature of this
steric zipper is that it is formed by polar side chains, asparagine and
glutamine, which satisfy their hydrogen-bonding requirements by
forming stacks of hydrogen bonds parallel to the fibril (symmetry)
axis. We set out to recapitulate the structure of this steric zipper
using knowledge of the symmetry type and of the presence of
backbone hydrogen bonds parallel to the fibril axis (the cross-beta
structure, a well established characteristic of amyloid fibrils; ref. 2).

The degrees of freedom in this system are the peptide backbone and
side chain torsion angles and five rigid-body degrees of freedom
(three rotations of the peptide, distance from the peptide to the
symmetry axis, and rise along the axis between peptides). Details
on the simulation are given in Materials and Methods; briefly, a
low-resolution model is built by choosing a random starting orien-
tation for the peptide and sampling backbone torsion angles by
fragment insertion. This model is refined by a high-resolution,
all-atom simulation in which all degrees of freedom (Fig. 5a) are
simultaneously optimized. A plot of energy-vs.-rmsd for a five-
peptide slice of the system is shown in Fig. 5d; in Fig. 5 b and c, the
lowest-energy model is superimposed on the native structure (0.59
Å C� rmsd, 0.70 Å over the core side chains). This figure illustrates
that we are, starting only from the sequence of the peptide, able to
recapitulate the steric zipper to high resolution, suggesting that
computational modeling may be a powerful complement to exper-
imental techniques in elucidating the structures of other amyloid-
like systems.

Discussion
We have developed a method to predict the structure of symmet-
rical protein assemblies. The method uses simultaneous optimiza-
tion of backbone, side chain, and rigid body degrees of freedom in
which the search space is restricted to symmetrical conformations.
The computational complexity is further reduced by simulating
only smaller subsystems of the symmetrical assembly. The method
has been applied to systems with cyclical, helical, and icosahedral
symmetry but is not restricted to these systems and can be extended
to model any type of symmetrical system where all subunits are
chemically equivalent. The results show that highly accurate models
can be produced with this protocol.

Our approach assumes symmetrical arrangements of protein
subunits. With a few notable exceptions, homo-oligomers assemble
into symmetrical arrangements despite the fact that there are vastly
greater nonsymmetrical possibilities. Symmetry breaking, when
present, is usually fairly local. Asymmetry in side chain conforma-
tions is sometimes found close to a symmetry axis where for
example efficient hydrogen bond formation requires local symme-
try breaking (as is the case for leucine zippers; ref. 24). Symmetry
breaking is also well established in larger virus capsids (1). As there
is usually considerable symmetry present even when there is local
symmetry breaking, a reasonable general approach would be to
fully constrain symmetry during initial model generation to reduce
the size of the space being sampled, and then allow local symmetry
breaking, for example by eliminating the symmetrization of the side
chain conformations, in later refinement steps. In most of the
calculations we have assumed knowledge of the oligomerization
state of the system. This information can often be experimentally
determined but may also be inferred from simulations with differ-
ent oligomerization states, as shown in ref. 6.

Comparison with Previous Methods. Several groups have developed
methods to predict the structure of symmetrical protein assemblies
using three-dimensional grid-based fast Fourier transform (FFT)
docking, a method which optimizes the shape complementarity
between binding partners, to produce dimeric complexes. Top
scoring dimer orientations are then used to assemble the full
symmetrical system, which is scored using an energy function (3–6).
Schneidman-Duhovny et al. (7) developed a different method that
use a sparse representation of the molecular surface and geomet-
rical hashing techniques to predict Cn symmetries. All these meth-
ods have been successful in predicting Cn and Dn symmetries in
bound–bound docking experiments. Our approach has the advan-
tage that arbitrary symmetries can be modeled, both side chain and
backbone flexibility can be explicitly modeled, and that all degrees
of freedom in the oligomeric system are simultaneously optimized.
The main disadvantage of our method is the high computational
cost associated with high-resolution modeling.

Fig. 4. Reconstruction of the helical model of 1yj7 and the capsid model of
1stm. Subunits around a fivefold axis or four consecutive monomers are shown
in blue, red, magenta, green, and cyan for the virus (Upper) and helix (Lower),
respectively. (Left) Lowest energy models. (Right) Crystal structures.
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Backbone Flexibility. In general, backbone conformational changes
are expected in real world applications of our symmetrical modeling
protocol, either because the starting structure is a comparative
model or to allow for conformational change upon oligomerization.
Thus, the examples in this paper that utilizes crystal structures
coordinates must be viewed as ‘‘best case’’ scenarios. The use of
low-resolution experimental data as constraints in the simulations
can drastically reduce the conformational search space and com-
pensate for the computational cost associated with full backbone
flexibility. These constraints can come from various sources, e.g.,
alanine scanning (25), chemical cross-linking (26), and hydrogen-
deuterium exchange (27) coupled with mass spectrometry. Perhaps
the most useful type of intermediate- to low-resolution data are
provided by cryo-electron microscopy, which is often used to
structurally characterize large multiprotein assemblies (28). Al-
though, in the general case, cryo-EM or other low-resolution data
will be highly desirable for building confident models using the
methods described in this paper, the striking recapitulation of the
crystal structure of the amyloid fiber forming peptide illustrates
that, in systems with relatively few degrees of freedom, accurate
models can be built from sequence information alone.

Materials and Methods
The symmetrical modeling protocol was implemented in
ROSETTA and combines new methods for the treatment of
symmetry with methods previously developed for protein-protein
docking (29, 30) and ab initio protein structure prediction (31).
ROSETTA uses real space Monte-Carlo Minimization to find the
lowest energy conformation of binding partners. The protocol

consists of a low-resolution search protocol where the side chains
are represented by a centroid pseudoatom placed at the average
position found in a representative set of structures from the Protein
Data Bank. The low-resolution energy function uses residue-scale
interaction potential derived from the analysis of high-resolution
protein structures (29, 32, 33). In a subsequent high-resolution
stage, the energy is calculated by using an all-atom energy function
dominated by a Lennard–Jones potential, an orientation-
dependent hydrogen bond potential, and an implicit solvation
model (11). The time to generate a single model ranged from 3 to
13 min on a 1.6-MHz Athlon AMD processor with 1 Gb of memory.

Symmetrical Placement of Subunits. The protocol starts with a
randomization of the rotational degrees of freedom of one subunit.
The first subunit is placed in its local coordinate frame. The
coordinate frames of the other subunits are constructed by sym-
metry transformation of the first subunit’s coordinate frame within
a static coordinate frame. The other subunits are placed within their
coordinate frame with the same internal coordinates as the first
subunit. The exact details of this process depend on the symmetry
of the system.

For cyclic symmetry the origin of the first coordinate frame is
placed at a certain distance (equal to the radius) along the x axis in
the static frame with the x axis of the coordinate frame pointing
toward the origin of the static frame and the z axis of the first
coordinate frame parallel to n-fold rotation axis. The coordinate
frames for the other subunits are created by n � 1 rotations around
the z axes of the static frame. The first step of the low-resolution
search is a ‘‘slide into contact,’’ where the subunits are translated

Fig. 5. Amyloid fibril modeling. (a) The green arrows indicate the degrees of freedom sampled during the conformational search: side chain and backbone
torsional degrees of freedom; three rotations of the peptide; distance from the peptide to the twofold screw axis; spacing along the axis between peptides. (b
and c) Superposition of the lowest-energy model (gray) and the crystal structure of the NNQQNY steric zipper (cyan), showing good agreement over the core
side chains. (d) Scatter plot of all-atom rmsd to the crystal structure (x axis) versus energy for the fibril modeling simulations.
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along the x axes of their coordinate frames until they meet in
glancing contact. For systems with more than three subunits, three
adjacent subunits are chosen and only the energy for the central
subunit is calculated to avoid edge effects.

For helical symmetry, the first coordinate frame is placed as
described in previous paragraph and the origins of the other
coordinate frames are constructed by a rotation of � degrees
(where 360/� is the number of subunits per turn) around and
translation p (equal to the pitch of the helix) along the z axis of the
static coordinate frame. At the start of the simulation � and p are
randomized in the range 13.8–18° (corresponding to 20–26 subunits
per turn) and 0.5–60 or -0.5-(-60) Å, respectively. Subunits are
‘‘slide-into-contact’’ as in the cyclical case but with the addition that
an adjustment of p may be necessary in some cases to get a contact.
To make it computationally tractable, a system of three adjacent
subunits is chosen where only the central subunit is scored to avoid
edge effects. For the energy refinement step an extension of the
‘‘slide-in-contact’’ method was also used where an additional ‘‘slide-
in-contact’’ performed by reducing � from a larger value until
contact occurs.

The fibril model has a twofold screw symmetry. The reference
coordinate systems are chosen to lie along the symmetry axis, with
z axes parallel to the symmetry axis and a 180° rotation about the
z axis from one coordinate system to the next. The low-resolution
simulation begins with the choice of a random starting configura-
tion. To guarantee that backbone hydrogen bonds are present along
the fibril axis, we choose at the start of each simulation a parallel
�-strand pairing at random from a protein of known structure. The
geometry of this pairing is used to determine the i3 i � 2 rigid body
transformation between subunits (subunits i and i � 1 are on
opposite sides of the symmetry axis; backbone hydrogen bonds are
present between subunits i and i � 2). The two remaining rigid body
degrees of freedom (distance from the subunit to the symmetry
axis, and internal rotation of the subunit about its z axis) are chosen
randomly from suitable uniform distributions. Backbone torsion
angles are initialized to extended values and a low-resolution
fragment insertion simulation is used to build a backbone
compatible with the starting rigid-body configuration. The result-
ing low-resolution model is further refined by an all-atom simula-
tion as described above, with the added feature that backbone
torsion-angle moves are included, and all degrees of freedom of the
system (rigid-body, backbone, and side chain) are minimized
simultaneously.

An icosahedron contains 12 vertices and 20 triangular faces. For
a T1 symmetrical system, each face contains three subunits coupled
by a threefold symmetry axis. In the icosahedral setup, the vertices
are created at s*(0,�1, ��), s*(�1, ��,0), s*(��,0,�1) where s
controls the size of the icosahedron and � � (1�	5)/2 is the

golden ratio. Reference frames are placed at the center of each face
with the z axis normal to the face, the x axis pointing toward one
vertex describing the triangular face, and the y axis perpendicular to
x and z axis. The origin of the coordinate frames of the first subunit
of a face is placed along the x axis of the reference frames (the
distance to the center is the radius). In the coordinate frames of the
first subunits of the faces, the x axis points to the center of the face
and the z axis is parallel to the z axis of the reference frame. The
coordinate frames of the two other subunits in a face are con-
structed by 120° rotations of the first coordinate frame around the
z axis of the reference frame. At the start of the simulation the size
of the icosahedron (s), which is controlled by a translation along the
z axes of reference frames, and the radius is set to a large values so
that different subunits do no contact each other. The first step of
the low-resolution search is a ‘‘slide-into-contact’’ where the sub-
units are translated along the x axes of their coordinate frames
followed by a second slide-into-contact where the size of the
icosahedron is reduced by sliding along the z axis of the reference
frame. The subunits are initially placed on lines from the vertices
to the center of the faces. Then all of the subunits related by
threefold symmetry are rotated together around the z axis of the
reference frame by a random angle in the range �30°. A reduced
system of six subunits is used to simulate the icosahedral symmetry
corresponding to the three subunits related by a threefold axis
together with three subunits from two other faces. Only the subunit
that is surrounded by the largest number of neighboring subunits is
chosen for scoring to avoid edge effects.

Symmetrization of Side Chain Degrees of Freedom. Rosetta uses two
side chain rotamer optimization methods: simulated annealing
(‘‘packing’’) (11) and greedy one at a time optimization (‘‘rotamer
trials’’). Packing or rotamer trials are used for side chain optimi-
zation within MCM after the random pertubation but before the
gradient-based minimization. Packing is used instead of rotamer
trials every eight cycles of MCM. Both the packing algorithm (13)
and rotamer trials were modified to allow for symmetrical rotamer
placement.

Software. All figures were made with gnuplot and pymol (DeLano
Scientific). The rosetta source code is available without charge for
academic users from http://depts.washington.edu/ventures/
UW�Technology/Express�Licenses/Rosetta.
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