
doi:10.1016/j.jmb.2004.11.062 J. Mol. Biol. (2005) 346, 631–644
Recapitulation of Protein Family Divergence using
Flexible Backbone Protein Design
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We use flexible backbone protein design to explore the sequence and
structure neighborhoods of naturally occurring proteins. The method
samples sequence and structure space in the vicinity of a known sequence
and structure by alternately optimizing the sequence for a fixed protein
backbone using rotamer based sequence search, and optimizing the
backbone for a fixed amino acid sequence using atomic-resolution
structure prediction. We find that such a flexible backbone design method
better recapitulates protein family sequence variation than sequence
optimization on fixed backbones or randomly perturbed backbone
ensembles for ten diverse protein structures. For the SH3 domain, the
backbone structure variation in the family is also better recapitulated than
in randomly perturbed backbones. The potential application of this method
as a model of protein family evolution is highlighted by a concerted
transition to the amino acid sequence in the structural core of one SH3
domain starting from the backbone coordinates of an homologous
structure.
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Introduction

The evolution of protein families is subject to
numerous constraints unified by a simple necessity:
the preservation and elaboration of biological
function. To represent this evolutionary process a
variety of models have been developed which
provide insight into relationships among proteins
and inference of biological properties for uncharac-
terized proteins.

For pragmatic reasons, the most popular models
of protein evolution use residue sequences without
explicitly representing protein structure. Such
methods are both efficient and useful for assigning
homologous relationships between proteins, and
mature instances of these techniques, such as
PSI-BLAST1 and HMMer,2 form the foundation of
modern protein bioinformatics. While these models
are effective, they can be improved by explicitly
representing protein structure. The inclusion of
structure in such models is motivated by the
lsevier Ltd. All rights reserve

an-square a-carbon

ing author:
constraint that proteins must fold into a structure
which ultimately contributes to its function. For this
reason, structure tends to be highly conserved as
proteins evolve, which allows homologous relation-
ships to be detected between protein structures
even when they cannot be found by sequence
alone.3

Several methods have been developed to aug-
ment sequence-based evolutionary models with
structural information; often referred to as fold-
recognition or “threading” models, these typically
represent protein structure at the residue level.4–6 A
fold-recognition model could, for example, modify
the probability of an homologous relationship
according to the manner in which a sequence
aligns to the pattern of residue burial in the
structure of a putative homolog. Despite low
resolution and the use of fixed structural repre-
sentatives, these models can enhance sequence-
based search sensitivity.
Given the success of this approach, a subsequent

step is to use more detailed, atomic-resolution
methods to represent the evolution of protein
families. Such techniques do present non-trivial
computational problems, however these have been
partially addressed by methods developed to
d.
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design protein sequences that fold into specific
backbone conformations. These protein design
methods typically use an atomic-scale structural
model to build alternate residue side-chains onto a
fixed protein backbone, searching for sequences of
residues and corresponding side-chain confor-
mations which form the most stable structures
according to a rapidly computable potential func-
tion. The efficacy of such methods has been
experimentally verified in numerous cases by
designing sequences onto the backbones of known
structures,7–9 minor variants of known back-
bones,10–12 and backbone conformations not pre-
viously observed in nature.13

Although these protein design techniques do not
explicitly represent an evolutionary process, they
model certain constraints on the evolution of
natural proteins, such as the thermodynamic con-
straint that proteins fold to a stable conformation,
and the functional constraint that this folded
conformation be conserved as the protein evolves.
For this reason, protein design can be regarded as a
simplified model of protein evolution, and we thus
expect that the sequences of the natural protein
family represent a subset of the sequences predicted
by protein design for the corresponding backbone
conformation.

Interest in this similarity between designed and
natural sequences has led to several studies
evaluating their relationship. These previous
studies of protein design as an evolutionary
model have either kept the backbone rigid14–16 or
used randomly perturbed backbone ensembles.17

Due to the small adjustments made in the backbone
structure of natural proteins as they evolve, the
manner in which design models represent such
backbone movements has a potentially large impact
on the ability of the model to recapitulate those
aspects of protein evolution which are dominated
by thermodynamic constraints. We recently
described a flexible backbone protein design
strategy in which both the sequence and structure
evolve by alternately optimizing the amino acid
sequence for a fixed backbone structure, and
optimizing the structure for a fixed amino acid
sequence (the latter is the classical structure
prediction problem). This strategy was used to
design a protein with a novel fold which was
subsequently shown in experimental biophysical
and X-ray crystallographic studies to be exception-
ally stable and very close in structure, 1.2 Å root
mean square (RMS) a-carbon deviation to the
design model.13 Here we investigate the potential
of this flexible backbone protein design strategy to
model protein family sequence and structure
divergence. We show that a design protocol
incorporating backbone flexibility by means of an
iterative sequence and structure optimization cycle
significantly enhances our ability to recreate the
sequence diversity of natural families and that
structural variations of close natural homologs can
be sampled in some cases as well.
Results

The flexible backbone design procedure we use
can, in principle, sample all stable protein sequence/
structure pairs for a given length starting with a
naturally occurring protein backbone, and coupled
with sequence insertion and deletion operators
could sample all of the naturally occurring homo-
logs for a large protein family. As the sampling
method searches for energy minima without any
knowledge of functional constraints, the set of
sequences generated by such a process would
correspond to a superset of the naturally occurring
family. Hence, in addition to providing a model of
protein evolution under purely thermodynamic
constraints, comparison of the natural sequence
family to the simulated sequences could highlight
functional selection within the protein.

With these ideas in mind, we began by experi-
menting with the iterative sequence/structure
optimization method used to create Top7, a protein
designed with a novel backbone topology. In
evaluating the ability of this method to recapitulate
sequence and structural divergence in naturally
occurring protein families, we found that the
structures it predicted stayed relatively close to
the structure from which the predictions were
derived, and that the method had a limited ability
to recapitulate the sequence and structure variation
of natural protein families (data not shown). We
therefore sought to improve approximations in the
model expected to influence natural protein family
recapitulation, while preserving the iterative
sequence/structure optimization approach as our
basic flexible backbone design strategy.
Sequence design improvement

Using native sequence recovery as a figure of
merit, we sought to improve our sequence search
for the complete sequence redesign of a test set of
42 small protein domains. The native sequence
recapitulation resulting from this test is summar-
ized for several sequence search methods in Table 1.
The extent to which native sequences are recovered
in protein design calculations on native protein
backbones is a useful, albeit approximate measure
of design performance, because we expect that
a significant fraction of the residues native to a
given protein backbone are thermodynamically
optimal for that backbone, especially in the core of
the structure. This expectation is supported by
experimental mutagenesis studies which have
shown that mutations of protein core residues are
usually destabilizing.18,19 We also expect that our
sequence design methods should more accurately
recapitulate the residues in the protein’s structural
core because the surface residues are largely
constrained by solvation, side-chain entropy and
biological function, all of which are either poorly
approximated or absent in our model. For this
reason, we have separately summarized the
recapitulation of core residues in Table 1 and



Table 1. Percent identity between native and designed amino acid residues

% Recapitulation of native amino acid identity

All Structural core

(a) Initial method 32.1 45.6
(b) Method (a) and robust parameterization 33.0 47.7
(c) Method (b) and potential, search and side-chain library modifications 35.1 52.4
(d) Method (c) and extra c1 subrotamers 35.9 55.4
(e) Method (c) and extra c1 and aromatic subrotamers 37.0 57.1

Recent improvements made to fixed backbone sequence search methods, as approximated by amino acid identity between native and
designed sequences calculated over a diverse set of 42 protein backbone structures. Design method (a) is very similar to a previously
described protocol.13 Method (b) incorporates a new parameterization of the energy terms in the potential which optimizes the
placement of the amino acid on the protein in both the native and designed environments. Method (c) includes a large number of
rotamer, potential and search modifications. Briefly, these include an update of our rotamer database provided by Dunbrack and co-
workers,22 a more accurate procedure for culling very low probability configurations from the library, a statistical approximation of p–p
interactions and smoothing all of the energy terms in the potential. Part (d) shows the result of using method (c) with additional
rotamers perturbed from each canonical rotamer byG1 standard deviation about the c1 angle. Part (e) shows the result of usingmethod
(c) with our production set of additional rotamers, which includes rotamers perturbed from each canonical rotamer by G1 standard
deviation about the c1 angle, as well as additional perturbations for aromatic residues (see Methods).
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we focus on improving the recapitulation of these
residues.

As described in Methods, the energy parameter-
ization procedure was modified to partially account
for the dependency between the parameterization
of the potential and the packing environment used
to calculate this potential. This change resulted in a
small but robust improvement in both full and core
sequence recapitulation, shown in Table 1, part (b).
We have also updated the backbone dependent
rotamer library, improved our rotamer strain
definitions, stabilized the convergence of the
sequence search procedure and incorporated a
number of refinements to energy function com-
ponents (see Methods). These changes have
resulted in significant additional improvement to
the core residue recapitulation of our test set, as is
shown in Table 1, part (c).

In practice, expanding the rotamer set used
during the sequence search to include subrotamers
is an effective means of modeling strained rotamer
conformations; we have observed that such sub-
rotamers have a significant effect on sequence
prediction. For this reason, a number of improve-
ments were made to the rotamer interaction energy
storage method and the low-probability rotamer
culling which allowed more subrotamers to be used
with the same computational resources. The effect
of additional subrotamers is apparent in the results
shown in Table 1; using the design protocol
introduced in part (c) of this Table, the addition of
subrotamers with G1 standard deviation about the
c1 angle of each rotamer improves the native
residue recapitulation by 0.8% overall and 3.0% in
the core. The design calculations used in this study
include an additional expansion of the c1 and c2

angles for aromatic residue rotamers which results
in an additional benefit to the native sequence
recapitulation of 1.9% overall and 4.7% in the core.

Backbone search improvement

Tomodel the structural transitions typical of close
homologous proteins, we sought simple tests of
such transitions for our structure relaxation
methods. One such case that has proven useful in
refining our methods is an SH3 structure from c-Crk
(1cka:A) and a close homologous structure (1awx).
We focused on using the backbone of one structure
with the residue sequence of the other “threaded”
onto it as a test of our ability to shift between
homologs. In doing so, we found that it was initially
possible to model the transition of the SH3 distal
and RT-loops between the two test cases, albeit
without energy discrimination; however, the com-
plex transition of the n-src loop between these
structures proved more difficult to model. There-
fore, we introduced an initial high-temperature
Monte Carlo search procedure to sample a larger
structure space around the starting structure, as
well as allowing the insertion of highly divergent
protein fragments followed by compensatory
changes in adjacent residues to more aggressively
search local conformational space (see Methods).
As a result of these search modifications, we
sampled a larger conformational space around the
starting structure, and thus required improved
discrimination of energy minima. For this reason
we expanded and improved the fixed geometry
energy minimization, as described in Methods,
resulting in the detection of lower energy minima
by our structure relaxation routines.
The collective effect of these changes was an

improvement to our close homolog transition test
case, shown in Figure 1. This example demonstrates
a transition starting from the backbone of 1awxwith
the residue sequence of 1cka:A threaded onto it.
Our improved structure relaxation procedure not
only modeled the transition of the n-src loop, which
was not previously possible, but also lowered the
RMS to the native structure as a whole. While this
case demonstrates an improvement in our sampling
of homologous conformational changes, we have
not been able to completely discriminate such cases
by energy. The decoy shown in Figure 1 was
selected for low RMS to the C-terminal region of
the native structure, because we were interested in
optimizing our structure search techniques such



Figure 1.Modeling the structural transition of the n-src
loop between SH3 homologs. We constructed a test case
using two closely homologous SH3 structures: 1cka:A
and 1awk, which share 40% sequence identity and are
structurally separated by 1.47 Å RMS. We threaded the
sequence of one protein (1cka:A) onto the structure of the
second (1awk) and relaxed the threaded structure in an
attempt to recover the native conformation, especially for
the n-src loop. The backbone of the minimized structure
for 1cka:A is shown in red, the backbone of 1awk is in
blue, and the green backbone corresponds to a threaded
structure following relaxation, selected for low RMS to
the C-terminal region of the native structure. The RMS
between the native structure and this decoy is 1.13 Å,
relaxed from 1.47 Å. For the difficult C-terminal region,
including the n-src loop (residues 26–54) the RMS
between the native and decoy structures is 0.55 Å, relaxed
from 1.19 Å. As discussed in Results, although this decoy
was selected for structural similarity to the native
structure, it represents an improvement to our structure
search methods by modeling the native loop transition
even without complete energy discrimination, and it is
also found in the lowest 5th percentile by energy of 600
decoys generated, thus it may be possible to discriminate
such homologous transitions with further refinements to
the design potential.
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that these types of structural shifts were possible
using our structure search methods. However, this
structure is in the most stable 5th percentile of 600
decoys; it is thus our expectation that further
refinements to the potential and perhaps successive
searches employing an evolutionary algorithm will
lead to automated discrimination of such cases by
energy.

Natural family sequence recapitulation
Recapitulation of natural protein designability

After incorporating various sequence and struc-
ture search improvements into the flexible
backbone design procedure, we studied the recapi-
tulation of natural sequence families for ten diverse
protein structures and compared this performance
to two alternate design methods previously dis-
cussed in the literature. The first of these is a fixed
backbone design procedure which searches for low
energy protein sequences compatible with the exact
backbone of the starting structure. In this case the
repulsive van der Waals energy and sequence
search have been modified such that greater
sequence diversity can be produced in spite of the
fixed backbone restriction. The second procedure
searches for the optimal protein sequence for each
of an ensemble of backbones randomly perturbed
from the starting structure (see Methods). This
strategy of incorporating backbone flexibility
through randomized structure ensembles is similar
to that developed by Desjarlais and used by Larson
et al. to model natural backbone flexibility in a
large-scale design study.17

To better understand how each of these methods
was able to recapitulate the qualities of natural
sequence families, we first examined whether the
design methods could recreate the characteristic
sequence diversity of each family. Such charac-
teristic sequence diversity, or designability, reflects
the size of sequence space compatible with a
protein’s backbone architecture. We express this
diversity by calculating a “seqeunce diversity
score” for each domain, which is the exponential
of the average residue entropy for each site in a
sequence alignment; a value which approximately
expresses the average number of residues allowed
at each position in the protein (see Methods). This
diversity score is used to characterize the natural
sequence variability for the ten protein families in
our test set (Table 2). The family members were
identified using PSI-BLAST, with near duplicate
and significantly gapped sequences removed,
and the sequence diversity score obtained after
weighting to deemphasize large groups of similar
sequences (see Methods).

Using each of the three designmethods discussed
above, we produce alignments of designed
sequences for each domain by taking the 100 lowest
energy sequences from a total of 300 designs,
weighting to deemphasize highly similar groups
of sequences, and calculating the sequence diversity
score as with the natural sequence alignments.
In Figure 3, we plot the natural versus designed
sequence diversity score for each design method as
well as the best fit by linear regression analysis. Of
the three methods, flexible backbone design was the
only one to produce sequence diversity scores
which could account for a portion of the variability
in the natural sequence diversity. The linear
regression of the sequence diversity score from
flexible backbone design to that of natural family
members was found to be significant, and has an R2

value of 0.475. A similar analysis of the sequence
diversity score produced by fixed backbone and
randomized backbone design did not yield any
significant explanation of the natural sequence
diversity. Hence, it appears that some component
of the natural protein designability can be
accounted for by the iterative flexible backbone
design method, and that this ability depends on the
evolution of the protein backbone under a physical
potential during the design process.



Figure 2. Comparison of designed and natural homologous sequences for each member of the test domain set. An evolutionary sequence distance is calculated between all
designed and natural sequences for each family as described in Methods. For all sequences, the distance between the core residues of each domain are represented in a two-
dimensional projection using metric multidimensional scaling, which selects the projection axes to maximize the sequence distance variance. In this plot, sequences are
represented as points and the separation between points approximates sequence distance; the native sequence is shown in red, natural homolog sequences are blue, flexible
backbone design decoys are shown in green and those for fixed backbone and randomized backbone design are shown in magenta and orange, respectively.



Table 2. Protein domain test set

Protein pdb-id Residues Sequence count
Sequence diversity
score

c-Crk SH3 1cka:A 134–189 512 5.697
FKB12 1fkb 1–107 356 4.775
PDZ 1qau:A 14–102 244 6.023
Ribosomal S6 1ris 1–94 138 5.255
Ubiquitin 1ubq:A 1–76 342 4.974
Tenascin 1ten 803–890 642 7.723
Ribosomal L7/L12 1ctf 7–74 196 3.051
CI-2 2ci2:I 19–83 110 3.226
Calbindin 4icb 1–76 180 4.651
Plastocyanin 7pcy 1–98 132 4.239

For each domain, the family alignment was found by PSI-BLASTand filltered for deletions and high similarity to the sequence of the test
domain to produce the final aligned sequence set, the size of which is shown. To express the diversity of each sequence family, we
calculate the exponential of the average site entropy of the sequence alignment after weighting to deemphasize highly similar sequence
groups (see Methods).
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Recapitulation of natural family amino acid
distributions

If the flexible backbone design procedure can
partially recapitulate the characteristic level of
sequence diversity associated with each protein
family, how well can this method recreate the
natural family sequence space? To address this
question, we first examined the degree of similarity
between the amino acid frequency distributions at
each site in the designed and natural protein
alignments. To do so, we calculated the relative
entropy of the designed amino acid distribution
compared to the natural family amino acid distri-
bution at every site in each of our test set proteins
and averaged this value over all sites in each
protein. This average relative entropy is shown for
each of the ten test structures in Table 3, together
with the average relative entropy of residue
positions in the structural core of each protein.
The relative entropy approaches zero as the
designed and natural amino acid distributions
come closer to matching, thus a lower value for
the relative entropy indicates a closer fit of the
designed to the natural amino acid distribution. In
all cases it appears that the flexible backbone design
Figure 3. Comparison of natural family and designed seque
methods to the natural sequence diversity, expressed here as
average site entropy (see Methods). A linear fit of the flexib
natural family variation with an R2 value of 0.475; this regressi
linear relationship is found for the equivalent regression using
design (PZ0.5235) and randomized backbone design (PZ0.8
method tends to produce site amino acid distri-
butions closer to those of the natural sequence
family than the fixed backbone method, and with
only one exception the flexible backbone method is
superior to randomized backbone ensemble design
as well. These results suggest that the iterative
sequence/structure optimization protocol is
capable of more accurately recapitulating the
naturally observed sequence family than fixed or
randomized backbone design methods.

Given that flexible backbone design can replicate
natural amino acid site distributions more closely
than our alternate design methods, does the same
relationship hold for the replication of natural
family sequences? Our design methods appear to
more accurately replicate the distribution of amino
acids at sites in the core of protein structures, where
evolutionary pressures are more closely related to
the design model. Therefore, we expect that our
methods may be capable of replicating correlated
residue changes which occur in the protein’s
structural core as well. To gain a clearer under-
standing of how the core positions of designed and
natural sequences are related, we created two-
dimensional projections of the sequence similarities
between all designed and natural structural core
nce diversity. Shown is the best linear fit of all three design
the “sequence diversity score”, or the exponential of the
le backbone design sequence diversity score explains the
on is significant at the 0.05 level (PZ0.0275). No significant
sequence diversity scores generated from fixed backbone
586).



Table 3. Mean amino acid relative entropy between designed and natural sequence alignments

Mean amino acid relative entropy

All Structural core

Protein Flexible Flxed Random Flexible Fixed Random

c-Crk SH3 0.98 1.57 1.44 0.07 0.10 0.15
FKB12 0.89 1.64 1.21 0.17 0.24 0.20
PDZ 0.98 1.75 1.32 0.15 0.30 0.21
Ribosomal S6 1.27 1.68 1.31 0.15 0.21 0.16
Ubiquitin 1.19 1.53 1.33 0.12 0.19 0.18
Tenascin 0.91 1.65 1.27 0.14 0.22 0.21
Ribosomal L7/L12 1.18 1.38 1.27 0.16 0.19 0.20
CI-2 1.14 1.75 1.50 0.07 0.09 0.12
Calbindin 1.19 1.55 1.49 0.22 0.25 0.26
Plastocyanin 1.25 1.70 1.22 0.24 0.32 0.24

Amino acid distributions for designed sequences are taken directly from designed sequence alignments for each variant designmethod,
in each case using the most stable 100 sequences of 300 computed, and weighting the designed sequences using the Henikoff algorithm
to deemphasize similar sequence groups. Natural amino acid distributions are extracted from the position specific scoring matrix
produced by a PSI-BLAST search of the native protein sequence, including pseudo-counts. The relative entropy for each site in the
protein family alignment isK

P
aa paa logðpaa=qaaÞ, where paa is the frequency of each amino acid in designed sequences and qaa is

the frequency in homologous sequences. For each domain we show the average of the relative entropy over all sites and over sites in the
structural core of each domain.
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sequences for each of the proteins in our test set
(Figure 2). From these projections, it appears that
both the flexible and fixed backbone design
methods model the natural core residue sequences
of each domain more closely than randomized
backbone design. It is also apparent that, although
the flexible and fixed backbone design methods
often cover similar areas of sequence space, there
are a number of cases, such as for SH3, ribosomal
S6, ubiquitin, tenascin and plastocyanin, where a
subset of the sequences produced using the
flexible backbone protocol more closely resemble
the homologous core sequences than the sequences
produced using the fixed backbone method.

Although the performance of flexible backbone
design in the replication of natural core sequences is
encouraging, it is apparent from these sequence
projections that this is a more difficult problem than
the replication of residue distributions at individual
sites. This may be explained by the design method’s
prediction of sequences that represent analogs or
novel representatives of the protein domain, which
are not subject to any constraints of function or
evolutionary pathway. For this reason, we do not
necessarily expect that designs which are dissimilar
to the natural core sequences of each domain are
invalid. Despite this, not all of these distant
sequences encode folded proteins, as found in
recent large-scale experimental design efforts, due
to inaccuracies and approximations in the design
model.9 These projections also reveal that our
flexible backbone design method is not simply
increasing the sequence diversity by allowing
sequence search to be run on a greater variety of
backbones. This does, however, appear to be the
case for the randomized backbone method, as
sequences produced with this method often occupy
a unique area of sequence space without significant
overlap to known homologs or flexible backbone
design predictions.
Among all the test structures, the flexible back-
bone design procedure appears to have an excep-
tional ability to represent the core of the SH3
domain, and we have thus chosen this domain for
further study of both the types of structures and
core sequence combinations our design procedure
is able to predict.
Natural family structure recapitulation

If flexible backbone design can be used to more
accurately recapitulate the natural sequence diver-
sity of protein families, we would like to know if it
could be used to recreate the natural structure
variation of these families as well. This question is
somewhat more problematic than its sequence
counterpart, largely because less structural data
are available and it is more difficult to objectively
define similarity between structures.
Due to the encouraging core sequence design

results and large number of structures available for
SH3, we examined the extent of structure recapitu-
lation by our flexible backbone design process for
this family. We identified natural analogs of the
starting SH3 structure (1cka:A) and aligned them
using CE; this alignment is plotted for visual
comparison with alignments of design decoys in
Figure 4(a). This shows that the iterative sequence/
structure optimization method recreates some basic
features of natural analogs: specifically, accumu-
lation of most structural variation in the surface
loops of the protein. To gain a more quantitative
view of structural similarity we evaluated the
closest RMS decoy to each natural analog and
show the distribution of this value over all analogs
for each design method in Figure 4(b). For the fixed
backbone design case, we examined the distribution
of RMS between each natural analog and the
starting backbone conformation. All alignments
between analogous structures and designed decoys



Figure 4. Comparison of designed and natural struc-
tures for the SH3 domain. (a) A least-squares alignment of
designed and analogous backbones to the starting
structure (1cka:A) is shown. The backbone of the starting
structure is shown in red and the closest naturally
occurring structures are shown in blue, these are the top
40 structures by CE alignment Z-score37 from all proteins
in the pdb. In green and orange are the 40 lowest energy
decoys generated, respectively, by flexible backbone and
randomized backbone ensemble design. (b) For each
naturally occurring SH3 structural analog, the RMS of the
closest design structure is found, and the distribution of
this closest RMS value over all analogs is plotted for each
design method, with flexible backbone design shown in
green, randomized backbone ensemble design shown in
orange and fixed backbone design (or simply the distance
to the native structure) shown in red.
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were made with CE, and the RMS values calculated
from this alignment were used to generate the
distributions shown in this Figure. It is apparent
that the decoys generated by iterative sequence/
structure optimization are distributed closer to the
analogs of the starting backbone than the structure
from which they started, and that this increased
similarity to analogous structures cannot be
recreated by small random backbone perturbations.
This result is consistent with our observations of
designed SH3 core sequences, which show that
designs made to randomized backbone ensembles
have less similarity to natural family sequences
than those made with iterative sequence/structure
optimization.
Modeling an exact homologous core transition

Due to the relatively strong sequence and
structure recapitulation observed for the SH3
domain using flexible backbone design, we inves-
tigated individual decoys to better understand the
source of this similarity. This revealed an interesting
case wherein an exact recapitulation of the core
residue sequence was made for one structure
(1sem) starting from the backbone structure of its
homolog (1cka:A). By our definition, there are eight
residues in the core of the SH3 domain, three of
which are mutated between the sequences of these
two proteins. We show a structural alignment of the
three mutated residue positions in Figure 5,
comparing the residue positions of the starting
structure (1cka:A), its natural homolog (1sem), and
the designed structure which correctly replicated
the core sequence of this homolog. It is evident from
this Figure that the backbone shifts among these
core residues are relatively small, yet it is probable
that these play an important role in the replication
of the homologous residue pattern as the sequence
design method is unable to replicate this transition
when building side-chains onto the fixed starting
structure. An examination of the decoy backbone
shows that a shift of the backbone away from the
core of the domain around position 49 made the
I49F substitution sterically feasible. Notably, this
core arrangement was found without using the
sequence of the starting structure or any of its
homologs, and without an explicitly evolutionary
model. Thus it is significant that the model was able
to replicate all eight core residues of this domain,
which included sampling backbone modifications
that allowed the model to replicate the three residue
substitutions between the starting structure and its
homolog.
Discussion

The results presented here show that our design
methods recreate certain aspects of protein evolu-
tion. We find that a flexible backbone design
protocol using iterative sequence and structure
optimization appears to sample protein family
sequence diversity more accurately than fixed
backbone design and better recapitulates the site
residue distributions from natural family sequence
alignments. Moreover, this improvement does not



Figure 5. Prediction of the amino acids in the core of
one SH3 structure (1sem) by flexible backbone design
starting from the backbone structure a second, homolo-
gous SH3 structure (1cka:A). The starting structure
(1cka:A) is shown in red, the replicated structure (1sem)
is shown in blue and the design decoy is shown in green.
The residues shown here are the three core residues
which have mutated between the two homologous SH3
structures and were correctly predicted in the design
decoy shown; a total of eight core residues exist in this
structure by our definition and the other five were also
replicated by the decoy, thus all core residues of 1sem
were predicted starting from the backbone of 1cka:A. On
inspection, it seems plausible that the residue substitution
at 1cka:A position 49 (I49F) was replicated by the design
model because of steric accommodation from backbone
movement.
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appear to be explained by chance variation in the
protein backbone, as shown by a test of sequence
designs made to randomized backbone ensembles.
Furthermore, in examining projections of sequence
space for the structural core of our test proteins, we
observe that in many cases iterative flexible back-
bone design produces sequences which replicate
the natural sequence variation more closely than the
alternate design methods we have discussed. In one
case, our flexible backbone design method pre-
dicted the exact residue identities in the core of
one SH3 sequence utilizing only the backbone
coordinates of a second, homologous SH3 structure,
a promising indication of this method’s potential as
an atomic scale model of protein evolution. It also
appears that our methods can recreate the patterns
of structural variation in protein families over short
evolutionary distances with greater accuracy than
simple backbone randomization.
While our efforts have focused on comparing the
performance of flexible and fixed backbone design
in the recapitulation of protein families, a number of
studies have previously examined fixed backbone
protein design as an evolutionary model,14–16 and
found that this method produces sequences that are
significantly more like the native sequence than
random, especially in the core of the structure.
Although the relationship of designed sequences to
the native sequence is clear in these studies, the
relationship to natural family sequences is less
certain. For instance, Raha and co-workers demon-
strated a significant profile score of designed
sequences aligned to protein family profiles; how-
ever, it is unclear whether this was due to
recapitulation of the native sequence or reflected
sequence patterns in the family. Koehl et al. used
profiles of sequences created with a fixed backbone
design method for the TIM fold to search for natural
homologs and found that the natural family
members could be recovered with a significant
Z-score when conducting a profile search using
designed sequences. Although this is an indirect
test, Koehl’s results show that the structural
information used to generate the designed
sequences could be recapitulating the natural
family patterns. Larson et al. used a method which
emulates the small backbone variations observed
among natural family structures by generating
randomized backbone ensembles from a known
structure and designing sequences onto these
structures, a procedure similar to the randomized
backbone ensemble control we use in this study.
This design procedure was evaluated using a
homology search test similar to that discussed by
Koehl and co-workers. In this case, a large set of 264
structures was used, and it was found that the
natural homologs could be recovered using profiles
of designed sequences for roughly half of these
proteins. In addition, the search coverage using
randomized backbone ensembles was higher than
for fixed backbone design.17 These results suggest
that some form of flexibility is necessary in the
design process to advance from recapitulation of
the native sequence to that of the native sequence
family, a finding which is echoed here by the
improved recapitulation of protein family diversity
using our flexible backbone design protocol com-
pared to fixed backbone design method.
While our design methods implicitly reflect

certain aspects of protein evolution, they could be
adapted in a number of ways to more explicitly
model natural evolutionary phenomena. The
design process could be restrained to produce
sequences within a certain evolutionary distance
of a starting sequence, and evolutionary pathways
could be modeled using this technique by allowing
the design process to iteratively explore sequence
space in progressive steps restrained to this
distance. The constraints of known biological
function could be represented in the design process
as well, most easily for known protein and ligand
binding, in which case the structure of the binding
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partner could be represented explicitly in the
model. Functional constraints could also be repre-
sented by taking a hybrid approach: sampling the
residue distribution of natural family alignments in
critical surface regions while designing the rest of
the sequence with a thermodynamic model. It is
also possible to make the structural evolution more
realistic by including residue insertion and deletion
operators to represent greater structural diversifica-
tion than is possible with the fixed-length design
process.

The applications for such evolutionary design
methods are quite diverse. We have discussed
previous work, which uses protein design to search
for homologous relationships between proteins, to
infer biological properties of the protein domain as
a whole. It is also possible for these same design
techniques to be used for the inference of functional
regions within the protein, by predicting the
patterns of residue variation expected under
thermodynamic constraints and comparing these
to the sequence variation of the natural protein
family. Interestingly, useful progress in both of these
applications has recently been reported using a
residue-scale design model,20 indicating the poten-
tial of more precise models in these areas. As these
evolutionary phenomena are addressed, flexible
backbone methods may further enhance our under-
standing of protein evolution and the role that
thermodynamic stability played in selecting the
modern natural protein universe, extending the
considerable progress already made in this area.21

Perhaps the most useful future application of
flexible backbone design will be engineering novel
structures: the recapitulation of natural protein
family sequence and structure distributions will
undoubtedly complement experimental results in
this endeavor by providing rapid methodological
feedback, helping to free a multitude of medical and
bioengineering applications from the constraints of
known protein structures in the course of pursuing
customized function.
Methods
Design algorithm

The basis of our flexible backbone design
methods have been recently described by Kuhlman
et al.,13 to which a number of modifications were
made to improve the recapitulation of natural
protein families. Both the sequence optimization
and structure relaxation procedure have been
improved, as described below.
† http://dunbrack.fccc.edu/bbdep
Sequence optimization

For sequence design we employ a quenched
Monte Carlo search of rotamer space seeking a low
energy rotamer configuration according to a pair-
wise decomposable potential function. We have
made a number of improvements to the previously
reported implementation of this approach.

Rotamer library. A rotamer library calculated from
an improved version of the method described by
Dunbrack & Cohen22 was incorporated into our
sequence search algorithm. Among the improve-
ments made to this library by Dumbrack and
co-workers are the introduction of a prior distri-
bution for the variance so that reasonable estimates
can be made for undersampled cases, filtering of
high B-factors and clashes in the input data, and
optimization of flip states for asparagine and
histidine c2 angles, as well as glutamine c3 angles,
with a consequent treatment of these angles in 3608
(no longer assuming symmetry).23,24 It should also
be noted that more structural data was available to
calculate this new rotamer database, which
should yield more accurate rotamer statistics. We
use the backbone dependent rotamer library calcu-
lated in May 2002, from the Dunbrack lab rotamer
website†.

We implemented a number of changes in our
sequence search methods to take advantage of new
library features. Among these are the inclusion of c3

and c4 angles in the calculation of rotamer strain,
due to the availability of standard deviations for
these angles, as well as using backbone dependent
standard deviations for all c angles in this calcu-
lation. We also filter for rare rotamers with greater
accuracy than our previous method, by filtering
based on the joint probability of all c angle states
conditioned on f and j, instead of using only c1

and c2 to make this decision.
Pair potential. The statistical pair potential used

to approximate electrostatics was calculated from
an updated set of high resolution crystal structures
using the distances between the center of mass of
the polar groups for each side-chain, with appro-
priate pseudo-counts for rare cases. The role of this
pair potential was expanded to crudely represent
p–p interactions by including all interactions
between aromatic side-chains in addition to polar
side-chain interactions.

Rotamer interaction energy storage. A method to
more efficiently store rotamer interaction energies
was developed which eliminates any compu-
tational storage of interaction energy between
non-interacting amino acid residues, while retain-
ing a constant look-up time for rotamer interaction
energies, which is critical for efficient execution of
the Monte Carlo search procedure. The increased
storage efficiency allowed for greater subrotameric
detail to be represented on the protein domains we
have studied using relatively low-cost compu-
tational hardware.

Forcefield parameterization. The forcefield para-
meterization used here is an extension of the
technique originally described by Kuhlman,14

wherein the energy terms are set to maximize the
probability of the native amino acid in its native

http://dunbrack.fccc.edu/bbdep
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packing environment for all residue positions in a
large set of protein structures. The extension to this
method attempts to compensate for the approxi-
mation of using the native packing environment at
each residue position. For consistency, one would
like the potential to maximize the probability of the
native amino acid at each position in the protein
when the surrounding environment was designed
using the same potential; however, this is not
computationally feasible. We therefore take an
iterative approach, such that the terms of the
potential are first set to maximize the probability
of the native amino acid in a fixed packing
environment, then the protein sequence is
redesigned using this new potential; the side-
chain packing from this sequence redesign is then
used as the fixed packing environment in the next
iteration to reweight the potential.

A second minor departure from the original
parameterization technique described by Kuhlman
is to optimize not only the recovery of native
sequences but also the overall native amino acid
composition. We defined an amino acid distribution
error term that reflected how far the designed
residue distribution was from the distribution of
residues in the proteins used to train the potential.
The error term is the sum over all residues of the
squared difference between the designed and test
set frequencies for that residue. The inverse of this
term was empirically scaled and added to the
primary term used to train the potential: the log
probability of the native amino acid in a fixed
packing environment, and this combined term was
maximized to find the potential.

Using such an iterative technique, we found that
the potential converged after the third iteration.
However, no significant improvement in the
recapitulation of the native protein sequence was
observed after the second iteration, therefore a
single round of redesign was used to generate the
potential for this study. We implement this para-
meterization procedure using a set of 46 diverse
small protein domains. This procedure is expected
to yield a potential that is more robust to certain
approximations of the model, such as the discreti-
zation of side-chain conformational space and
physical constraints that are poorly represented in
the potential.

Subrotameric states. A large number of subrota-
meric states were included in this model to
represent strained side-chain torsion angles. For
the design calculations in this study the subrota-
mers included G1 standard deviation for each c1

angle and an additional G0.5 standard deviation
about each c1 angle of each aromatic residue in
combination with G1 standard deviation for each
c2 angle of each aromatic residue. This expanded
rotamer set represents the highest detail with which
we can model any typical 100 residue protein using
less than 500 megabytes of storage for the sequence
design procedure.

Sequence search stringency. With the goal of
consistently reaching lower energy minima during
sequence search, the sequence search annealing
schedule was slowed and allowed to reach a lower
final temperature than that used previously. These
parameters were empirically adjusted such that for
a typical small (60-residue) protein, the same energy
minima would be reached from a random starting
point greater than 50% of the time.
Structure optimization

All decoys were initially subjected to a high-
temperature Monte Carlo melting procedure in
which the structure relaxation protocol (random
torsion moves and insertions of three residue
segments of known protein backbones) was
implemented on a lower resolution model of the
structure wherein side-chains are represented by a
single center of mass pseudoatom. This high-
temperature simulation continued until the back-
bone RMS to the starting structure was equal to an
amount uniformly selected from 0 Å to 4 Å at
random, followed by iterations of sequence design
and structure relaxation as described.
We use Monte Carlo minimization25 as the basis

of our structure relaxation method. Here we have
made several modifications to this method with the
goal of improving the representation of transitions
between close homologs.
u Angle search. An u angle strain energy was

incorporated into the relaxation potential, assuming
a Gaussian distribution for this torsion angle with
a mean of 1798 and standard deviation of 5.68, as
derived from high-resolution crystal structures.26

This allowed small random u angle variations to be
searched during the relaxation procedure.
Complete torsional minimization. An enhanced

rigid geometry minimization of the entire protein
heavy atom torsion space was implemented for the
relaxation procedure applied during flexible back-
bone design. This required the addition of all heavy
atom c angles and backbone u angles to the
backbone f and j angles used in previous
implementations of the relaxation procedure. The
energy gradients for the entire torsion space were
calculated, as in previous versions, using the
efficient recursive calculation methods of Gō and
co-workers.27 To improve the efficiency of energy
minimization in this expanded torsion space, the
torsional derivatives were modified to include all
terms used in the potential, including a novel
technique to find the analytic derivatives of the
orientation dependent hydrogen-bond term.28 In a
complementary modification, all terms in the
potential were smoothed to have a finite first
derivative with respect to all free torsion angles,
which prevented the minimization from becoming
trapped on artifactual roughness in the energy
surface. This torsional minimization is applied with
progressively increasing stringency over the course
of the relaxation procedure, leading to the detection
of significantly lower energy minima.
Transitional search moves. Several fragment inser-

tion search moves were modified such that they
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would more aggressively search for alternate local
structures by attempting to insert protein fragments
into a structure that would cause the greatest
disruption of the global structure, followed by
compensatory changes in adjacent residues as in
the “wobble” method previously described by Rohl
et al.29
Variant design methods

We study and compare three design methods
which differ primarily in their treatment of the
protein backbone. For each of these variants, we
calculate 300 designed proteins for each test
domain and select from among this set the
100 sequences which are the most stable according
to the design potential. In all design methods,
the sequence optimization step is started from a
random residue sequence, without using the
native sequence information from the starting
structure.

Flexible backbone design. By flexible backbone
design, we refer to the procedure of iterative
sequence and structure optimization derived from
the method of Kuhlman et al.,13 with the addition of
the sequence and structure search modifications
enumerated above. Each design run starts from the
input structure without use of the native residue
sequence and by iterative sequence and structure
optimization searches for a low energy backbone
structure and residue sequence combination. This
is a stochastic process that is expected to predict a
different low-energy sequence/structure combi-
nation in each run.

Randomized backbone ensemble design. Randomized
backbone ensemble design was adapted from the
methods of Desjarlais and co-workers;30 the back-
bone torsion angles of the starting protein are
randomly perturbed by G58 followed by a Monte
Carlo procedure which executes a series of random
backbone torsion angle moves with the goal of
reducing the RMS to within 1 Å of the starting
structure. If this goal is reached, then the standard
sequence search procedure is executed on the
randomly perturbed backbone.

Fixed backbone design. The fixed backbone design
procedure is identical with the sequence search step
used during flexible backbone design, except that
the repulsive van der Waals energy and search
stringency have been modified such that reasonable
sequence variation can be produced from multiple
runs of the algorithm. The van der Waals repulsive
energy is represented by a standard 12-6 Lennard
Jones potential except there is a cutoff distance
below which the repulsive energy is extrapolated
linearly to lower the energy of close-contact repul-
sion. For flexible and randomized backbone design
this cutoff is set to 0.6 times the sum of the van der
Waals radii for two atoms, for the fixed backbone
protocol, a cutoff of 0.86 times the sum of the radii is
used instead.
Natural family alignments

For each test set protein, a natural family
alignment was made using PSI-BLAST; aligned
sequences with greater than 5% deletions relative to
the test domain were removed, as well as sequences
with greater than 99% sequence identity to the test
domain sequence. The sequence diversity score was
derived from the resulting natural family sequence
alignment after weighting all sequences by the
Henikoff position-based weighting algorithm.31
Sequence diversity score

Given an alignment of natural homologs or
designed sequences for any protein, we express
the characteristic sequence diversity of the align-
ment by calculating the site entropy si of the residue
distribution at each site i in the sequence alignment
as: siZK

P
aa pi;aa logðpi;aaÞ, where pi,aa refers to the

frequency of each amino acid at site i, after
accounting for sequence weights. The sequence
diversity score is the average of the site entropy
over the entire protein alignment, expressed in
exponential form so that it conveniently approxi-
mates the average number of amino acid residues
tolerated at each site in the alignment. This diversity
score is quite similar to the “sequence entropy”
used in previous work by Larson et al.32
Core residue definition

For each test domain, we defined the set of core
residues as those residue positions which had a
10 Å Cb density greater than 20. The Cb density is a
residue contact score which measures the number
of Cb atoms within a 10 Å radius of the Cb atom for
the residue in question; for glycine, the Ca atom is
counted instead.
Sequence distance

To express the evolutionary divergence of
sequences, we compute a sequence distance by
negating and scaling all BLOSUM6233 values to the
range 0–1, such that they correspond to a substi-
tution cost; and a fixed gap cost of 0.9 is additionally
defined. The sequence distance is the average
residue substitution cost for any pair of aligned
sequences. For all sequence comparisons in this
study, natural sequences are aligned to the native
sequence of each domain studied using the Smith–
Waterman algorithm34 implemented as a post-
processing step by PSI-BLAST. Distances between
homologs are found using the transitive alignment
of each homolog to the native sequence. Designed
sequences are not realigned to the native sequence,
rather every residue is considered aligned to its
position in the starting structure used for design.
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