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ABSTRACT The Robetta server and revised
automatic protocols were used to predict structures
for CASP6 targets. Robetta is a publicly available
protein structure prediction server (http://robetta.
bakerlab.org/) that uses the Rosetta de novo and
homology modeling structure prediction methods.
We incorporated some of the lessons learned in the
CASP5 experiment into the server prior to partici-
pating in CASP6. We additionally tested new ideas
that were amenable to full-automation with an eye
toward improving the server. We find that the Ro-
betta server shows the greatest promise for the
more challenging targets. The most significant find-
ing from CASP5, that automated protocols can be
roughly comparable in ability with the better hu-
man-intervention predictors, is repeated here in
CASP6. Proteins 2005;Suppl 7:157–166.
© 2005 Wiley-Liss, Inc.
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INTRODUCTION

Full automation of protein structure prediction is a
desirable goal as it opens the door to genome-level protein
structure modeling and, equally importantly, provides a
stringent test of the principles underlying prediction meth-
ods unadulterated by the powerful influence of human
intuition. Automated methods were for the first time found
in CASP5 to be approaching the abilities of the best human
modelers.1,2 However, as successful innovations are intro-
duced to the field, even the best automated methods must
keep pace in order to maintain their relevance. Automa-
tion and incorporation of successful concepts from human-
applied methodologies is therefore of paramount impor-
tance.

The publicly available Robetta server (http://robetta.
bakerlab.org/) was found in CASP5 to be among the better
methods for protein structure prediction,1–3 comparing
favorably with both fully automated methods and those
that allow for human intervention. Robetta, which has
been previously described,4,5 employs the principle that a
protein chain should be modeled at the domain level
following the approach that is most appropriate for each
domain. The best method for predicting the structure of a
protein depends on whether it has sequence homology to a
protein of known structure. If a detectable similarity

exists, then a relatively accurate model can be built using
the known structure as a template. In the absence of such
similarity, models can be built using de novo prediction
methods, which do not rely on a template structure. In
many cases, hybrid template-based/de novo methods may
be most appropriate: portions of a given target may be
modeled based on a template, while it may only be possible
to model long variable loops or extra domains or extensions
not contained in the template using de novo methods. The
Robetta server attempts to provide the best possible model
for the entire length of the protein chain by combining
template-based and de novo protocols.

METHODS

Robetta uses the Rosetta fragment-assembly tech-
nique6,7 to build models of protein domains in both tem-
plate-based and de novo modes. Modeling is performed at
the domain level based on the assumption that domains
are autonomously folding units.8–10 Since protein chains
are often comprised of more than one domain, it is essen-
tial that any server that attempts to model the full length
of a query in domain-sized pieces determine the location of
putative domains, assign each of those domains to the
appropriate template-based or de novo protocol, and ide-
ally restore chain connectivity between the domains by
assembling the domain models into a single multi-domain
prediction.

As has been described previously, the initial step, called
“Ginzu”4 (and see accompanying report in this issue),
involves screening the query sequence for regions that
possess a homolog with an experimentally characterized
structure with BLAST, PSI-BLAST,11,12 FFAS03,13,14 and
3D-Jury,15 followed by cutting the sequence into putative
domains based on matches to Pfam sequence families,16

multiple sequence information, and predicted secondary
structure information. Any detected parents and the re-
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gions of the query with which they are associated are
stored and assigned to the template-based modeling proto-
col. Putative domain regions without corresponding par-
ents are modeled by the Rosetta de novo protocol.17,18

After domain parsing, each putative domain then fol-
lows its assigned protocol track. For the domains to be
modeled de novo, Robetta employed a protocol that was
quite similar to that used in CASP5, which generates large
numbers of alternate “decoy” conformations for the target
and up to two sequence homologs, and subsequently filters
the decoy ensemble to remove nonprotein-like conforma-
tions and clusters the remaining structures to identify
broad low free energy minima.17 However, as we reported
previously,4 we repaired a bug in the Rosetta energy
function that contributed to a reduction in quality of the
decoys in the ensemble. Also as reported, shortly after
CASP5 we revised the decoy clustering method to use a
dynamic RMSD10019 threshold, which varies depending
on the length of the target, rather than a fixed RMSD
threshold for determining membership in the same clus-
ter, thus allowing for more diversity between the top
clusters, from which the final models are selected. We
additionally have increased the number of decoys gener-
ated (from 4,000 to 10,000 for the query and from 2,000 to
5,000 for each of up to two sequence homologs).

For homology modeled domains, Robetta decouples the
detection of the parent from the alignment to that parent.
It ignores the alignment from the detection method, and
instead attempts to obtain a superior alignment using our
“K*Sync” alignment method.4 K*Sync takes into account
evolutionary sequence information for both the query and
the parent, secondary structure information, and informa-
tion from multiple structural alignments by our StrAD-
Stack method (D.C., manuscript in preparation) to indi-
cate regions that are likely to be structurally obligate to
the fold. In an approach employed by our human group in
CASP5,20 Robetta generates a decoy ensemble by first
generating a parametric alignment ensemble21,22 using
K*Sync. This is accomplished by varying the weights on
pair and gap terms in the dynamic programming align-
ment, by changing the source of the secondary structure
predictions (PSIPRED,23 SAM-T99,24 and JUFO25), the
number of rounds and stringency for inclusion in the
sequence family found by PSI-BLAST11,12 used to obtain
the residue substitution profiles, and the stringency of the
structures included in the StrAD-Stack multiple struc-
tural alignment. From each alignment a template is
generated, and variable regions are then modeled with a
version of the Rosetta de novo method that allows the
conformations of variable regions to be sampled in the
context of a fixed template.26 Final models were then
selected from this decoy ensemble using low or high
resolution energy functions,27 an approach similar to other
groups.28–30 The first model was the one possessing both
reasonable hydrophobic sequestering and a good energy in
an all-atom representation (with an attenuated Lennard-
Jones repulsive term to allow for problems in the model
resulting from the frozen backbone in the template re-
gion). The second model submitted was generated from the

single default K*Sync alignment. Models 3 through 5 were
additional low-energy models from the ensemble that
differed from already submitted models.

If a target possesses more than one domain, the separate
domain models are then combined into one full-length
model by fragment replacement in the putative linker
region in order to provide chain connectivity and to
attempt to predict the inter-domain interactions. The last
step consists of repacking the side chains using a backbone-
dependent rotamer library31 with a Monte Carlo conforma-
tional search procedure.32

In order to assess our ability to improve the Robetta
protocols, we developed several innovations that we felt
might allow for better modeling and applied them during
CASP6 as a separate group from the Robetta server. This
alternate protocol, which we called “Robetta_04,” was
essentially fully automated, but not run according to the
time constraints placed upon server groups.

The Robetta_04 template-based modeling protocol pri-
marily differed from the standard protocol by using cyclic
coordinate descent for loop closure,33 K*Sync alignment
ensembles produced from more than one parent, and
full-length backbone refinement in conjunction with side-
chain centroid energy27 optimization for Fold Recognition
targets. Selection of models from the ensemble for targets
with parents detected by PSI-BLAST was done using the
full-atom Rosetta potential27 (again, with an attenuated
Lennard-Jones repulsive), with the five models selected in
order by energy. The Fold Recognition targets, expected to
deviate more from the native than the Comparative Model-
ing set and therefore to be less amenable to a full-atom
representation, were selected from the ensemble using the
same Rosetta side-chain centroid energy27 that was opti-
mized.

The Robetta_04 de novo protocol was almost identical to
the Robetta protocol, with the only variation coming from
reranking of cluster centers using a confidence function18

that included matches of candidate models to experimen-
tal structures in addition to the contact-order of the model
and its match, and a clustering threshold to measure
convergence.

Versions and Parameters

BLAST and PSI-BLAST11,12 parent detections were
done using PSI-BLASTv 2.2.6 starting from BLOSUM6234

against the pdb_seqres.txt35 and using the nonredundant
sequence database from the NCBI (nr). The iterative
detection was done via automatic restart from a check-
point file against the pdb_seqres.txt after five rounds of
profile building against the nr, with an e-value for inclu-
sion of 0.001 or closer.

FFAS0313,14 detections were retained if their score was
� 20.0 or better. Although FFAS03 is usually correct in its
detection with a score of � 9.5 or better, we chose to turn to
3D-Jury in this “intermediate” regime to obtain detections
corroborated by other fold recognition servers.

The variant of 3D-Jury15 that Robetta employed was
most similar to the “3D-Jury-A1” method, that only uses
“first-order” Fold Recognition servers as input. These
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input servers were: mGenTHREADER,36,37 FUGUE-2,38

3D-PSSM,39 BIOINBGU,40 BASIC41 (dist), and
FFAS03.13,14 Robetta ignores detections under 30 residues
and with a 3D-Jury confidence less than 25.0. A confidence
between 25.0 and 50.0 was considered a twilight-zone
detection, and modeling was performed by both template-
based and de novo methods in this regime.

Ginzu uses PSIPREDv2.0123 and five rounds against
the nr with PSI-BLASTv2.2.6 starting from BLOSUM62,
e-value for inclusion and reporting 0.001 or closer.

K*Sync default alignments used PSI-BLASTv2.2.6 with
BLOSUM62 for two rounds e-value � 10�6 against the nr
followed by one round e-value � 0.001, secondary struc-
ture from PSIPREDv2.01, and structural alignment of the
parent with structural homologs from StrAD-Stack mul-
tiple structural alignments of domains (z-score � 2.5).
StrAD-Stack alignments were accomplished by parsing
the parent into domains using Taylor’s method42 and
structurally aligning parent domains with a nonredun-
dant domain library using the 3D-Pair structure–struc-
ture alignment program.43

LGA structure-structure alignment and GDT analysis
was done with the LGA server44 (http://predictioncenter.
org/local/lga/lga.html). Comparison of models with the
target native structure was done with a sequence-
dependent fit at 4 Å (using the options: “-3 -sda -o1 -d_4.0
–lw_7 -atoms:CA”), considering the residues for which
there was density in the target native structure.

RESULTS AND DISCUSSION

The modeling regime used by Robetta and Robetta_04 in
CASP6 for each domain of each target is shown in Table I.
The targets are separated into columns based on the
classification of the assessors, and the method used by
Ginzu to detect the parent for the domain is indicated next
to the target. Robetta processed the targets in a fashion
roughly following the classification of the targets by the
assessors. The greatest exception to this was for some of
the more challenging Fold Recognition targets, for which a
parent was not confidently detected. Those with a weak
3D-Jury confidence (see Methods section for thresholds),
which we refer to as “twilight-zone” targets, were modeled
by both template-based and de novo approaches. The
targets with the least confident detections by 3D-Jury we
modeled using only the de novo protocol, rather than using
a parent with a detection confidence at a level dominated
by incorrect predictions. One complication in the analysis
results from the application of the Robetta_04 protocol
near the date that models were due in contrast to the
Robetta server method which was run at the time of
release of the targets. This resulted in different methods
used by Robetta and Robetta_04 to model the few targets
that changed their detection level during the intervening
time span (T0216, T0226, T0243).

We leave more thorough discussion of Robetta and
Robetta_04 model quality with respect to the field as a
whole to the assessors. As our goal was to ascertain the
possibilities for improving the Robetta method, we instead
compare the quality of models from the Robetta server

with those from the Robetta_04 method and with the
models submitted by our human group (for a discussion of
the human group’s methods, see the accompanying report
in this issue). In our comparison, we use as a baseline the
model that would have been generated had we simply
stopped with the model produced by the top confidence (or
longest similar confidence) detection, since we must im-
prove upon these models to consider our method as adding
value. We therefore have grouped the targets into catego-
ries defined by the method that Robetta employed for
detection of a parent during CASP6 for this analysis.

Table II shows the performance of methods within each
detection regime as measured by GDT_TS. Several meth-
ods are shown: the baseline PSI-BLAST, FFAS03, or
3D-Jury method (“Base”), the Robetta server (“Rob”), the
Robetta_04 method (“Rob_04”), and our human group
(“Baker”) (for the target-specific scores used to generate
Table II, see Supplementary Table I). The average GDT_TS
scores for the first model (“First”) and the best of the five
submitted models (“Best”) are reported. The greatest

TABLE I. Robetta Modeling Protocol and Parent Detection
Source†

CM/easy CM/hard FR/H FR/A NF

b T204 p T196 j T197 j T198 d T201
b T229_1 i T199_1 i T199_2 i T199_3 d T209_2
b T229_2 p T200 j T202_1 d T209_1 db T216_1
b T231 f T205 f T203 d T212 db T216_2
b T233_1 p T208 p T206 d T215 t T238
b T233_2 f T211 n T213 t T230 t T241_1
p T235_1 p T222_1 n T214 p T235_2 t T241_2
b T240 p T223_1 f T222_2 d T239 d T242
b T244 ia T226_1 p T223_2 t T248_1 t T248_2
b T246 p T232_1 i T224 t T248_3
b T247_1 p T232_2 d T227 j T262_1
b T247_3 b T264_2 f T228_1 d T272_1
b T264_1 p T265 f T228_2 d T272_2
b T266 p T267 t T237_1 d T273
b T268_1 b T269_2 t T237_2 p T280_2
b T268_2 p T279_1 p T237_3 t T281
b T269_1 p T279_2 db T243
b T271 j T249_1
b T274 j T249_2
b T275 t T251
b T276 j T262_2
b T277 i T263
p T280_1
b T282
†Targets are separated into columns based on the classification of the
assessors. The method used by Robetta to model the domain is
indicated next to the target, with “b”: parent confidently detected by
BLAST, “p”: parent confidently detected by PSI BLAST, “f”: parent
confidently detected by FFAS03, “i”: intermediate FFAS03 hit (used
3D-Jury for parent), “n”: intermediate FFAS03 hit, but low confidence
3D-Jury (modeled de novo), “j”: parent confidently detected by 3D-
Jury, “t”: parent detected by 3D-Jury, but with a “twilight-zone”
confidence (modeled both template-based and de novo), “d”: modeled
de novo.
aRobetta_04 detected a new PSI-BLAST hit that became available
between the release of the target sequence and the expiration of the
target
bRobetta_04 used new twilight-zone 3D-Jury hit and also modeled de
novo.
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improvement provided by the application of our methods
over the baseline method is for the more remote targets.
This reflects the challenge in improving the quality of the
already quite close models derived from evolutionarily
close parents. Both of the automated methods and the
human-intervention method show improved modeling over
the baseline detection method in the FFAS03 and 3D-Jury
Fold Recognition regime. We also find that the Baker
human group does a much better job predicting native-like
conformations in the de novo regime than the automated
methods.

What Went Right

The Robetta and Robetta_04 methods were successful in
producing models that were better, on average, than those
from the baseline detection methods in the Fold Recogni-
tion regime, often approaching, and sometimes exceeding,
the quality of our human group’s models. Additionally,
while the automatic methods were not as successful as our
human group’s ability to select the superior model to
submit as the first model, the best models produced by the
automatic de novo protocol were often comparable to the
human group’s best de novo models.

The results for each target in the Fold Recognition
regime are shown in Figure 1. Figure 1(a) shows the
difference in GDT_TS between the model from the detec-
tion server that was the top confidence detection (or
longest detection of similar confidence) and the first model
from the Robetta server, the Robetta_04 protocol, and our
human group. Figure 1(b) shows this same information,
but compares the best model from each of our methods
with the best model from the detection server (only consid-
ering those parents that were utilized by our methods).
Figure 1(c) shows the absolute GDT_TS score achieved by
the first and best detection model for each target. We see
that our methods often either maintain or improve over
the baseline detection models. The more challenging tar-
gets tend to be those that our modeling approaches most
improve, whereas those targets that are already quite well
predicted by the detection method sometimes suffer from
continued modeling.

Some of the automatic template-based modeling high-
lights are shown in Figure 2. The Robetta server provided

among the best first models for all groups for targets
T0206 and T0251 (shown), whereas Robetta_04 offered
among the best first models for targets T0262 domain 2,
T0248 domain 1, T0262 domain 2, T0263 (shown), and
T0281 (shown). The improvement in quality for many of
the targets provided by the Robetta_04 method over the
Robetta server models implies that the use of multiple
parents and backbone refinement for template-based mod-
eling in the Fold Recognition regime often provides worth-
while contributions, and we will therefore incorporate
these concepts into the server.

Automatic de novo modeling using the Robetta protocol
was also competitive with methods used by many human
predictors in CASP6. Figure 3(a) shows the first model
GDT_TS scores for each of the targets that were initially
classified by Ginzu as purely de novo targets for Robetta,
Robetta_04, and the Baker (Human) group. Figure 3(b)
indicates the GDT_TS scores of the best of the five
submitted models. Some of the automatic de novo high-
lights are shown in Figure 4. Highlights included Robetta
first models for targets T0209 domains 1 and 2 (shown),
and alternate models for targets T0230 (model 2 shown,
which as a twilight-zone target was the first de novo
model), T0248 domain 1 (model 2 shown, the first de novo
model), and T0248 domain 2 (model 2, the first de novo
model). Robetta_04 used the same cluster centers as
Robetta from the de novo decoy ensemble, but reranked
them using a confidence score18 that includes MAM-
MOTH45 matches to known structures. Robetta_04 de
novo highlights included first models for T0272 domain 2
and T0273, and alternate models for targets T0209 domain
1 (model 3), T0230 (model 2, the first de novo model),
T0241 domain 1 (model 2, the first de novo model), T0248
domain 1 (model 2, the first de novo model), and T0272
domain 1 (model 5). While automated de novo modeling
was not quite as good as modeling employing human
intuition in either the Fold Recognition/Analogous or the
New Fold categories, reasonable models were often pro-
duced among the five. It was our hope that other groups
would feel free to use Robetta models as starting points for
continued modeling, or perhaps apply a discrimination
method to select the best model from the five better than
our own efforts, and we were delighted to learn at the

TABLE II. Average GDT_TS for each Method categorized by Detection Regime†

Regime N

Base Rob Rob_04 Baker

First Best First Best First Best First Best

De novo 14 N/A N/A 30.7 33.2 29.0 34.3 39.1 41.4
3D-Jury 23 31.3 34.0 34.3 41.2 36.8 41.8 42.6 46.7
FFAS03 6 47.8 49.4 46.8 51.7 50.6 52.4 54.4a 59.0a

PSI-BLAST 44 62.1 62.5 63.3 66.8 62.8 65.8 65.1 67.2
†The Average GDT_TS score for the first and best model from the “Base” detection method (3D-Jury, FFAS03, or BLAST/PSI-BLAST), the
Robetta server, the Robetta_04 protocol, and the Baker human group. The number of domain targets evaluated in each category is shown. Only
those models that were generated using parents from the same detection method were used in the calculation, leading to the exclusion from the
Baker human Best calculation for the de novo regime of the template-based model 5 for target T0213, T0214, and T0227, the exclusion from the
Best calculations for the de novo regime of template-based models for target T0243 of Baker human model 5 and Robetta_04 models 1, 3, and 5,
the exclusion of T0216 domains 1 and 2 from the de novo regime altogether as the detection level changed between the execution time of Robetta
and Robetta_04, the exclusion of target T0226 domain 1 from the 3D-Jury regime altogether as the detection level changed.
aThe Baker human group did not submit a model for target T0228 domains 1 and 2, and therefore the average for the FFAS03 regime for the
Baker human group is with respect to four targets instead of six.
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CASP6 meeting that the models had indeed been useful to
other predictors.

What Went Wrong

All modeling when performed for domains separately is
dependent on the accuracy with which the domain bound-
aries are assigned. Robetta was hindered by inaccuracies

in the Ginzu parse for targets T0208 and T0235, where the
PSI-BLAST alignments caused an incomplete coverage of
the query, leading to an excessive number of domains. We
expect to remedy the problem encountered by target T0235
by adding logic to recognize when the putative domains of
the protein belong to substructures of folds in the same
SCOP46 class.

Fig. 1. Target-specific model quality for Robetta, Robetta_04, and Baker Human Group in the 3D-Jury and
FFAS03 regimes. a: The difference in GDT_TS score between the First model of the detection method (either
3D-Jury or FFAS03) First model and the First model of Robetta (“Rob”, in red), Robetta_04 (“Rob_04”, in blue)
and the Baker human group (“Baker”, in green). De novo models are indicated with an asterisk, template-based
models built from parents detected by 3D-Jury shown with circles, template-based models from FFAS03
detections with squares, and template-based models from PSI-BLAST detections with triangles. b: The
difference in GDT_TS score between the detection method Best model (only considering those parents that
were used for modeling by our methods) and the Robetta, Robetta_04, and Baker human group Best models.
Colors and point types are as before. c: Absolute GDT_TS score of the detection method First model (in black)
and Best model (in gray, shown only if different from the First model). *: The Baker human group did not submit
models for target T0228. ^: Target T0226 changed from a 3D-Jury detection to a PSI-BLAST detection (which
did not appear to provide a superior parent!) in the time intervening the release of the target sequence and the
due date of the models. †: The Baker human group first model for target T0205 was too low-scoring to display
on the plot, receiving a �GDT_TS score of � 23.
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Target T0240 possessed a strong BLAST hit, and we
therefore utilized that parent for modeling with both
Robetta and Robetta_04. However, human examination of
putative parents detectable from a PSI-BLAST search

revealed a more distant relative that suggests the possibil-
ity that the �-hairpin swap found in the BLAST homo-
dimer is not obligatory, and indeed the �-hairpin swap
does not occur in the native structure of T0240. Our

Fig. 2. Robetta and Robetta_04 template-based model highlights. The first model from Robetta (“Rob”) for
target T0251 and the first models from Robetta_04 (“Rob_04”) for targets T0263 and T0281 are shown in
cartoon representation. The native and the model are depicted with a rainbow coloring, with blue at the
N-terminus and red at the C-terminus. The structure of the parent is shown with unaligned positions in white
and aligned regions that produced the initial template colored to indicate the corresponding positions in the final
model. The fraction of residues in the native structure that deviate no more than 4.0 Å from the model in a
sequence-dependent optimal superposition by LGA, the RMSD of the LGA fit, and the GDT_TS score of the
model are reported. Note the missing density between the green strand and the green helix in target T0251’s
native structure which has been also removed from the model for clarity. Also note the adjustment to the model
of the yellow and turquoise helices from 1iujA in target T0263 and the dramatic shift in the model for target
T0281 of the yellow helix from 1okrA to form a more compact structure.
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automated methods were unable to account for this confor-
mational flexibility in the context of the dimer as all
modeling is performed with the assumption that the target
is a monomer.

Unfortunately, we suffered a hardware failure shortly
after the completion of the CASP6 prediction period,
leading to a total loss of all data from the intermediate
stages of the Robetta_04 template-based modeling and
leaving us with only the final submitted models. This has
impaired our ability to distinguish precisely the factors
responsible for the differences between the Robetta and

Robetta_04 template-based modeling protocols. However,
based on recent work with another benchmark (D.C.,
manuscript in preparation), the gain in performance on
the Fold Recognition targets likely results primarily from
the inclusion of parametric alignment ensembles from
multiple parents.

During CASP6, selection of models from alignment
ensembles was performed purely based on energy. Recent
findings (D.C., manuscript in preparation) have shown
selection to be greatly enhanced by additional evaluation
of alignments from the ensemble using a consensus ap-
proach. We expect this would have had the greatest impact
on Robetta’s model quality in the Fold Recognition regime,
hopefully making them even better.

Several Fold Recognition targets had a suitable parent
that was recommended by Alexey Murzin on the FOR-
CASP website (http://www.forcasp.org/), specifically tar-
gets T0213, T0214, and T0227. The Ginzu logic found an
intermediate FFAS03 parent for targets T0213 and T0214,
but it was not supported by the 3D-Jury results at the time
of execution. Target T0227 did not have a confident parent
detected by either FFAS03 or 3D-Jury. All three targets
were therefore de novo modeled by Robetta and Ro-
betta_04, leading to a poor relative performance on these
targets as compared with groups that either found the fold
by other means or took the hint, illustrating the difficulty
one has in comparing automated methods with groups
which make use of human intuition and expertise.

New Fold targets were frequently modeled with accu-
racy comparable to other methods, sometimes possessing
the correct topology, but failed to capture the high-
resolution features that are ultimately the goal of protein
structure prediction.Additionally, as illustrated by Robet-
ta’s failure on target T0215, fragment-based methods are
dependent on the quality of the fragments in the library. In
this case, the fragment library used by Robetta possessed
large quantities of strand conformations near the C-
terminus, causing the top decoy clusters to contain models
with a C-terminal hairpin that should have been a helix.

The effort by Robetta_04 to improve selection of the first
de novo model was not a huge success, with perhaps only
targets T0214 and T0272 exhibiting any tendency towards
improved selection. Since the confidence function is domi-
nated by the clustering threshold (which is the same for
both methods) and by any MAMMOTH detections, it
should not be surprising that the successes are found for
Fold Recognition targets that possess topologically similar
experimental structures, with less difference for the true
New Fold targets.

What We Learned

It was challenging to improve on models for the easiest
Comparative Modeling targets. However, Robetta was
more successful with the more remote Fold Recognition
and New Fold targets. We found it possible to improve our
automatic template-based modeling protocol, especially in
the Fold Recognition regime, where the greatest room for
improvement exists in the identification of the best parent
and the alignment to it, as well as refinement of the

Fig. 3. Target-specific model quality for Robetta, Robetta_04, and
Baker human group in the de novo regime. a: The absolute GDT_TS
score of the First model of Robetta (in red), Robetta_04 (in blue), and the
Baker human group (in green). De novo models are indicated with an
asterisk, and template-based models with a circle. b: The absolute
GDT_TS score of the Best model of Robetta, Robetta_04, and the Baker
human group, with colors and point types as before. *: the best Baker
human models for targets T0213 and T0214 were template-based models
using a parent suggested by Alexey Murzin. †: the 3D-Jury confidence
changed between the release of the target sequence and the due date of
each target for targets T0216 and T0243, leading these targets to be
considered “twilight-zone” targets and modeled by both template-based
and de novo protocols by Robetta_04, and using a template-based
approach by the Baker human group.
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backbone. Less successful, but clearly possible based on
the superior results by our human group for some of the
most challenging targets, were efforts to find a better
protocol for the automatic de novo modeling of targets.
Early results have shown some promise for pseudo-de novo
modeling of twilight-zone targets by employing predicted
distance restraints or long-range strand pairing from
low-confidence models reported by Fold Recognition serv-
ers (see accompanying Baker human group report in this

issue), and we will investigate the feasibility of incorpora-
tion of such methods into the server for the modeling of the
most remote Fold Recognition targets.

In the near term, the models provided by automated
modeling remain coarse approximations of the native
structure, but may be used as starting points for further
modeling. For example, as discussed in our human group’s
report in this issue, high-resolution refinement protocols
may potentially be applied to template-based and de novo

Fig. 4. Robetta de novo model highlights. The first Robetta de novo model and the native structure are
shown in a cartoon representation for targets T0209 domain 2, T0230, and T0248 domain 1, where blue
indicates the N-terminus and red the C-terminus. The fraction of residues found in the native that is fit within 4 Å
by the model using a sequence-dependent LGA structural superposition is reported, as is the RMSD of the fit
and the GDT_TS score achieved by the model. The model for target T0209 domain 2 retains the residues that
were missing density in the native structure to clarify the topology. Targets T0230 and T0248 were classified by
Robetta as twilight-zone 3D-Jury targets, so were modeled with both template-based and de novo protocols.
The de novo models for targets T0230 and T0248 domain 1 were much better than the template-based models
from Robetta.

164 D. CHIVIAN ET AL.



models that possess the correct topology in order to obtain
more native-like structures. Provided that the computing
power becomes available, we hope to enable high-resolu-
tion refinement in the Robetta server, with the ultimate
goal of providing fully automatic high-resolution modeling
for any and all protein sequences.
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