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ABSTRACT Proteins with complex, nonlocal
beta-sheets are challenging for de novo structure
prediction, due in part to the difficulty of efficiently
sampling long-range strand pairings. We present a
new, multilevel approach to beta-sheet structure
prediction that circumvents this difficulty by refor-
mulating structure generation in terms of a folding
tree. Nonlocal connections in this tree allow us to ex-
plicitly sample alternative beta-strand pairings while
simultaneously exploring local conformational space
using backbone torsion-space moves. An iterative,
energy-biased resampling strategy is used to explore
the space of beta-strand pairings; we expect that
such a strategy will be generally useful for searching
large conformational spaces with a high degree of
combinatorial complexity. Proteins 2006;65:922–929.
VVC 2006 Wiley-Liss, Inc.
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INTRODUCTION

Protein structure prediction from sequence informa-
tion alone is a grand challenge of molecular biology. Con-
siderable progress has been made in recent years, fueled
in part by the biennial experiment on the Critical
Assessment of Techniques for Protein Structure Predic-
tion (CASP).1 Despite this progress, predicting struc-
tures for larger, more topologically complex proteins,
particularly proteins with nonlocal beta-sheets,2 remains
a formidable challenge.
Structure prediction for beta-sheet proteins is chal-

lenging for several reasons. First, long-range (sequence-
distant) beta-strand pairings are difficult to sample
because of the coarse-grained nature of the conforma-
tional search, which is necessitated by the very large
size of protein conformational space. Long-range beta-
strand pairings require a precise relative geometry
which is hard to achieve by random torsion-space moves
in the intervening segment (by contrast, local beta-
strand pairings, such as beta-hairpins, can be formed by
insertion of a small number of compatible fragments).
Second, beta-strand pairings have a very high entropic
cost once formed: the intervening segment is effectively
frozen since any torsion-space move will likely perturb

the geometry of the pairing. Third, formation of nonlocal
beta-pairings may be prevented by the formation of com-
peting local beta-pairings, which are easier to sample.
Finally, the number of alternative nonlocal beta-sheet
topologies is very large, leading to a large space of con-
formations that must be searched.

Here we describe a new approach to predicting the
structures of complex, beta-sheet containing proteins.
Our solution is to take advantage of regularities of beta-
sheet protein structures to radically reformulate struc-
ture generation and sampling in a way that makes form-
ing long-range pairings quite simple and reduces the
entropic cost of their formation. We employ a multilevel
sampling approach to explicitly sample alternative long-
range pairings and at the same time explore local con-
formational space using fragment assembly in torsional
coordinates. To accomplish this, we replace traditional
folding from the N to C terminus of a continuous chain
with ‘‘fold tree’’-based generation of structures with one
or more long-range connections and an equal number of
chain breaks. Nonlocal strand pairings are formed and
maintained by construction via these long-range connec-
tions. Sampling of alternative nonlocal strand pairings
is carried out using an iterative, energy-biased resam-
pling approach in which nonlocal pairings observed in
previous rounds are explored while local conformations
such as hairpins and beta–alpha–beta units are stochas-
tically disfavored.

MATERIALS AND METHODS
Fold Tree Representation

The protein chain is represented by a fold tree—a
directed, acyclic, connected graph composed of peptide
segments together with long-range connections. This
tree is constructed from a simple graph in which each
residue i is connected to residues i � 1 and i þ 1. A new
edge is added to the graph for each long-range connec-
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tion [Fig. 1(a)]. These connections determine how confor-
mational change propagates through the structure. They
can represent rigid or semirigid orientational constraints
such as beta-sheet pairings or disulfide bonds, or fully
flexible linkages such as the connection between two
docking partners. In the current application, a new edge
would be added for each long-range strand pairing that
is being forced. Peptide bond (i ? i þ 1) edges are then
deleted at random until the graph is acyclic [Fig. 1(b)],
while preserving connectivity. Edges are selected for de-
letion with a bias proportional to the predicted loop fre-
quency. Finally, an ordering of the graph is defined by
selecting a root vertex, for example, the N-terminus
[Fig. 1(c)]. This graph provides a rule for generating
three-dimensional coordinates from backbone torsion
angles and a set of rigid-body transformations (one for
each long-range connection): starting with an arbitrary
location and orientation for the root vertex, traverse the
edges of the graph in order, using torsion angles and/or
rigid body transformations to build the terminal vertex
of each edge given the coordinates of the initial vertex
for that edge. The program Undertaker3 developed by
the Karplus group at UCSC implements a similar tree
representation.

Beta-Sheet Transforms

Rigid-body transformations between the coordinate
systems defined by the N��Ca��C atoms of paired resi-
dues in beta-sheets were extracted from proteins of
known structure (6246 total transforms). These transfor-
mations fall into four classes defined by the strand ori-
entation (parallel or antiparallel) and an additional
pleating term (�1 or 1) that specifies whether the beta-
carbons of the paired residues point into or out of the
plane of the beta-sheet when the residues are oriented
such that the first residue is on the left with chain direc-
tion increasing from bottom to top (or equivalently,
whether the NH and CO groups of the first residue point
toward or away from the second residue).

Fragment Assembly Protocol

This fold tree representation is incorporated into a
modified fragment assembly protocol. As in the standard
Rosetta4 de novo protocol, we perform a large number of
independent simulations (typically 4000) with different
random number seeds. At the start of each simulation,
one or more nonlocal beta-strand residue pairings
(described by a pair of residues, an orientation, and a

Fig. 1. (a–c) Construction of a fold tree for a simulation with two forced pairings (14–53 and 29–67). Start-
ing with a simple graph corresponding to the peptide chain, long-range edges are added between 14 and 53
and between 29 and 67 (a). Chain breaks are chosen randomly to generate a tree [acyclic graph, (b)]. Finally,
the tree is rooted at the N-terminus, defining a folding order (green arrows) by which the structure is built (c).
(d–h) Snapshots from a folding trajectory that uses this fold tree. The target is the benchmark protein 1fna,
whose native structure is shown in (i). For ease of comparison, the locations of the seven strands in the final
model are shown in each frame. In the starting conformation (d), the torsion angles are initialized to extended
values. The two nonlocal beta pairings are present by construction, and chain breaks can be seen between
the second and third strands and between the third and fourth strands. Early in the simulation (e), the structure
is still quite extended. Packing between the two sheets begins to develop in (f). The sheets grow outward from
the forced pairings (g), with the C-terminal strand being added last (h).

923IMPROVED BETA-PROTEIN STRUCTURE PREDICTION

PROTEINS: Structure, Function, and Bioinformatics DOI 10.1002/prot



pleating) are chosen according to the stochastic sampling
strategy described below. A fold tree is constructed from
the residue pairings [Fig. 1(a–c)], the torsion angles are
initialized to extended values, and a beta-sheet trans-
form with the specified orientation and pleating is
selected for each pairing; this defines the starting con-
formation [Fig. 1(d)]. The simulation proceeds by frag-
ment-replacement Monte Carlo trials as in the standard
Rosetta protocol, while maintaining the relative orienta-
tion of the aligned residue pairs [Fig. 1(d–h)]. A pseu-
doenergy term favoring closure of the chain breaks is
included in the Rosetta potential function, with a weight
that increases throughout the simulation. This term is
proportional to the RMSD between the backbone atoms
surrounding the break and a set of pseudoatoms built by
folding forward and backward across the junction using
the current torsion angles and ideal bond lengths and

angles. The weight on this term is negligible in the early
stages of the simulation, while at the end of the simula-
tion breaks in the chain are strongly disfavored. Low-
energy models tend to have fairly well-closed chains,
although minor breaks do remain [Fig. 1(h)].

Sampling Beta Features

Given this machinery for constructing models with
specified pairings, we have developed an iterative resam-
pling strategy for beta-sheet structure prediction in which
the nonlocal beta-pairings present in low-energy struc-
tures from one round of models are resampled to generate
the next round of structures. To select beta-pairings for
resampling, we first process the raw residue–residue
pairings that occur in a set of models into a set of topo-
logical features. Featurizing allows us to classify the

Fig. 2. Feature identification. (a) The raw frequencies of residue–residue beta-pairings are plotted for a set
of models. Sequence number increases from left to right and from bottom to top. The color of the square at
position (i, j) indicates the frequency with which residues i and j are paired in a beta-sheet with parallel (i < j)
or antiparallel (i > j) orientation (i.e., parallel pairings appear above the diagonal, antiparallel below). The raw
frequencies are smoothed and the local maxima of the smoothed frequency distribution are defined as feature
centers. (b) The identified features are plotted as blocks centered on the feature center and colored by fre-
quency. Each feature is classified according to the average length and secondary structure content of the loop
between the paired strands in the decoys containing that feature. Two local features, a hairpin (‘‘HP’’) and a
parallel beta–alpha–beta unit (‘‘BAB’’), are labeled.

Fig. 3. Beta-sandwich resampling. The feature frequencies are plotted for models in the four rounds of the beta-sandwich resampling protocol for
1who, using the same plotting scheme as in Figure 2(b). Native features are boxed. Features from models built by the standard protocol are shown
in (a); note the high frequency of beta-hairpins. In the models built with stochastic killing of hairpins, these features are less prevalent and an
increase in the frequency of nonlocal features can be seen. A further increase is evident in the decoys built by stochastically resampling a single
nonlocal feature (c), and in the models built by resampling interlocked feature pairs (d). The two native, nonlocal features (strand pairings 2 ? 5
and 3 ? 6) form an interlock; the models in a–d are built without knowledge of the native structure.
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strand pairings and apply topology-based filters. Because
beta strands may be present in some models and absent,
shifted, or broken in others, we identify pairings as fea-
tures in the two-dimensional space of contacts, rather
than first defining consensus strands and pairing them.
The residue–residue beta-pairing frequency distribution
[Fig. 2(a)] is smoothed (by simple averaging over a local
mask oriented parallel to the strand pairing direction),
and the local maxima of the smoothed frequency distri-
bution are defined as feature centers [Fig. 2(b)]. Each
feature is classified based on the average properties of
the loop between the two paired strands in the set of
decoys matching that feature, allowing us to identify
recurring motifs such as beta-hairpins and parallel
beta–alpha–beta units (parallel i ? i þ 1 strand pair-
ings with an intervening alpha-helix). Overrepresented
local features such as hairpins may then be selected for
stochastic killing, while a subset of the nonlocal features
are chosen for resampling in the next round of models.
Reduction of the beta-pairing information into a discrete
set of features also allows visualization and classification
of structural models by topology.5

Penalizing Local Features

We seed our iterative resampling protocol with models
built by standard connected-chain fragment assembly,
motivated by the empirical observation that although
nonlocal pairings are undersampled by standard frag-
ment assembly simulations, there is a bias toward the
native pairings. To ensure that a diverse set of nonlocal
pairings is present in this initial set of models, we selec-
tively disfavor competing local pairings when generating
these models. This is done in a stochastic fashion, since
any given local strand pairing may be present in the
native structure. A subset of overrepresented local fea-
tures is first identified by processing the beta-pairings
observed in standard fragment-assembly models. For all-
beta proteins, the overrepresented features are beta-
hairpins [Fig. 3(a)], while for alpha þ beta proteins the
overrepresented features are parallel beta–alpha–beta
units [Fig. 2(b)]. At the start of each simulation, each
overrepresented local feature is independently and with
probability 0.5 assessed a score penalty for the duration
of that trajectory that effectively prevents its formation.

Resampling Strategies

We consider here two classes of target: (1) beta-sand-
wich proteins (a subset of SCOP6 class b); (2) the mainly
antiparallel class of alpha þ beta proteins (SCOP class d).
We found that the difficult targets in our in-house
benchmark set of moderate-length proteins (<125 resi-
dues) were almost entirely from these two classes.* As
described below, the sheet topologies of beta-sandwich

proteins show regularities that our sampling protocol is
well-suited to exploit. For alpha þ beta proteins, a sim-
ple strategy involving a single round of resampling was
tested. We start with a seed population of connected-
chain models built with stochastic disfavoring of overre-
presented beta–alpha–beta units, and build one round of
models using the fold tree protocol, resampling a single
nonlocal antiparallel beta feature in each simulation.
The features are sampled with frequencies proportional
to their frequency in the starting population; for each
feature, alternative registers and pleatings are taken
from the starting models.

Beta-sandwich proteins are characterized by a pair
of beta-sheets packing face to face, with connecting
loops crossing between the sheets at the top and bottom
of the sandwich. The topologies of sandwich proteins
have been extensively analyzed, and regularities have
been discovered that can be used in structure predic-
tion.7,8 These include an avoidance of parallel strand
pairings, particularly in the interior of the sheet, and a
preference for a topological arrangement in which
strands i and j are paired in one sheet while strands
i þ 1 and j þ 1 are paired in the opposite sheet (termed
an interlock or cross-beta). The analysis of Fokas et al.8

suggests that nearly every sandwich protein contains
at least one interlock. Our prediction strategy consists
of two rounds of resampling, starting from a seed popu-
lation of connected-chain models built with stochastic
disfavoring of beta-hairpins [Fig. 3(b)]. In the first
round of resampling, a single nonlocal, antiparallel fea-
ture is forced in each simulation [Fig 3(c)]. We exclude
features for which the average length of the loop
between the paired strands is greater than 45 residues,
thereby targeting the midrange, i ? i þ 3, strand pair-
ings that are enriched in sandwich proteins. In the sec-
ond round of resampling, two interlocked beta fea-
tures—taken from the low-energy models in the first
round—are forced in each simulation [Fig. 3(d)].
Because peripheral beta-strands are often inserted in
beta-sandwiches, we relax the definition of interlock,
requiring two strand pairings i � j and k � l for which
i < k < j < l (in the original definition, k ¼ i þ 1 and
l ¼ j þ 1). An example of an interlocked resampling tra-
jectory is illustrated in Figure 1.

Folding Sequence Homologues

It has been demonstrated previously9,10 that simula-
tions with sequence homologues can be a powerful tool
for enhancing sampling in de novo structure prediction.
In our protocol, we select up to 30 sequence homologues
of the target protein, generating de novo models for each
homologue in parallel with the target sequence. The
sequence alignment of the target with the homologues is
used to analyze features across the full set of models,
and for coclustering the models as described in Bonneau
et al.9

*This is partly a consequence of the length distributions for dif-
ferent structural classes: only 24 of 222 SCOP superfamily repre-
sentatives (11%) in the alpha/beta class are under 125 residues,
whereas 205 of 408 alpha þ beta representatives (50%) are under
125 residues.
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Clustering and Model Selection

To select a small number of predictions for comparison
of alternative methods, we cluster the models11 to iden-
tify recurring conformations. Since our model sets are
rather large (typically 4000 models 3 30 homologues ¼
120,000 conformations), we apply a two-step procedure.
For each homologue, the top 1000 models are chosen by
score and clustered and the members of all clusters of
size >5 are selected, with clustering parameters chosen
to give approximately 250 models.10 These sets of 250
models are pooled and clustered together, using the mul-
tiple sequence alignment to calculate RMSDs between
models with different sequences.9 The centers of the
largest five clusters are selected as predictions.

Model Evaluation

We used the MaxSub12 algorithm to calculate for each
model the maximum number of alpha-carbons that can
be superimposed onto the native structure with an
RMSD under 4 Å. To assess correctness at the level of
beta-sheet topology, we counted the number of native
strand pairings in each model.

RESULTS AND DISCUSSION

We tested our beta-sheet resampling protocol on a
benchmark of 12 challenging proteins, six beta-sand-
wiches and six alpha þ beta proteins (Table I). For each
target, we generated models using the standard Rosetta
fragment assembly protocol as well as our new resam-

pling protocol. The overall quality of the two populations
of models was compared by using MaxSub to calculate
for each model the number of residues superimposable
onto the native structure under an RMSD of 4 Å. To
determine whether the resampling protocol was generat-
ing more native-like models, we compared the near-
native tail (the top 10%) of the MaxSub distribution for
the two protocols (Fig. 4, red and blue curves). For the
majority of the targets, the blue curve is consistently
above the red curve, indicating higher-quality models,
with dramatic improvements in several cases. While
generating better models does not in itself guarantee
that these models can be selected given a small set of
predictions, these results suggest that the energy-biased
resampling protocol—which does not depend on knowl-
edge of the specific pairings present in the native struc-
ture—has improved sampling of near-native structures.
The one failure in the beta-sandwich proteins (1 nps) is
caused by an error in the secondary structure prediction
that prevents the two native interlocks from being
formed.2 The two least-successful alpha þ beta proteins
(1kpeA and 1acf) also have the smallest number of
native nonlocal pairings (Table I, column 7); as expected,
improvement over connected-chain fragment assembly is
greatest for higher contact-ordery beta-sheet proteins.

To assess model correctness at the level of beta-sheet
topology, we counted the total number of native nonlocal
strand pairings present in each model. In Table I, col-
umns 8 and 9 show the average number of native nonlo-
cal features for models built by the standard fragment
assembly protocol (‘‘old’’), and for models built by the
resampling protocol (‘‘new’’). A consistent improvement
is evident across the set, even on proteins for which the
MaxSub distributions for the resampling protocol were
not significantly better (suggesting that correctness at
the level of three-dimensional coordinates is a more
stringent criterion than correctness at the level of beta-
sheet topology). Figure 3 provides a concrete example of
this sampling improvement for the protein 1who.

While better sampling near the native structure is one
goal, we would also like to be able to select more native-
like models from a population of structures. We have
found that in the low-resolution structure prediction re-
gime (where no model may be within 4 Å of the native
structure), clustering based on global structural similar-
ity is a more robust method of selecting models than
picking by energy. This is likely due to the fact that the
low-resolution energy function appropriate to coarse-
grained exploration of the landscape does not capture
the structural details that contribute to the very low
energy of the native structure; high-resolution all-atom
potentials can reliably detect near-native models pro-
vided they are within �2 Å RMSD of the native struc-

yBoth of the native interlocks in 1nps involve short edge strands,
and these strands are completely missed in the secondary structure
predictions. As a result, very few strand fragments are present at
these positions, and the beta-features that form the native inter-
locks are not sampled in the initial de novo models.

TABLE I. Summary of Benchmark Results

PDB Class SCOP ID Len

Cluster
MaxSub

Avg # native
pairings

Old New Total Old New

1wapA b b.82.5.1 68 42 56 3 0.09 1.67
1npsA b b.11.1.1 88 29 31 4 0.06 0.48
1fna_ b b.1.2.1 91 44 84 2 0.15 1.66
1who_ b b.7.3.1 94 45 73 2 0.05 0.64
1tul_ b b.85.5.1 102 34 65 3 0.10 1.06
1sppB b b.23.1.1 112 44 49 7 0.13 0.64
1hdn_ a þ b d.94.1.1 85 43 84 2 0.17 0.95
1ris_ a þ b d.58.14.1 92 46 79 2 0.16 0.80
2acy_ a þ b d.58.10.1 98 69 79 3 0.30 0.86
1fkb_ a þ b d.26.1.1 107 56 52 2 0.15 0.52
1kpeA a þ b d.13.1.1 108 50 49 1 0.10 0.50
1acf_ a þ b d.110.1.1 125 106 95 1 0.02 0.23

The resampling protocol (‘‘new’’) is compared with standard frag-
ment assembly (‘‘old’’) on a benchmark of 12 proteins using two met-
rics. Columns 5–6: the number of residues superimposable to the
native structure with an RMSD under 4 Å for the best of five mod-
els selected by clustering. Columns 8–9: the average number of
native nonlocal pairings per model over the entire population of
models generated by the protocol (the total number of nonlocal pair-
ings in the native structure is listed in Column 7).
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ture.10,13 Structural clustering after multiple rounds of
resampling will tend to identify beta-sheet topologies
that have been enriched by the energy-biased resam-
pling process. We applied a clustering protocol that
included an initial energy filter: the lowest 25% of the
structures by energy were selected and clustered by full-
chain alpha-carbon RMSD (see Clustering and Model

Selection). For each protocol, the centers of the five larg-
est clusters were selected as predictions and compared
with the native structure using MaxSub. The MaxSub
values for the best model in each set of five cluster cen-
ters are reported in Table I, columns 5–6. Of the eight
proteins with a MaxSub score difference of 10 residues
or greater, seven improved with the resampling strategy.

Fig. 4. MaxSub distributions for the 12 benchmark proteins. The score attached to each model is equal to the number of residues that can be
superimposed onto the native under 4 Å RMSD by MaxSub. The scores for each population are sorted in decreasing order, and each model in the
top 10% is plotted as follows: x-coordinate ¼ log10 (rank/#decoys), y-coordinate ¼ number of superimposable residues. This yields a visualization of
the complementary cumulative distribution function (with log-probability on the x-axis and score on the y-axis) that focuses on the near-native tail
of the distribution. Higher values for the y-coordinate correspond to better predictions; when comparing two protocols, the higher curve corresponds
to the population of models with better sampling near the native structure. For the beta-sandwich proteins (the top six plots, titled ‘‘b <id>’’), the four
populations plotted are: standard fragment assembly (red lines), models built with stochastic hairpin killing (green), models with one forced pairing
(pink), models with two forced pairings (blue). For the alpha þ beta proteins (the bottom six plots, titled ‘‘a þ b <id>’’), the three populations plotted
are: standard fragment assembly (red lines), models built with stochastic beta–alpha–beta killing (green), and models built with one forced pairing
(blue). In all cases, the red lines correspond to the standard fragment-assembly protocol and the blue lines correspond to the final resampling proto-
col. Protein lengths are listed in Table 1.

927IMPROVED BETA-PROTEIN STRUCTURE PREDICTION

PROTEINS: Structure, Function, and Bioinformatics DOI 10.1002/prot



Several of the improvements are quite dramatic, with
30–40 additional residues that superimpose well to the
native structure. Models for the two proteins with the
largest difference between the two protocols are shown
in Figure 5(a,b).
The beta-sheet resampling protocol was also tested

during the recent CASP6 experiment.5 Figure 5 (c,d)
shows two cases in which the new protocol produced the
best prediction submitted by any group. Target T0272
consisted of two domains with an alpha þ beta ferre-
doxin fold. We used the nonlocal resampling strategy for
this target, producing the best model for both domains.
Target T0212 had a beta-sandwich fold. For this target,
we applied the resampling protocol to build models using
consensus beta pairings taken from automated fold rec-
ognition servers. This illustrates that the resampling
strategy can be seeded with fold recognition models as
well as de novo models.

CONCLUSIONS

We have developed a novel, multilevel sampling
approach to beta-sheet structure prediction. In this
approach, we explicitly sample alternative long-range

pairings and at the same time explore local conforma-
tional space using fragment assembly. Our results sug-
gest that this method can produce more accurate models
for proteins with complicated beta-sheets. With our new
approach, long-range interactions can form before the
intervening local interactions, as has been observed in
the folding of naturally occurring proteins.14,15 The fold-
tree framework we have implemented provides a general
solution to the problem of simultaneously optimizing tor-
sional coordinates together with rigid body (Cartesian-
space) transforms, and should have applications ranging
from flexible backbone docking to predicting protein–
DNA interactions.

It should be possible to improve the prediction of
structures for proteins with complex topologies further
by developing resampling strategies tailored for alpha/
beta class proteins, and extending the resampling strat-
egy used here to more complicated beta-sheet proteins.
Simulations with the most complex protein in the bench-
mark, 1sppB, suggest (data not shown) that multiple
rounds of resampling, forcing an additional nonlocal
beta-strand pairing in each round, can successfully gen-
erate the native topology—if we know in advance how
many nonlocal pairings to construct. The challenge is to

Fig. 5. Structures produced with the beta-sheet resampling protocol. (a–b). Comparison of the best of five cluster centers produced by beta-
sheet resampling or by standard connected-chain fragment assembly (see Table 1, columns 6–7) for the benchmark proteins 1hdn (a) and 1fna (b).
(c–d) CASP6 predictions made with the beta-sheet resampling protocol. (c) Predictions for target T0272 domain 1 were made by resampling con-
sensus nonlocal pairings from de novo models. Model 1 is shown, for which 85 residues superimposed onto the native with an RMSD of 3.4 Å. (d)
Predictions for target T0212 were made by resampling consensus nonlocal pairings from fold-recognition models generated by automated servers.
Model 2 is shown, for which 109 residues superimposed onto the native with an RMSD of 3.97 Å.
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develop a balanced strategy that will work for proteins
with a range of beta-sheet complexities. In particular,
performance on proteins with few or no nonlocal beta-
pairings is somewhat degraded by resampling of nonlo-
cal features; however, these are the proteins for which
the connected-chain fragment assembly protocol already
performs quite well. A combined strategy should allow
us to generate good models for a broad range of targets.
In this paper, we have applied a resampling protocol

to search the space of beta-sheet structures. Resampling
is a useful strategy more generally for exploring very
large spaces with a high degree of combinatorial com-
plexity. It requires a method of assigning a set of feature
values to each sample, and an efficient means of gener-
ating new samples with specified features. These feature
sets need not be enumerated in advance—each round of
resampling begins with a population of samples, and we
can learn the feature set from the samples themselves
(as is done here for beta-strand pairings). To shift the
population toward the solution, it must be possible to
bias the feature selection between rounds of resampling,
either by using characteristics of the solution that are
known in advance (e.g., topology constraints in beta-
sandwich proteins) or by selecting features from a subset
of the models (e.g., the low-energy models). Resampling
allows intensified sampling in promising regions, and
recombination of low-energy features to generate models
with feature combinations that would be difficult to sam-
ple using the base method.
The premise underlying resampling approaches—that

for any given feature with multiple possible states, the
native state is on average lower in energy than nonna-
tive states—has appeared in many guises in theoretical
work on protein folding. It is closely related to the prin-
ciple of minimum frustration in energy landscape theo-
ries of protein folding,16 and very simple models with
this property show that protein folding can take place
rapidly despite the astronomically number of possible
conformations.17 Physically, the average energy bias to-
ward native features arises from the significant gap in
the total energy between the experimentally observed
native structure and nonnative structures (which must
be very much higher in energy as they are not
observed), and the approximate decomposability of the
overall energy of a protein into the sum of the energies
of its parts.
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