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ABSTRACT Angular potentials play an impor-
tant role in the refinement of protein structures
through angle-dependent restraints (e.g., those de-
termined by cross-correlated relaxations, residual
dipolar couplings, and hydrogen bonds). Analytic
derivatives of such angular potentials with respect
to the dihedral angles of proteins would be useful
for optimizing such restraints and other types of
angular potentials (i.e., such as we are now introduc-
ing into protein structure prediction) but have not
been described. In this article, analytic derivatives
are calculated for four types of angular potentials
and integrated with the efficient recursive deriva-
tive calculation methods of Go� and coworkers. The
formulas are implemented in publicly available soft-
ware and illustrated by refining a low-resolution
protein structure with idealized vector-angle, dipo-
lar-coupling, and hydrogen-bond restraints. The
method is now being used routinely to optimize
hydrogen-bonding potentials in ROSETTA. Proteins
2003;53:262–272. © 2003 Wiley-Liss, Inc.
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INTRODUCTION

The most efficient optimization methods require compu-
tation of the derivatives of the energy function with
respect to each degree of freedom.1,2 The conformation of a
polypeptide chain can be represented most economically
by its dihedral angles, �, �, and � for the backbone and
various � angles for the side-chains. Angle-dependent
potentials arise in a variety of situations, ranging from
NMR structure restraints (e.g., those from cross-corre-
lated relaxations3,4 and residual dipolar couplings5–7) to
protein structure prediction and refinement (e.g., orienta-
tion-dependent potentials for hydrogen bonds, cation-pi/
stacking interactions and secondary structure-packing
potentials). Hence, analytic formulas for the derivatives of
such orientation-dependent potentials with respect to the
dihedral angles of the protein would be helpful in various
contexts. To our knowledge, such formulas have not been
described in the literature (but see Appendix B). This
article calculates such derivatives for three types of angu-

lar restraints: vector-angle, dipolar-coupling and hydrogen-
bonding restraints. As seen below, the essence of the
method is to convert the trigonometric angle restraints
into linear vector restraints.

This article is organized as follows. The first section
introduces our notation and some general results such as
the recursive methods of Go� and coworkers.8,9 In the next
three sections, we derive explicit formulas for the dihedral-
angle gradients of vector-angle, dipolar-coupling, and hy-
drogen-bond restraints. These three types of NMR re-
straints are exemplary of three general types of angular
potentials, which we denote here as vector-angle, vector-
tensor, and vector-displacement potentials (see below). In
each section, we show how to compute these derivatives
recursively. In the final section, we illustrate these gradi-
ents by refining the various types of restraints for low-
resolution structures. A fourth type of angular potential,
denoted as a displacement-dihedral potential, is consid-
ered in Appendix A.

NOTATION AND GENERAL RESULTS

Our notation is as follows. The variable � represents an
arbitrary dihedral angle of the protein backbone (i.e., �, �,
or �). The rotation axis of the dihedral angle � is denoted
by the unit vector n�, whereas R� denotes the position of
the C-terminal atom of the bond about which the rotation
takes place. For example, the n� of the �i dihedral angle of
residue i is the unit vector pointing along the Ni-Ci

� bond of
the same residue, whereas the corresponding R� is the
position of the Ci

� atom. Nondihedral unit vectors are
denoted by u and identified by a superscript; it should be
noted that unit vectors need not point along a chemical
bond, but may, for example, be linear combinations of bond
unit vectors. The partial derivative of a unit vector u that
is moved by a dihedral angle � is given by the formula10

�u
��

� n� � u (1)

The derivative of a vector displacement Rij � Rj � Ri

between two atoms i and j separated by the dihedral angle
� is given by
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�

��
Rij � �n� � R�j (2)

� � n� � Ri� (3)

where the vectors R�j and Ri� are the displacements from
R� to Rj and from Ri to R�, respectively. The sign is
determined by whether atom i is N-terminal (and atom j
C-terminal) to the dihedral angle �, or vice versa. Finally,
we use the notation k � �, k � � and k � � to denote that
an atom k is either 1) not moved, 2) directly moved, or 3)
indirectly moved by dihedral angle �. An atom is directly
moved by dihedral angle � if it belongs to the rigid body
immediately C-terminal to the dihedral-angle bond; by
contrast, an atom is indirectly moved if it is C-terminal to
the dihedral-angle bond of � but other dihedral angles
intervene. For example, the angle �i of residue i directly
moves the Hi

�, C�i, and Ci
	 atoms of the same residue but

indirectly moves the O�i atom, which is moved directly by
the �i angle.

Go� and coworkers8,9 have developed efficient algorithms
for computing energy gradients with respect to dihedral
angles. The general form of these gradients is

�

��
E � n� � F� � 
n� � R�� � G� (4)

where the quantities F� and G� do not depend on the
dihedral-angle variables n� and R�. The principal advan-
tage of such quantities is that they can be computed
recursively

F��1 � F� � f� (5)

G��1 � G� � g� (6)

from even simpler quantities f� and g�. The recursion can
proceed either from the N-terminus to the C-terminus
(using the equations above) or from the C-terminus to the
N-terminus, using the equations

F� � F��1 � f� (7)

G� � G��1 � g� (8)

As an illustration, let E represent a simple distance-
dependent potential

E � �
i
j

V
Rij� (9)

where Rij represents the distance between atoms i and j
(i.e., the magnitude of the vector Rij). The derivative of this
energy can be written in the form of Eq. 4 where the vector
quantities f� and g� are defined8,9

f� � �
atoms p��

�
atoms q��

� 1
Rpq��dV

dR��Rp � Rq� (10)

g� � �
atoms p��

�
atoms q��

� 1
Rpq��dV

dR��Rp � Rq� (11)

To compute all the f� and g�, it suffices to initialize them to
zero and then loop over the interactions V(Rij), adding the
summands to the f� and g� for the two dihedral angles �i

and �j that directly move the atoms i and j. The quantities
F� and G� can then be computed by using the forward
recursion relations (Eqs. 5 and 6) with the initial condition
F0 � G0 � 0. The backward recursion relations (Eqs. 7 and
8) can be used with equal efficiency, with the initial
condition F� � G� � 0 for the post-C-terminal dihedral
angle �. In the calculations below, we determine appropri-
ate recursions for each type of angular potential.

We derive analytic formulas for three types of angular
potential (Fig. 1). In the first case [Fig. 1(a)], vector-angle
potentials restrain the angle � between two vectors u1 and
u2 that are fixed relative to the local backbone (e.g., the
angle between the NOH bond vector of residue i and the
C�AO� bond vector of residue j). Such restraints may be
determined from cross-correlated NMR relaxations3 or
residual dipolar coupling experiments.11,12 Vector-angle
potentials may also be useful in modeling physical interac-
tions (e.g., hydrogen bonds13,14) or in knowledge-based
potentials describing e.g., the preferred geometries of
secondary structure elements.15 In the second case [Fig.
1(b)], vector-tensor potentials restrain the double scalar
product of a symmetric tensor D with a vector u that is
fixed relative to the local backbone. Such potentials are
already used in refining protein structures using NMR
residual dipolar couplings,6,7,16 but they may have other
applications [e.g., in statistical potentials describing the
orientation of secondary structure elements relative to the
ellipsoidal semiaxes of a protein (i.e., the principal axes of
its gyration tensor17)]. In the third case, [Fig. 1(c)], vector-
displacement potentials restrain the angle � between a
unit vector u fixed relative to the local backbone and a
displacement Rij between two atoms i and j in the protein.
Such potentials are useful in modeling angle-dependent
physical interactions (such as close hydrogen bonds), but
again they may be useful for statistical potentials describ-
ing e.g., the preferred geometry of secondary structure
elements. A fourth type, displacement-dihedral potentials,
is treated in Appendix A of this article.

VECTOR-ANGLE POTENTIALS

We assume that the total vector-angle potential energy
may be written

EVA � �
restraints m

VVA
xm� (12)

where VVA(xm) is the energy of restraint m and xm �
um1 � um2 is the cosine of the angle between two unit
vectors um1 and um2 [Fig. 1(a)]. Expressing the angular
dependence in vectors is advantageous, because vectors
vary in a simple way (linearly) with dihedral-angle changes,
allowing recursive methods8,9 to be used without diffi-
culty.

The derivative of the vector-angle restraint energy EVA

with respect to a backbone dihedral angle � is given by the
chain rule
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�

��
EVA � �

restraints m

�dVVA

dxm
���xm

�� � (13)

The derivative of VVA with respect to xm is assumed to be
known, whereas the derivative of xm with respect to the
dihedral angle � is

�xm

��
� um1 � ��um2

�� � (14)

� um1 � 
n� � um2� (15)

� n� � 
um2 � um1� (16)

where we adopt the convention that the dihedral angle
change d� leaves the first vector um1 fixed in space. Thus,
the energy gradient becomes

�

��
EVA � n� � �

m1
�

�
m2��

�dVVA

dxm
�
um2 � um1� (17)

In the Go� notation (Eq. 4) above, G� � 0 and

F� � �
m1
�

�
m2��

�dVVA

dxm
�
um2 � um1� (18)

This can be computed recursively by setting the variable f�

equal to

f� � �
m1��

�
m2��

�dVVA

dxm
�
um2 � um1� (19)

Practically, one computes these f� by looping over the
vector-angle restraints and adding the summand to the f�

for each of the dihedral angles � that directly move the two
vectors involved. The F� may then be calculated by using
the forward recursion relations (Eqs. 5 and 6) with the
initial condition F0 � 0. (The backward recursion may be
used with equal efficiency.)

VECTOR-TENSOR POTENTIALS

Residual dipolar couplings have been the focus of much
study in recent years.6,7 Although such couplings may
suffice in some cases to determine the protein structure,18

they are generally used to refine structures determined by
other methods. Such refinements may be done by using
vector-angle restraints11,12 or restraints on the dipolar
couplings themselves16

EDC � �
unit vectors u

VDC
Du� (20)

where Du � u � D � u represents the residual dipolar
coupling associated with a unit vector u for a dipolar
coupling tensor D [Fig. 1(b)]. The derivative of this energy
is given by the chain rule

�

��
EDC � �

unit vectors u

�dVDC

dDu
���Du

�� � (21)

The derivative of VDC with respect to Du is assumed
known, whereas the derivative of the dipolar coupling Du

is given by

�

��
Du � 2
D � u� � ��u

��� (22)

� 2
D � u� � �n� � u� (23)

Fig. 1. Illustrations of the angular potentials treated in this article. a: A vector-angle potential restraining the
angle between two unit vectors u1 and u2. The unit vector n� represents the rotation axis of the backbone
dihedral angle �. b: A vector-tensor potential restraining the double scalar product between a unit vector u and
a symmetric tensor D; the vectors ex, ey, and ez represent the principal axes of the tensor (e.g., the principal
alignment coordinate frame for a residual dipolar coupling tensor). c: A vector-displacement potential
restraining the angle between a unit vector u and a displacement Rij � Rj � Ri between two atoms i and j of
the molecule. The vector up represents the component of u that is perpendicular to the displacement Rij. The
vector Rij � Rj � Ri represents the displacement between the C-terminal atom of the bond of dihedral angle �
and atom j.
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� n� � 2�u � 
D � u�� (24)

where we treat the dipolar tensor D here as constant (e.g.,
as when the structure is being solved in the principal
alignment frame]. Under these conditions, the derivative
of the total restraint energy equals

�

��
EDC � n� � 2 �

u��

�dVDC

dDu
��u � 
D � u�� (25)

In the Go� notation (Eq. 4) above, G� � 0 and

F� � 2 �
u��

�dVDC

dDu
��u � 
D � u�� (26)

This can be computed recursively by setting the variable f�

equal to

f� � �2 �
u��

�dVDC

dDu
��u � 
D � u�� (27)

where the negative sign should be noted. The correspond-
ing F� can be computed by using the backward recursion
relations (Eqs. 7 and 8) with the post-C-terminal F� � 0.
The forward recursion is not as efficient, because it re-
quires computing the full gradient (Eq. 26) at the first
dihedral angle. As an aside, the vector [u � (D � u)] is never
zero except in the limit of zero anisotropy; because the
dipolar coupling tensor is traceless with nonzero eigenval-
ues, the vector (D � u) is never parallel to u in the principal
alignment frame.

VECTOR-DISPLACEMENT POTENTIALS

Several methods have been developed recently to detect
hydrogen bonds.19–21 It has long been conjectured that
H-bonds (together with side-chain packing) provide the
structural specificity that distinguishes the native fold
from other plausibly folded structures.22,23 Hence, it is to
be expected that the refinement of H-bonds will improve
the protein-like character of a low-resolution structure.
This expectation is indeed borne out, as shown below [see
Fig. 3(d)].

Hydrogen bonds are well known to have an angular
component to their energy, deriving both from dipolar
electrostatic interactions between the hydrogen-bonding
groups and also (for sufficiently close H-bonds) from
covalent interactions.24,25 This angular dependence has
been incorporated into many potentials over the years
(e.g., those of Lippincott and Schroeder,26,27 Coulson,13

Liquori and coworkers,14 Scheraga and coworkers,28,29

Hagler and coworkers,39 and more recent potentials (e.g.,
Refs. 31–36). Typically, the angular potentials involve an
angle �O between the acceptor-hydrogen displacement
vector ROH and a unit vector uO fixed in the acceptor
coordinate frame [Fig. 2(a)] or an angle �H between a unit
vector uH fixed in the donor hydrogen coordinate frame
[Fig. 2(b) and (c)]. As in the earlier sections, we parameter-
ize the potentials in terms of the cosines xO and xH of these
angles, which can be written as vector dot products

xO � uO � 
ROH/ROH� (28)

xH � uH � 
ROH/ROH� (29)

Fig. 2. a: The unit vector uO is fixed in the acceptor coordinate frame (e.g., that defined by the C�OC�OO�
atoms of the acceptor peptide group). The variable xO is the cosine of the angle 	O between such a unit vector
and the vector ROH from the acceptor atom to the donor hydrogen. The unit vector uO need not be aligned with
the C�AO� bond. The azimuthal angle �O of ROH about uO is also depicted; the reference vector defining �O �
0 is chosen to make the distribution of �O as even as possible. b: The unit vector uH is fixed in the donor
coordinate frame (e.g., that defined by the C�ONOH atoms of the donor peptide group). The variable xH is the
cosine of the angle 	H between such a unit vector and the vector RHO from donor hydrogen to the acceptor
atom. The unit vector uH need not be aligned with the NOH bond. The azimuthal angle �H of RHO in the
coordinate frame is also depicted; the reference vector defining �H � 0 is chosen to make the distribution of
�H as even as possible. c: The torsional angle �OH is formed by three vectors uO, ROH, and uH.
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where ROH represents the distance between the acceptor
atom O� and the donor hydrogen H. More generally, we use
the term vector-displacement restraint to denote potentials
that depend on the angle between a vector u fixed in a local
coordinate frame and the displacement Rij between two
atoms i and j [Fig. 1(c)].

For hydrogen bonds, the unit vectors uO and uH are
often chosen as the unit vectors along the C�OO� and
HON bonds, respectively, but this need not be; uO and uH

can represent any unit vector fixed in the acceptor or donor
coordinate frames, respectively, such as vectors aligned
with the lone-pair orbitals,28,29 the amide dipole moment,
or statistically optimized vectors (Appendix C). The dot
product of two vectors uO and uH with each other has also
been used in hydrogen-bond potentials (e.g., the dot prod-
uct between the CAO and NOH vectors13,14) but such
vector-angle potentials were treated above. H-bond poten-
tials may also use the azimuthal angles �O and �H of ROH

in the acceptor and donor coordinate frames, or the
dihedral angle �OH made by the two vectors uO and uH

about the axis defined by ROH [Figs. 2(a)–(c); Appendix C].
Such dihedral restraints may be treated directly (using
methods described in Appendix A) or by the methods
derived below, because the orientation of a vector ROH in a
coordinate frame can be specified not only by its polar
angles � and � but also by its direction cosines to three
orthogonal vectors.37 Thus, restraints on �O and �H can
be mimicked by introducing vector-displacement re-
straints between ROH and a set of vectors u in the chosen
coordinate frame.

For brevity, we restrict our derivations to xO, although
the analogous results for xH are given below. We assume
that the angular part of the hydrogen-bond potential can
be written as

EO � �
donors i

�
acceptors j

VO
xij
O� (30)

The gradient of this energy with respect to a dihedral
angle � is given by the chain rule

�

��
EO � �

donors i

�
acceptors j

��VO

�xij
O���xij

O

�� � (31)

The derivative of V(xij
O) with respect to xij

O is assumed to be
known, whereas the derivative of xij

O is obtained by differ-
entiating Eq. 28

�xij
O

��
� � 1

Rij
OH��uj

O � � �

��
Rij

OH� � xij
O� �

��
Rij

OH�� (32)

where we adopt the convention that the dihedral angle
change d� leaves the acceptor atoms (and, hence, the uj

O

vector) fixed in space. The derivative of the distance Rij
OH

between the O� atom of the jth acceptor and the H atom of
the ith donor is

�

��
Rij

OH � uij
OH �

�

��
Rij

OH (33)

where uij
OH is the unit vector in the direction of Rij

OH.
Substituting this result into Eq. 32 yields

�xij
O

��
� � 1

Rij
OH�� �

��
Rij

OH� � 
uj
O � xij

Ouij
OH� (34)

Because xij
O � uj

O � uij
OH, the quantity (uj

O � xij
Ouij

OH)
represents the component of uj

O that is perpendicular to
uij

OH. This is geometrically intuitive [Fig. 1(c)], because the
angle between uO and Rij

OH is not affected by changes in
Rij

OH that are parallel to its length.
Finally, the derivative of Rij

OH is obtained from the
standard formula10

�

��
Rij

OH � �n� � Ri
�H (35)

where the plus and minus signs correspond to whether the
acceptor atoms are N-terminal or C-terminal, respectively,
to the dihedral-angle bond. The vector Ri

�H represents the
vector from the dihedral atom position R� to the position
Ri

H of the ith donor hydrogen. Substitution of Eq. 35 into
Eq. 34 yields the final equation

�xij
O

��
� �� 1

Rij
OH�
n� � Ri

�H� � 
uj
O � xij

Ouij
OH� (36)

The equivalent formula for xij
H is obtained analogously

�xij
H

��
� �� 1

Rij
OH�
n� � Rj

O�� � 
ui
H � xij

Huij
OH� (37)

where the vector Rj
O� represents the vector from the

position Rj
O of acceptor atom j to the dihedral atom

position R�. The plus and minus signs correspond to
whether the acceptor atoms are N-terminal or C-terminal,
respectively, to the dihedral-angle bond.

Substitution of Eq. 36 into the derivative Eq. 31 yields

�

��
EO � � �

donors i
�

�
acceptors j��

Bij
O � 
n� � Ri

�H�

� �
donors i��

�
acceptors j
�

Bij
O � 
n� � Ri

�H� (38)

where the vector Bij
O is defined as

Bij
O � ��VO

�xij
O�� 1

Rji
OH�
uj

O � xij
Ouji

OH� (39)

Equation (38) can be simplified by separating the displace-
ment Ri

�H into its component parts

Ri
�H � Ri

H � R� (40)

Substitution of Eq. 40 into the energy gradient (Eq. 38)
yields the final result in the Go� notation

�

��
EO � n� � F� � 
n� � R�� � G� (41)

where the vector quantities are defined
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F� � � �
donors i
�

�
acceptors j��

Bij
O � Ri

H�
� � �

acceptors j
�

�
donors i��

Bij
O � Ri

H� (42)

G� � � �
donors i
�

�
acceptors j��

Bij
O� � � �

acceptors j
�

�
donors i��

Bij
O�

(43)

The quantities F� and G� can be computed efficiently by
using the forward recursion relations (Eqs. 5 and 6), where
the four quantities are defined

f� � � �
donors i��

�
acceptors j��

Bij
O � Ri

H�
� � �

acceptors j��

�
donors i��

Bij
O � Ri

H� (44)

g� � � �
donors i��

�
acceptors j��

Bij
O� � � �

acceptors j��

�
donors i��

Bij
O�

(45)

with the initial condition F0 � G0 � 0. (The backward
recursion may be used with equal efficiency.) By analogous
reasoning, the xH derivative can be written as

�

��
EH � n� � F� � 
n� � R�� � G� (46)

where the vector quantities are defined

F� � � �
donors i � �

�
acceptors j��

Bij
H � Rj

O�
� � �

acceptors j
�

�
donors i��

Bij
H � Rj

O� (47)

G� � � �
donors i
�

�
acceptors j��

Bij
H� � � �

acceptors j
�

�
donors i��

Bij
H�

(48)

The quantities F� and G� can be computed efficiently by
using the forward recursion relations (Eqs. 5 and 6), where
the four quantities are defined

f� � � �
donors i��

�
acceptors j��

Bij
H � Rj

O�
� � �

acceptors j��

�
donors i��

Bij
H � Rj

O� (49)

g� � � �
donors i��

�
acceptors j��

Bij
H� � � �

acceptors j��

�
donors i��

Bij
H�

(50)

and where the vector Bij
H is defined as

Bij
H � �dVH

dxH�� 1
Rji

OH�
uj
H � xij

Huji
OH� (51)

Taken together, these formulas provide efficiently com-
puted, analytic formulas for the gradient of an angular
H-bond potential with respect to the backbone dihedral
angles of a protein. These results can be extended to
side-chain dihedral angles by the methods of Go� and
coworkers.8,9

APPLICATIONS TO PROTEIN
STRUCTURE REFINEMENT

We applied the refinement of these angular restraints to
a low-resolution structure of the B1 domain of protein L
from Peptostreptococcus magnus (PDB accession code 1hz6),
which has been studied both theoretically and experimen-
tally in our laboratory. The initial decoy had a C� RMSD of
6.7 Å to the native structure; although the �-helix is
well-formed, the 	-sheet is poorly developed, having only
four hydrogen bonds between 	-strands compared with 22
such hydrogen bonds in the native structure [Fig. 3(a)].
The folding of 	-sheets is known to be more challenging
than that of �-helices because of the greater entropic cost
in making the correct long-range contacts. Therefore, the
refinement of such decoys is representative of problems
encountered in NMR structure determination and protein
structure prediction. We use ideal restraint data in the
following tests of our methods, because we want merely to
illustrate that the formulas and software are correct;
further testing will be required to determine how best to
apply these methods to practical structure refinements.

We generated ideal angle-restraint data by searching for
C� atoms separated by 
7 Å in the native structure 1hz6.
For each such pair m, we computed the cosine xm

nat of the
angle between their C�OC	 unit vectors in the native
structure; 166 vector-angle restraints were generated in
this way. Starting from the initial 6.7 Å structure, we
minimized the potential

EVA � �
m


xm � xm
nat�2 (52)

by using the Broyden–Fletcher–Goldfarb–Shanno method.1

This minimization produced a structure that agreed with
the native structure to 1.2 Å C� RMSD. Moreover, the
C�OC	 vector-angle restraints sufficed to make 11 hydro-

Fig. 3. a: Initial low-resolution structure, which has a C� RMSD of 6.7
Å to the true native structure. The four 	-sheet hydrogen bonds are
indicated in magenta, and the ribbon is colored from blue (N-terminus) to
red (C-terminus). b: Refinement of 166 C�OC	 vector-angle restraints
produces a structure that agrees with the native structure to 1.2 Å C�

RMSD and has 11 of the 22 native 	-sheet H-bonds. c: Minimization of
200 residual dipolar coupling restraints produces a structure that agrees
with the native structure to 0.2 Å C� RMSD and has all the correct
H-bonds. d: Minimization of a statistical H-bond potential (Appendix C) for
the 22 	-sheet hydrogen bonds succeeds in forming all of these H-bonds
and reduces the C� RMSD to 4.3 Å. Although topologically similar to the
native structure (c), the 	-strands of this structure bow and twist
differently, and the � helix is displaced relative to the 	-sheet.
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gen bonds between the antiparallel 	-strands (i.e., in the
two hairpins), roughly a threefold improvement over the
initial structure. However, no hydrogen bonds were cre-
ated between the two central parallel 	-strands. The
entire minimization required 
2 s of CPU time on a 1 GHz
Intel Pentium III (Coppermine) processor.

We generated simulated residual dipolar coupling data
for 1hz6 by assuming that the dipolar coupling tensor D
was diagonal in the PDB coordinate frame of the native
structure, using a Da � 1 and a rhombicity of one third.
Dipolar couplings Du

nat were computed for the C�OH�,
C�OC�, and C�ON vectors of the native structure, result-
ing in 200 restraints. The quadratic function

EDC � �
u


Du � Du
nat�2 (53)

was minimized as above, where the dipolar tensor D was
estimated by using the method of Losonczi et al.38 and held
fixed for each round of minimization. Twenty rounds of
minimization were conducted; after each round, the dipo-
lar tensor was reestimated and another round of minimiza-
tion begun. The entire 20 rounds of minimization required
roughly 40 s of CPU time on the 1 GHz processor. The final
minimized structure differed from the native structure by
0.2 Å C� RMSD and had all of its hydrogen bonds. Clearly,
such good agreement should not be expected from experi-
mental data, which are affected by measurement errors
and dynamic internal motions of the protein. Neverthe-
less, it illustrates the potential effectiveness of the minimi-
zation methods described here.

Finally, we minimized the initial structure by using the
22 	-sheet hydrogen bonds found in the native structure.
We used a differentiable, orientation-dependent H-bond
potential (described briefly in Appendix C). The statistical
potential was supplemented by a weak quadratic distance
restraint between the hydrogen-bonded O� and H atoms;
the goal of this distance restraint is to bring these atoms
into the range where the (relatively short-ranged) statisti-
cal potential can act effectively (i.e., under 2.5 Å). Starting
from the initial 6.7 Å structure, minimization of the
combined potential produces a structure that has all 22 of
the restrained 	-sheet hydrogen bonds and is qualitatively
much more protein-like. The entire minimization required
12 s on the 1 GHz processor. The minimized structure has
a C� RMSD of 4.3 Å, a significant improvement for only 22
restraints. The residual errors lie in the twist of the
	-sheet and in its disposition relative to the � helix. Such
errors are not likely to be fixed by minimizing a generic
hydrogen-bond potential but can of course be amended by
adding other distance or angle restraints. These results
support the idea that refinement of hydrogen bonds can
improve high-resolution NMR structures.39

We have since applied our method to 14 other proteins
with similarly good results. As seen for protein L, refine-
ment of H-bonds typically results in modest, but signifi-
cant, improvements in the C� RMSD to the native, and
significant alterations in the backbone structure from the
starting decoy. However, refinement can also result in
atomic clashes and unphysical backbone dihedral angles,

especially for models with low topological similarity to the
native protein; additional potentials are required to pre-
vent such unphysical structures.

CONCLUSION

The minimization of three types of angle-dependent
potentials has been studied, specifically those correspond-
ing to vector-angle, dipolar-coupling, and hydrogen-bond
restraints. Analytical formulas for the dihedral-angle gra-
dient of all three types of angular potentials were derived
and integrated with the efficient recursive derivative
calculation methods of Go� and coworkers.8,9 Refinement of
vector-angle, dipolar-coupling, and H-bond potentials led
to significant improvements in protein structure [Figs.
3(a)–(d)]. These methods can also be applied to other
angular potentials whether physical, knowledge-based, or
experimental constraints. The analytical formulas were
implemented in software written in ANSI-compliant C and
freely available (upon request from the corresponding
author) to all members of the scientific community, being
covered by the GNU General Public License.
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APPENDIX A
Displacement-Dihedral Potentials

A displacement-dihedral potential is defined as a re-
straint on the dihedral angle made by two fixed vectors
and the displacement between them, e.g., the dihedral
angle �OH made by the vectors uO, ROH, and uH of a
hydrogen bond [Fig. 2(b)]. The spherical law of cosines37

may be used to express the cosine of such dihedral angles
in terms of vector dot products. Specifically, the spherical
law of cosines states that the spherical angle �uvw between
three vectors u, v, and w obeys the equation

cos �uw � cos �uvcos �vw � sin �uvsin �vwcos �uvw (54)

where �uv, �uw, and �vw represent the angles between u
and v, between u and w, and between v and w, respec-
tively. Using xuv, xuw, and xvw to denote the cosines of these
angles, we obtain the formula

cos �uvw �
xuw � xuvxvw

�
1 � xuv
2 �
1 � xvw

2 �
(55)

Hence, a restraint on the cosine of the dihedral angle �uvw

can be expressed as a restraint V(xuv, xuw, xvw) on the
cosines of the three intervector angles, which may be
treated by vector-angle or vector-displacement restraint
methods above. The cosine of the dihedral angle deter-
mines the relative geometry of the three vectors u, v, and
w up to a chirality, which can presumably be determined
from other vector-angle restraints. Hence, most displace-
ment-dihedral restraints should be replaceable by other
restraints, such as vector-angle or vector-displacement
restraints.

For completeness, a restraint V(sin �uvw) on the sine of a
dihedral angle �uvw can be treated as follows. Such a sine
restraint can be reformulated as a vector restraint by
expressing it as a restraint VDD(p) on the triple scalar
product p of the three vectors

p � u � �v � w� � �u��v��w�sin �uvsin �vwsin �uvw (56)

Proceeding as before, the derivative of the dihedral-
displacement restraint energy is

�

��
EDD � �

p

�dVDD

dp �� �p
��� (57)

The derivative of VDD with respect to p is assumed known,
whereas the derivative of p with respect to � is given by the
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�p
��

� ��u
��� � �v � w� (58)

�u � 	��v
��� � w
 (59)

�u � 	v � ��w
���
 (60)

This formula can be brought into the form (Eq. 4) needed
for the recursive methods of Go� and coworkers8,9 by using
the rotation formulas (Eqs. 1 and 35) and the vector
identity (A � B � C) � B(A � C) � C(A � B).

APPENDIX B
Angle-Dependent Potentials in Other Structure
Determination Programs

The formulas for the gradients of vector-angle, vector-
tensor, and vector-displacement restraints have not been
described previously, and the most common structure
determination programs (CNS, XPLOR and DYANA) do
not provide routines for the continuous minimization of
such restraints (A. T. Brunger, G. M. Clore, and P.
Güntert, personal communications). However, after sub-
mission of this manuscript, the source code of the NIH
version of Xplor (Xplor-NIH) became available to academic
researchers under a licensing arrangement with Accel-
rys.41 Examination of the code relating to angular re-
straints (kindly provided by Dr. Clore) reveals that Xplor-
NIH does have continuous minimization routines for cross-
correlated relaxations and residual dipolar coupling
restraints; moreover, the gradients for these restraints are
analytical and, hence, mathematically equivalent to those
derived here, albeit different in form and implementation.
The chief difference is that Xplor-NIH calculates its deriva-
tives with respect to the Cartesian components of the
atomic positions (consistent with Xplor’s origins as a
flexible-geometry molecular simulation package), which
are then converted into dihedral-angle derivatives by a
separate routine. This Cartesian approach is an excellent
alternative to the direct vector approach used here and
may provide simpler gradient formulas for some angular
potentials. The direct vector approach is simpler for poten-
tials involving vectors that do not correspond to atomic
positions (e.g., those of Appendix C).

APPENDIX C
Statistical Hydrogen-Bond Potentials

This appendix describes the statistical hydrogen-bond
potential used here, which is a variant of one published
earlier from our laboratory.36 In this work, we group
hydrogen bonds into 12 classes with distinct geometric
distributions, and an independent statistical potential was
developed for each class. The classes of H-bonds are
distinguished by the sequence separation and secondary-
structure class of the H-bonded residues. (Sequence sepa-
ration is defined as the number of residues from the
acceptor to the donor; for illustration, a typical �-helical
H-bond has a residue separation of �4, whereas the

H-bonds of a 	-turn have sequence separations �3.) The
12 classes of hydrogen bonds were as follows: helical
H-bonds with sequence separations �2, �3, and �4 (3
classes); turn H-bonds with residue separations �2, �3,
�4, and �5 (7 classes); and long-range parallel and
antiparallel 	-strand H-bonds between acceptors/donors
separated by more than five residues (2 classes). The
disadvantage of grouping all H-bonds into a single class
(as done in some earlier statistical potentials) is that the
potential is apt to be dominated by the alpha helical
H-bonds, which have a very different angular distribution
compared to, for example, long-range antiparallel 	-strand
H-bonds.

For each class of backbone H-bond, statistical potentials
were computed as follows. A set of single-chain X-ray
structures were culled from the PDB, having resolution 1.8
Å or better and an R-factor of 20% or better. Proteins under
40 residues were eliminated, as were structures that were
overly diffuse (such as 3ezm). Hydrogens were added at 1.1
Å along the bisector of the CONOC� bonds. Roughly 180
thousand backbone H-bonds were recognized by the crite-
ria of an OOH distance 
2.15 Å and a COOOH and
OOHON angles �90°; the relatively short distance was
chosen to ensure that the H-bonds had a strong covalent
(vs electrostatic) component and, hence, a well-defined
angular dependence. After eliminating bifurcated H-
bonds, the remaining H-bonds were grouped by their
sequence separation, and the distribution of the ROH unit
vector in the coordinate frames fixed relative to the
C�ONOH and C�OCOO peptide groups. Two distinct
populations were observed for the sequence separations
�2, �3, and �4, corresponding to the difference between
the helical (27, 310, and �) and turn (�, 	, and �) conforma-
tions, and were separated into two classes accordingly.
(H-bonds can be easily sorted into the helix/turn classes by
the azimuthal angle of ROH in C�OCOO coordinate
frame.) For residue separation �5, three distinct clusters
were observed, corresponding to various forms of � helix/
turns; however, they lie reasonably close together on the
unit spheres, so we chose not to separate them into classes.

For each class of backbone H-bond, we computed statis-
tical potentials for six degrees of freedom that are geometri-
cally independent and specify the relative disposition of
the two H-bonded peptide groups. (As usual, statistical
potentials were derived by taking the negative logarithm
of the probability distribution and fitting to a functional
form.) First, we computed the mean unit vectors uH and
uO of ROH in the two coordinate frames C�ONOH and
C�OCOO and reference vectors vH and vO that are
perpendicular to the mean vectors and chosen to make the
distribution of the dihedral (i.e., azimuthal) angles v-u-
ROH as even as possible. Thus, the coordinate frames
defined by the u and v vectors are statistically optimized
and are not aligned with any interatomic vector; this
freedom in choosing the coordinate frame makes it rela-
tively simple to model arbitrarily oriented elliptical distri-
butions on the unit sphere. We then determined the
distributions of the polar angles �H, �H and �O, �O in the
coordinate frames defined by uH, vH and uO, vO, respec-
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tively, by binning (with light smoothing) in cos � and �.
The cos � potentials were well-fit to a term linear in cos �
plus an exponential that decays rapidly as cos � decreases
from one, whereas the � potentials could be well-fit to a
weighted sum of cos � and cos2 �. For the fifth degree of
freedom, we computed the statistical potential for the
OOH distance, which was fit to a repulsive exponential
function plus an attractive tanh function, and designed to
be negligible above 2.5 Å. It is surprising that the tradi-
tional 10–12 potential42 did not fit the distributions well,
being overly “hard”; a softer 1–2 potential fit much better
in the range considered (up to 2.15 Å) but seemed overly
long-ranged. Finally, the sixth degree of freedom was
taken to be the torsional angle �OH of the two statistical
vectors uO and uO about the displacement vector ROH; the
distributions of �OH were remarkably even and could be

well-fit to a term linear in cos �OH. Expanding the
statistical potentials for �H, �O, and �OH in powers of cos
� has the advantage that the simpler methods of Appendix
A can be used.

The distributions of the ROH unit vector on the unit
spheres is roughly elliptical, with a low eccentricity for
most classes of H-bonds. Hence, the potentials for the
dihedral angles �H, �O, and �OH may be neglected to first
approximation, because they are dominated by the poten-
tials for OOH distance and the angles �H and �O. As a
contrast, H-bonds with sequence separations �2 and �3
(both the helical and turn types) have highly eccentric
distributions; however, such interactions may be aug-
mented by short-range backbone dihedral-angle potentials
(or specialized conformational sampling of the loop) to
achieve similar distributions.
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