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We explore the ability of a simple simulated annealing procedure to
assemble native-like structures from fragments of unrelated protein struc-
tures with similar local sequences using Bayesian scoring functions. En-
vironment and residue pair speci®c contributions to the scoring functions
appear as the ®rst two terms in a series expansion for the residue prob-
ability distributions in the protein database; the decoupling of the dis-
tance and environment dependencies of the distributions resolves the
major problems with current database-derived scoring functions noted by
Thomas and Dill. The simulated annealing procedure rapidly and fre-
quently generates native-like structures for small helical proteins and bet-
ter than random structures for small b sheet containing proteins. Most of
the simulated structures have native-like solvent accessibility and second-
ary structure patterns, and thus ensembles of these structures provide a
particularly challenging set of decoys for evaluating scoring functions.
We investigate the effects of multiple sequence information and different
types of conformational constraints on the overall performance of the
method, and the ability of a variety of recently developed scoring func-
tions to recognize the native-like conformations in the ensembles of simu-
lated structures.
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Introduction

In the last several years there has been exciting
progress in the development of algorithms for ab
initio protein folding: the generation of protein
structures starting from amino acid sequence infor-
mation alone (Kolinski & Skolnick, 1994; Bowie &
Eisenberg, 1994; Yue & Dill, 1996, Srinivasan &
Rose, 1995). Because of the many formidable pro-
blems facing ab initio folding simulations, such al-
gorithms are not likely to become useful methods
of structure prediction for any but the smallest pro-
teins for quite some time. However, such efforts
are of crucial importance because they highlight, as
few other experiments can, the challenges facing
current studies of protein folding.

Our primary interests in this area are twofold:
®rst, to develop a computational model to com-
plement biophysical and molecular biological stu-
dies of the folding of very small protein domains
currently underway in our laboratory, and second,
to build upon our studies of local sequence-struc-
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ture relationships (Han & Baker, 1996), which are
currently limited by a lack of treatment of non-
local interactions. A working model for protein
folding is that local amino acid sequence propensi-
ties bias each local segment of a folding polypep-
tide chain towards a small number of alternative
local structures and that non-local interactions
preferentially stabilize native-like arrangements of
these otherwise transient local structures. The
weak nature of the local propensities has compli-
cated both the prediction of secondary structure
from sequence and the search for structure in pro-
tein fragments (Bystroff et al., 1996). Here, we use a
knowledge-based treatment of local interactions
related to that of our previous studies: short se-
quence segments are restricted to the local struc-
tures adopted by the most closely related
sequences in the protein structure database.

Once the local structural preferences of portions
of a sequence have been characterized, a method is
required for generating structures consistent with
these local preferences and for subsequently evalu-
# 1997 Academic Press Limited



Figure 1. Comparison of the radii of gyrations of simu-
lated and native structures. 100 structures were gener-
ated for chains of 100 residues by splicing together
protein fragments as described in Methods using either
no scoring function (open bars), or the square of the
radius of the gyration as the scoring function (hatched
bars). Histograms were computed using 5 AÊ bins. The
distribution of radii of gyrations for the small (50 to 150
residue) proteins in the pdbselect 25 set is shown for
comparison (®lled bars).
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ating the quality of the structures using a measure
of non-local interactions. Two quite different ap-
proaches to treating non-local interactions have
been used in recent work: knowledge-based poten-
tial functions derived from the protein database
(Miyazawa & Jernigan, 1996; Sippl, 1990; Wilson &
Doniach, 1989; Jernigan & Bahar, 1996), which ty-
pically contain large numbers of parameters, and
much simpler potentials based on chemical intui-
tion (Srinivasan & Rose, 1995; Yue & Dill, 1996;
Huang et al., 1995), which can potentially provide
clearer insights into sequence-structure relation-
ships. We chose the ®rst approach for the exper-
iments described here because although there are
many more parameters, all are completely deter-
mined by the structures in the protein database
(excluding the proteins being folded); thus the
danger of crafting a scoring function speci®c for a
particular class of proteins can be avoided.

The shortcomings of current approaches to ex-
tracting scoring functions from the protein data-
base have been highlighted by recent work
(Thomas & Dill, 1996). Because of the critical im-
portance of scoring functions to the success of any
structure prediction effort, we begin by presenting
a detailed derivation of scoring functions from a
purely statistical point of view with particular at-
tention to the interplay between solvation and resi-
due pair speci®c effects.

Results

Scoring functions

In this section, we present a derivation of knowl-
edge-based scoring methods which is considerably
simpler than standard derivations and leads to a
systematic series expansion of the residue distri-
butions in the protein database. The derivation
does not require the assumption that the protein
database (the ground states of a set of molecules of
different sizes and chemical compositions) consti-
tutes some sort of Boltzmann distribution and
avoids the ambiguities associated with the choice
of a reference state.

We seek the most probable structure for a pro-
tein given the amino acid sequence and the large
number of examples of sequences with known
structures in the protein database. Using Bayes
theorem, the probability of a structure given the
amino acid sequence (and the information in the
protein database) is

P�structure j sequence� � P�structure�

� P�sequence j structure�
P�sequence� �1�

In comparisons of different structures for the same
sequence, P(sequence) is constant, and will be neg-
lected in the following analysis. In the threading
problem, it is simplest to assume that every struc-
ture in a representative protein set is equally prob-
able: P(structure) � 1/(number of structures). As
shown below, this together with the assumption of
independence of residue pairs leads directly to
standard expressions for distance-dependent scor-
ing functions.

In contrast, for the ab initio folding problem, not
all generated structures are equally likely to be
proteins; for example, highly expanded confor-
mations and conformations with unpaired b
strands occur frequently in randomly generated en-
sembles but not in real proteins. P(structure) in this
case captures all the features that distinguish
folded protein structures from random chain con-
®gurations. In this study, a very simple form for
P(structure) is used: P(structure) is zero for con-
®gurations with overlaps between atoms, and is
proportional to exp(ÿradius of gyration2) for all
other con®gurations. An empirical justi®cation for
this expression is given in Figure 1. Con®gurations
generated by randomly splicing together protein
fragments are considerably more expanded than
native proteins (Figure 1, open bars), while confor-
mations generated using exp(ÿradius of gyration2)
for P(structure) (hatched bars) in conjunction with
simulated annealing have radii of gyrations com-
parable to those of native proteins of the same
length (®lled bars). Since the con®gurations are
generated from protein fragments, their helix and
strand content is similar to that of proteins, and
thus P(structure) in our case is independent of
helix/strand content. A notable shortcoming of
this expression for P(structure) is that structures
with paired b strands are no more probable than
structures with unpaired b strands, and thus noth-
ing in the simulation favors the formation of b
sheets from b strands. We are currently developing
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an improved expression for P(structure) which ex-
plicitly depends on the relative orientations of local
structural elements:

P�structure� �
Y
i<j

P�rij; yij;jij;oij j ssi; ssj� �2�

The rij, yij, fij, and oij describe the separation and
relative orientation of local structural elements ssi

and ssj. Preliminary tests with ®xed secondary
structure simulations show that such an expression
is suf®cient to generate b sheet structures for short
b strand containing chains.

Evaluation of the second term in equation (1),
P(sequence j structure), usually involves the assump-
tion of independence of individual positions or
pairs of positions. In the pro®le method (Bowie
et al., 1991),

P�sequence j structure� �
Y

i

P�aai j Ei� �3�

where Ei is the structural environment at position i
(usually de®ned in terms of solvent accessibility
and/or secondary structure) and the score of the
structure is the product over all residues (aai).
Other approaches involve the assumption of inde-
pendence of pairs of positions rather than individ-
ual positions:

P�sequence j structure� �
Y
i<j

P�aai; aaj j rij� �4�

where rij is the distance between residues i and j
and the score is the product over all pairs of resi-
dues. While the assumption of independence of re-
sidue identities is certainly wrong in detail, it is
considerably less drastic than the assumption that
residue separations are independent of one another
usually made in the derivation of potentials from
the structure database (this amounts to a complete
neglect of chain connectivity).

Equation (4) is very similar to expressions for
potentials of mean force (Sippl, 1990; Kocher et al.,
1994) derived using the assumption that the pro-
tein database is some sort of Boltzmann distri-
bution. Using Bayes theorem again for a particular
pair of residues i and j,

P�aai; aaj j rij� � P�aai; aaj� �
P�rij j aai; aaj�

P�rij� �5�

The ®rst factor on the right is independent of struc-
ture, and the ratio is the expression derived by
Sippl and others.

Combining equations (1), (4), and (5), and using
P(structure) � exp(ÿradius of gyration2) leads to

P�structure j sequence� � eÿradius of gyration2

�
Y
i<j

P�rij j aai; aaj�
P�rij� �6�

The negative logarithm of this expression was used
as the scoring function in the initial generation of
structures. The correction for small sample size
suggested by Sippl (1990) was used in the second
term and, to increase the number of counts in each
bin, the order of the two interacting residues in the
sequence was ignored. The scoring functions were
calculated separately for the sequence separation
bins described by Bauer & Beyer (1994).

Scoring functions based on residue pair distri-
butions are often supplemented with a neighbor
density or solvent accessible surface area term
which is supposed to represent solvation effects
(Sippl, 1993; Jones et al., 1992). However, solvation
forces make no less of a contribution to the ob-
served pair distributions than do any other physi-
cal interactions; dominant features of the pair
distributions such as the relatively high frequency
of contacts between hydrophobic residues re¯ect
the properties of the solvent. Because solvation is
included implicitly in the pair distributions, such
additional terms are better viewed as corrections
for the lack of independence of the pair distri-
butions (in physical terms, a lack of pair additivity
of the interaction energies).

To determine whether such a correction is war-
ranted, we calculated the expected neighbor den-
sity around each residue (the number of Cb atoms
of other residues within 10 AÊ of the Cb atom of the
residue) in the protein set based on the residue
pair distributions. The calculated neighbor density
distributions for aspartate and isoleucine (Figure 2,
open symbols) resemble those actually observed
(Figure 2, ®lled symbols), except that the calculated
distribution for isoleucine extends to larger num-
bers of neighbors probably because excluded vo-
lume is neglected. The similarity between the
calculated and observed distributions indicates
that the density term used in previous treatments
involves considerable overcounting; a proper cor-
rection for many body effects would primarily
compensate for the lack of explicit treatment of ex-
cluded volume (Miyazawa & Jernigan, 1996).

An obvious dif®culty with database derived
scoring functions is that residue distributions are
sensitive to protein size. For example, Cb densities
(Figure 3A) and histograms of distances between
hydrophobic residues (Figure 3B) are signi®cantly
different in small proteins (circles) than in the data-
base overall (squares). However, the constraints of
excluded volume and connectivity inherent in the
method of generating structures (see Methods) to-
gether with the P(structure) term appear to correct
partially for such undesirable biases: distributions
calculated from a large set of simulated structures
(Figure 3, triangles) resemble the small protein dis-
tributions much more closely than the overall data-
base distributions from which the scoring functions
were derived. In particular, an additional excluded
volume correction does not seem to be necessary.

The problems with the assumption of indepen-
dence of the pair distributions have been elegantly
demonstrated by Thomas & Dill (1996). The parti-
tioning of hydrophobic residues to the interior and
hydrophilic residues to the exterior of proteins



Figure 2. Comparison of observed Cb densities with Cb

densities calculated from the pair distributions assuming
complete independence. Cb densities in protein struc-
tures were tabulated for isoleucine (®lled squares) and
aspartate (®lled triangles). The Cb distributions around
each residue expected from the pair distributions alone
were simulated assuming complete independence of the
different pairs: each other residue in the sequence was
considered to be in contact with the residue in question
if a randomly chosen number between 0 and 1 was less
than the contact frequency for the pair of residues calcu-
lated from the protein database (a function of the iden-
tity of the residues and their separation along the
chain). Estimates of the distributions converged after
1000 trials for each residue. To compare with the
observed Cb distributions, the simulated distributions
for all isoleucine (open squares) or all aspartate (open
triangles) residues were combined. The mean number of
neighbors for each residue type is the same in the
observed and simulated distributions.
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dominate the scoring functions: P(rij j inside, inside),
P(rij j inside, outside) and P(rij j outside, outside) are
very similar to the corresponding distributions for
hydrophobic pairs, hydrophobic and hydrophilic
residues, and hydrophilic pairs, respectively. The
dependence of the scoring functions on protein
size and the number of hydrophobic residues in
the sequence also stem primarily from the parti-
tioning of hydrophobic residues into the interior.

We now consider a series expansion of
P(sequence j structure) which incorporates solvation
and residue pair interactions in a non-redundant
manner. Any joint probability function can always
be expanded in terms of marginal probability func-
tions that depend on fewer variables:

P�xi; x2; x3; . . . ; xn� �
Y

i

P�xi�
Y
i<j

P�xi; xj�
P�xi�P�xj� . . . �7�

The second order term introduces corrections due
to pair interactions; higher order terms (not
shown) incorporate corrections for third and higher
order interactions. Expanding P(sequence j structure)
in such a fashion, and replacing the entire three-
dimensional structure by only those features of the
structure related to the amino acids in question
yields

P�aa1; aa2; . . . ; aan j structure� �
Y

i

P�aai j Ei�

�
Y
i<j

P�aai; aaj j rij;Ei;Ej�
P�aai j rij;Ei;Ej�P�aaj j rij;Ei;Ej� �8�

As in equation (3), Ei can represent a variety of fea-
tures of the local structural environment around re-
sidue i. Estimation of the third order term, which
would incorporate corrections due to residue tri-
plet interactions, is very dif®cult due to database
size limitations. The important feature of equation
(8) is that residue-environment and residue pair
interactions are both treated without redundancy
and without blurring the speci®c residue pair inter-
actions with the overall partitioning of residues
into the protein core.

The second order term in equation (8) is com-
pared to equation (5) for pairs separated by more
than ten residues along the chain in Figure 4. Two
environment classes are used: a residue is con-
sidered buried if there are more than 16 other Cb

atoms within 10 AÊ of the Cb atom of the residue in
question; otherwise, it is exposed. For all residue
pairs and all environment classes, the second order
term in equation (8) decays to near zero by 12 AÊ as
expected for speci®c interactions. The leucine-iso-
leucine interaction (Figure 4A) is characteristic of
the interactions between pairs of hydrophobic resi-
dues: the environment independent function
(equation (5), continuous line) is attractive at short
distances and repulsive at long distances, whereas
the environment dependent functions in equation
(8) are weakly attractive at �8 AÊ and decay rapidly
to zero at longer separations. The interactions
between pairs of surface hydrophobic residues
(Figure 4A, broken line) are considerably stronger
than those between pairs of buried residues
(Figure 4A, dotted line); the overall partitioning of
hydrophobic residues to the core captured by the
®rst order environment term more completely ac-
counts for the proximity of hydrophobic residues
in the core than the clustering of hydrophobic resi-
dues in surface patches. The interactions between
surface and buried residues are intermediate be-
tween the two extremes (data not shown). The en-
vironment speci®c scoring function for glutamate-
lysine pairs is attractive at short range for all en-
vironment classes (Figure 4B; again, only buried-
buried and exposed-exposed pairs are shown), and
is considerably closer to physical intuition than the
environment independent function, which becomes
attractive at large separations because of the parti-
tioning of polar residues to protein surfaces. The
aspartate-aspartate pair interaction is repulsive at
short distances as expected for surface pairs
(Figure 4C, broken line), but weakly attractive for
buried pairs separated by �9 AÊ (Figure 4C, dotted
line), perhaps re¯ecting the presence of multiple



Figure 3. The protein size dependence of database derived scoring functions is partially corrected by the constraints
in the simulation. A, The Cb density distributions of hydrophobic residues (ILV) of simulated structures (triangles) re-
semble those of small proteins (circles) more so than those of the entire database (squares). An extra solvation term is
not required to reproduce the observed distributions. The Cb density around a given residue is de®ned as the number
of Cb atoms within 10 AÊ of the Cb atom of that residue. B, The distribution of frequencies of different distance separ-
ations for pairs of hydrophobic residues separated by more than 20 residues in the sequence. The distribution for the
simulated structures (triangles) resembles that of small proteins (circles) more closely than that of the entire protein
database (squares), despite the fact that the latter distributions were used to score structures during the simulations.
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buried aspartate residues in metal binding sites
and enzyme active sites.

The combined expression (8), which will be re-
ferred to as the dist_env function for the remainder
of the paper, is related to scoring functions de-
scribed previously in the literature. Kocher et al.
(1994) developed environment dependent versions
of the expression in equation (5), and Miyazawa &
Jernigan (1996) described an environment indepen-
dent version of the second term in equation (8). As
noted previously, the ®rst term in equation (8) has
been used extensively by Eisenberg's group (Bowie
et al., 1991) and others, and the description of the
environment in terms of the number of nearby Cb

atoms has been utilized by several groups (Huang
et al., 1995; Flockner et al., 1995). Furthermore, com-
bining different types of scoring functions has been
explored in several recent studies (Kocher et al.,
1994; Park & Levitt, 1996). A major contribution of
the analysis leading to equation (8) is the recog-
nition that the two terms in (8) form the ®rst part
of a systematic expansion of P(sequence j structure);
this provides a rigorous justi®cation for combi-
nation of the two terms. A virtue of equation (8)
from a practical standpoint is that both the hydro-
phobic effect driven sequestration of non-polar re-
sidues in the core and more speci®c residue pair
interactions are captured simultaneously (in the
®rst and second terms, respectively). From a physi-
cal point of view, neither a residue-environment
nor a residue-residue based description alone
would be expected to adequately describe the
dominant interactions in folding since the former
clearly neglects speci®c pair interactions, and the
latter requires an assumption of pair additivity
likely to break down for the hydrophobic inter-
action (Rank & Baker, 1997).

Generation of structures

The method of generating structures is described
in detail in Methods. Brie¯y, three-dimensional
structures are generated by splicing together frag-
ments of proteins of known structure with similar
local sequences and evaluated initially using
equation (6) above. Low scoring conformations
with distributions of residues similar to those of
known proteins are identi®ed by simulated anneal-
ing in conjunction with a simple move set that in-
volves replacing the torsion angles of a segment of
the chain with the torsion angles of a different pro-
tein fragment with a related amino acid sequence.
These conformations are then evaluated using the
dist_env scoring function (equation (8)). Equation
(6) is used in the initial generation of structures
rather than the more data intensive equation (8) be-
cause of noise due to the limited size of the data-
base; noise in scoring functions is much more
problematic in folding simulations than in evaluat-
ing a relatively small number of ®xed structures
because there is much more freedom to ``®t'' the
noise.

To evaluate the performance of folding simu-
lation methods, it is essential to describe not only
the best structures produced, but also the fre-
quency with which such structures are generated.
To facilitate comparisons with other work in this
area, we describe the results with different simu-
lation conditions in some detail: for each exper-
iment, 100 simulated annealing runs were carried
out, and the number of structures with less than



Figure 4. Comparison of the negative logarithms of
equation (5) and the residue pair speci®c second term in
equation (8) for sequence separations greater than ten.
Residues with greater than 16 neighbors were con-
sidered buried. Continuous lines, equation (5); dotted
lines, equation (8) both residues buried; broken line,
equation (8) both residues exposed.

Figure 5. Simulated homeodomain structures with
different rms deviations from the native structure. The
N termini are displayed as black spheres.
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7 AÊ , 6 AÊ , 5 AÊ and 4 AÊ Ca rmsd (root mean square
deviation) from the native structure was recorded.
The degree of topological similarity for the differ-
ent rmsd ranges is illustrated in Figure 5. Because
the average rmsd from the native structure in-
creases with chain length, we also computed a
length independent average quality factor Q for
the 100 structures generated for each run condition
using a variant of the procedure of Cohen &
Sternberg (1980; see Methods). The more negative
Q, the more native-like the simulated structures
relative to random compact structures of the same
length.

Structures within 5 AÊ rmsd from the native
structure were readily generated for several small
helical proteins (Table 1). The use of equation (8) to
evaluate structures generated using equation (5)
signi®cantly increased the number of native like
structures (dist_env ®lter in Table 1). The success
of the folding simulations correlated with the
length of the sequence being folded and the num-
ber of turns in the native structure. A large number
of reasonable structures were obtained for protein
A (43 residues), and relatively few for calbindin
(76 residues). The cro repressor has two more turns
than the homeodomain and folded considerably
less well (Table 1). Most of the conformations with
large rmsd from the native conformation had sec-
ondary structure and solvent accessibility patterns
similar to those of the native structure (Figure 6).
While no structures with less than 5 AÊ rmsd from
the native state were obtained for either of the two
b sheet containing proteins that were studied, the
simulated structures have quality factors signi®-
cantly less than zero and thus are more native-like
than randomly generated structures (Table 1).

The score and the rmsd from the native state as
a function of cycle number are shown in Figure 7
for a successful run with the homeodomain. The
score and rmsd both decrease rapidly and then un-
dergo considerable uncorrelated ¯uctuations. As
demonstrated in Table 2, the program is not simply



Table 1. Folding simulation results

<7 AÊ <6 AÊ <5 AÊ <4 AÊ Lowest
rmsd rmsd rmsd rmsd rmsd Q

A. Unconstrained simulations
Homeodomain
dist_env ®lter �msa (100) 65 47 31 17 2.75 ÿ1.7
dist_env ®lter ÿmsa 63 45 31 16 2.75 ÿ1.8
No ®lter 63 48 38 8 2.75 ÿ1.5
Random sequence 31 11 1 0 4.89 ÿ0.2
Random fragments 16 4 1 0 4.73 ÿ0.6
Random all 6 2 0 0 5.82 0

Calbindin
dist_env ®lter �msa (64) 31 17 2 0 4.70 ÿ1.7
dist_env ®lter ÿmsa 24 14 1 0 4.70 ÿ1.9
No ®lter 17 3 2 0 4.86 ÿ1.4
Random sequence 3 0 0 0 6.18 ÿ0.2
Random fragments 6 1 0 0 5.71 ÿ0.4
Random all 0 0 0 0 7.63 0

Protein A
dist_env ®lter 96 95 93 41 3.29 ÿ2.3
No ®lter 86 85 77 41 3.16 ÿ2.0
Random sequence 33 25 8 1 3.52 ÿ0.2
Random fragments 48 32 9 1 3.97 ÿ0.6
Random all 32 14 1 0 4.58 0

Cro repressor
dist_env ®lter �msa (4) 39 18 8 0 4.20 ÿ1.7
dist_env ®lter ÿmsa 35 20 10 0 4.20 ÿ1.9
No ®lter 24 11 4 0 4.26 ÿ1.5
Random sequence 7 1 0 0 5.95 ÿ0.3
Random fragments 5 0 0 0 6.14 ÿ0.7
Random all 0 0 0 0 7.26 0

Protein G
dist_env ®lter �msa (5) 3 0 0 0 6.33 ÿ1.5
dist_env ®lter ÿmsa 2 0 0 0 6.33 ÿ1.5
No ®lter 1 0 0 0 6.89 ÿ1.2
Random sequence 0 0 0 0 8.43 ÿ0.4
Random fragments 0 0 0 0 7.80 ÿ0.6
Random all 0 0 0 0 8.35 0

Ribosomal fragment
dist_env ®lter �msa (59) 16 6 0 0 5.26 ÿ1.6
dist_env ®lter ÿmsa 18 6 0 0 5.26 ÿ1.5
No ®lter 8 3 0 0 5.85 ÿ1.2
Random sequence 0 0 0 0 8.78 ÿ0.2
Random fragments 0 0 0 0 7.46 ÿ0.4
Random all 0 0 0 0 7.41 0

B. Effect of conformational constraints
No constraint 24 11 4 0 4.26 ÿ1.5
2� struct constant 23 13 3 0 4.44 ÿ1.1
3rd turn constant 54 41 22 0 3.03 ÿ2.4

C. Folding of homologues
434 repressor 27 21 8 1 3.8 ÿ1.4
Cro repressor 21 3 2 0 4.4 ÿ0.9

For each of the proteins and run conditions indicated in the left column, 100 independent simulations were performed. The number
of structures within the indicated rmsd of the corresponding native structure is given for each set of 100 runs in columns 2 to 5. The
rmsd of the most native-like structure is given in column 6. The average value of the structure independent quality factor Q (see
Methods) over the 100 runs is given in column 7. A, Random sequence simulations utilized scrambled versions of the native
sequence; random fragment simulations, randomly selected fragments; and random all simulations, scrambled sequences and ran-
domly selected fragments. For the �msa simulations scores were averaged over all sequences in multiple sequence alignments for
the proteins being folded (the number of sequences are shown in parentheses). For the ®lter entries, the 100 conformations with the
best scores according to the dist_env function (equation (8)) were chosen from sets of 500 conformations generated for each of the
proteins using the no ®lter conditions. Multiple sequence information was used to identify the starting fragments in each set of
simulations. B, Effect of conformational constraints on the folding of Cro repressor. In the simulation runs with ®xed secondary
structure, residues 1 to 14, 18 to 24, 30 to 38, 47 to 53, and 58 to 65 were constrained to be helical; in the second set of simulations,
the torsion angles of residues in the third turn (residues 39 to 46) were ®xed at their values in the native structure. C, Results for
434 and Cro repressors using single sequence information in fragment identi®cation and scoring.
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Figure 6. Solvent accessibility and secondary structure of a number of simulated non-native calbindin structures as
depicted by PROCHECK (Laskowski et al., 1993). The structures were randomly drawn from the simulated structure
set prior to ®ltering. The rmsd to the native structure is shown in the second column; the rmsd between all pairs of
structures is greater than 5 AÊ . White, solvent accessible; black, buried.
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doing homology modeling; the fragments are de-
rived from a wide variety of different, non-hom-
ologous protein structures. Proteins homologous to
the protein being folded were removed from the
fragment library and excluded from the construc-
tion of the scoring functions in all simulations.

In principle, both the method of selecting frag-
ments and the method of scoring con®gurations
should favor the native con®guration relative to
the majority of possible con®gurations. To assess
the relative importance of the constraints on the
search space and the scoring function in arriving at
reasonable structures, two additional sets of 100
simulations were carried out in which either the
starting sets of fragments were chosen randomly
Figure 7. Progression of a homeodomain folding simu-
lation. Continuous line, score; broken line, rmsd from
the native structure. A cycle is an attempted replace-
ment of the current torsion angles of a segment of the
structure with the torsion angles of a fragment from the
protein database with similar local sequence.
or the scoring function used a scrambled version of
the native amino acid sequence. As indicated in
Table 1, the number of good structures declined
sharply in both cases. As a further control, struc-
tures were generated using random starting frag-
ments and scored using a scrambled amino acid
sequence. Many fewer structures of less than 6 AÊ

rmsd were found for all of the proteins (Table 1).
Although both the method of choosing frag-

ments and the scoring function contribute to the
generation of good structures, the simulations
were relatively insensitive to moderate changes in
either the method of choosing fragments or the
scoring function. Multiple sequence information
improved the resemblance of the starting frag-
ments to the true structure and reduced the
amount of noise in the scoring functions (Table 4
and Figure 11, see Methods), but neither signi®-
cantly improved the yield of good structures. For
example, the number of good structures obtained
using single sequence information alone for the 434
repressor (Table 1C) was comparable to that ob-
tained using multiple sequence information for the
whole repressor family (Table 1A). A simple but
perhaps not optimal method of using multiple se-
quence information for scoring, averaging together
the scores for all sequences in a family being
folded, slightly improved the recognition of native-
like structures relative to that with single se-
quences alone (Tables 1 and 3, msa). Other
methods of utilizing multiple sequence information
may be more effective (Bowie et al., 1990 and
Defay & Cohen, 1996). An exception to the overall
robustness of the structure generation procedure
was the requirement for fragments of greater than
®ve residues early in the simulations: considerably
fewer good structures were generated when only



Table 2. Origins of fragments contributing to ®nal simulated structures

Structure I Structure II
Residue (2.7 AÊ rmsd, 2.1 AÊ dme) (3.0 AÊ rmsd 2.1 AÊ dme)

1 Methyltransferase (1hmy) Endonuclease III (1abk)
2 Creatinase (1chm) Endonuclease III (1abk)
3 Cytochrome c (1ccr) Endonuclease III (1abk)
4 Cytochrome c (1ccr) Recoverin (1rec)
5 Cytochrome c (1ccr) Recoverin (1rec)
6 Barley seed protein (1bw4) Recoverin (1rec)
7 Hydrolase inhibitor (1hle) 3-isopropyl malate DH (1hex)
8 Ribose binding protein (2dri) 3-isopropyl malate DH (1hex)
9 HIN recombinase (1hcr) Proteinase inhibitor (1cew)

10 HIN recombinase (1hcr) Proteinase inhibitor (1cew)
11 HIN recombinase (1hcr) Proteinase inhibitor (1cew)
12 Aspartate aminotransferase (1ars) Histidine binding protein (1hsl)
13 Apolipoprotein-E3 (1lpe) Cutinase (1cus)
14 Apolipoprotein-E3 (1lpe) Leghemoglobin (1gdm)
15 Apolipoprotein-E3 (1lpe) Leghemoglobin (1gdm)
16 Glutathione transferase (1gst) Leghemoglobin (1gdm)
17 Glutathione transferase (1gst) Uteroglobin (1utg)
18 Acyl transferase (3cla) Uteroglobin (1utg)
19 Interleukin-10 (1ilk) Uteroglobin (1utg)
20 Thermolysin (8tln) Alpha-parvalbumin (1rtp)
21 Immunoglobin FC (1fc2) Adenovirus ®ber protein (1knb)
22 Immunoglobin FC (1fc2) Adenovirus ®ber protein (1knb)
23 Immunoglobin FC (1fc2) Adenovirus ®ber protein (1knb)
24 Dihydrofolate reductase (3dfr) Alpha-parvalbumin (1rtp)
25 Dihydrofolate reductase (3dfr) Phosphotransferase (1npk)

The proteins from which the ®nal torsion angles of two simulated homeodomain structures originate are
indicated for residues 1 to 25 of both structures.
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three residue fragments were used (data not
shown). Longer fragments may prevent overly fre-
quent changes in the direction of the collapsed
chain.

There have been a number of reports in the last
several years of folding simulations in which the
secondary structure was kept ®xed at that of the
native structure (Monge et al., 1994; Sun et al.,
1995). To investigate the effects of constraining
different parts of the protein, we carried out
further sets of simulations with different parts of
the cro repressor ®xed. Fixing the secondary struc-
ture (71% of the structure) had relatively little ef-
fect (Table 1B). This suggested that the simulation
Table 3. Z-scores for native-like conformation

1FC2A 1HDD

Surface ÿ0.52 ÿ0.23
HF ÿ0.46 ÿ0.68
Contact(HL) ÿ0.41 ÿ0.19
Contact(MJ) ÿ0.30 ÿ0.13
Shell ÿ0.41 ÿ0.48
Shelltop ÿ0.39 ÿ0.37
Histogram 0.00 ÿ0.04
VdW(HL4) ÿ0.36 ÿ0.69
Shellm ÿ0.43 ÿ0.54
Shelltopm ÿ0.38 ÿ0.56
Eq(8) ÿ0.32 ÿ0.69
Eq(8) �msa ÿ0.32 ÿ0.79

The cutoff below which conformations were take
and the homeodomain, and 5 AÊ rmsd for calbindin
standard deviations separating the scores of the nat
age) were calculated over ensembles of 500 confo
``no ®lter'' condition of Table 1.
procedure might yield fairly accurate secondary
structure predictions, but although the procedure
did lead to a considerable increase in the native
secondary structure content relative to the starting
fragments (83% versus 61% correct in a three state
secondary structure prediction), the well estab-
lished PhD secondary structure method (Rost et al.,
1994) had an accuracy of 85% on the same set of
proteins. In contrast to the result with constraining
secondary structure, the ®xing of even one turn
(14% of the structure) substantially increased the
yield of good structures (Table 1). Thus, a rela-
tively small conformational constraint can compen-
sate for de®ciencies in scoring functions.
s with different scoring functions

2CRO 4ICB Average

ÿ0.38 ÿ0.48 ÿ0.40
ÿ0.04 ÿ0.69 ÿ0.47

0.08 ÿ0.38 ÿ0.23
0.08 ÿ0.59 ÿ0.24
ÿ0.55 ÿ1.05 ÿ0.63
ÿ0.42 ÿ1.02 ÿ0.55
ÿ0.70 ÿ0.48 ÿ0.31
ÿ0.39 ÿ1.31 ÿ0.69
ÿ0.66 ÿ0.59 ÿ0.56
ÿ0.64 ÿ0.89 ÿ0.62
ÿ1.12 ÿ0.87 ÿ0.75
ÿ1.08 ÿ1.29 ÿ0.87

n to be native-like was 4 AÊ rmsd for protein A
and cro repressor. The Z-scores (the number of
ive-like conformations from the ensemble aver-
rmations for each protein generated using the



Figure 8. rmsd versus score for simulated cro structures.
The vertical line indicates the rmsd cutoff for native-like
structures used in Table 3; the horizontal line, the score
of the native structure.
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Although drawing comparisons between simu-
lations and experiments in this area is undoubtedly
premature, there are some interesting parallels that
are worth noting. First, a number of mutations in
small proteins which increase helical propensities
have been found not to increase the rate of folding
(LoÂpez-HernaÂndez et al., 1997; Munoz & Serrano,
1996), consistent with the failure to signi®cantly
improve the yield of good structures in the simu-
lations by ®xing the secondary structure. Second,
the observation that ®xing a single turn dramati-
cally increases the yield of good structures is inter-
esting in the light of the ®nding that mutations
which disrupt particular turns can greatly slow the
rate of folding (H. Gu, D. Kim & D.B., unpublished
results).

Over the next several years it may be possible to
gain considerable insight by bringing together re-
sults from experiments and folding simulations.

Evaluation of scoring functions using the
ensembles of simulated structures

A variety of different knowledge-based scoring
methods/potential functions have been developed
in the last several years (Park & Levitt, 1996;
Jernigan & Bahar, 1996). One of the best methods
for evaluating scoring functions is to test their abil-
ity to recognize near-native conformations in large
sets of ``decoy'' structures (Park & Levitt, 1996).
The ensembles of conformations generated in the
course of this work constitute a particularly chal-
lenging set of decoys because of their largely
native-like solvent accessibility and secondary
structure patterns. To determine whether the simu-
lated structures had obvious non-protein-like fea-
tures as well as test different scoring functions, we
evaluated structures using scoring functions devel-
oped over the last several years primarily in
Levitt's group.

The scoring functions show a modest degree of
discrimination between native-like and non-native
con®gurations (Table 3 and Figure 8). The func-
tions are described in detail by Park & Levitt
(1996); Huang et al. (1995); and Park et al. (1997).
Very brie¯y, the HF (hydrophobic ®tness) function
assesses the extent to which the hydrophobic resi-
dues are sequestered into the protein core, the
Contact(HL), Contact(MJ), Shell, and Shelltop func-
tions are contact based scoring functions of the
form log [(number of contacts observed between resi-
dues i and j)/(number of contacts expected)] which
differ in the way contacts are de®ned and the ex-
pected number of contacts are estimated, and the
histogram, VdW(HL4), Shellm and Shelltopm are
different formulations of distance dependent scor-
ing functions. The average Z-scores of native-like
structures range from ÿ0.23 to ÿ0.62 for the differ-
ent functions. The discriminatory power of the dis-
t_env scoring function (equation (8)) was slightly
better than that of the other functions (Z score of
ÿ0.75). Computing scores using multiple sequence
information by averaging together the scores for
each sequence in a family gave a further modest
improvement in performance (Z score of ÿ0.87).
The signi®cance of Z-scores in this range is por-



Protein Tertiary Structures 219
trayed by the examples of individual score versus
rmsd plots shown in Figure 8.

Discussion

Derivation of scoring functions

The systematic derivation of scoring functions
presented here has a number of useful features.
First, the separation of sequence dependent and se-
quence independent contributions in equation (1)
divides the problem into two more manageable
subproblems that can be approached separately.
As made clear in the derivation leading to equation
(5), many current scoring functions consider only
the sequence dependent term and thus should not
be expected to be suf®cient for the ab initio folding
problem. Second, the series expansion of
P(sequence j structure) given in equation (8) provides
a recipe for combining environment and residue
pair speci®c effects in a systematic and non-redun-
dant manner.

Comparison to other folding simulation studies

Previous ab initio folding studies have focused
on either small proteins (Bowie & Eisenberg, 1994;
Wilson & Doniach, 1989; Yue & Dill, 1996; Kolinski
& Skolnick, 1994; Monge et al., 1994) or protein
fragments (Srinivasan & Rose, 1995; Avbelj &
Moult, 1995). The work in this paper was largely
inspired by the pioneering work of Bowie and
Eisenberg, which showed that reasonable protein
structures can be generated from sequence infor-
mation alone without disul®de constraints or large
numbers of free parameters. In the following sec-
tion our results are compared to those obtained in
earlier studies. In general, the results are compar-
able to or better than those of previously described
methods.

The folding of the 434 repressor has been simu-
lated in several previous studies. The best structure
in the set of 100 con®gurations (Table 1C) gener-
ated without using multiple sequence information
for the 434 repressor had an rmsd from native of
3.8 AÊ , and eight out of the 100 structures had an
rmsd of less than 5 AÊ . For comparison, in simu-
lations with ®xed secondary structure and a gen-
etic algorithm, �7.5% of trials yielded structures
within 7 AÊ rmsd of the native structure, but struc-
tures within 5 AÊ rmsd were not obtained (Monge
et al., 1995). In another approach using ®xed sec-
ondary structure and a genetic algorithm, the ®nal
predicted structure of the 434 repressor was >10 AÊ

rmsd from the native structure (Sun et al., 1995).
Better results were obtained by Bowie & Eisenberg
(1994), 33% of 200 folding trials yielded structures
with less than 4 AÊ dme (distance matrix error)
from the native state, but several parameters in the
scoring function were trained on this protein. For
the homeodomain and protein A, the striking fea-
ture of our results is the large fraction of reason-
ably native-like structures; good structures were
generated in previous studies, but the frequency of
success was not always reported (Bowie &
Eisenberg, 1994; Sun et al., 1995).

To our knowledge, the only simulation attempt
for calbindin utilized distance geometry with the
secondary structure elements kept ®xed (Mu-
manthaler & Braun, 1995); the average rmsd from
the native state among the top ten structures was
7.2 AÊ . Our procedure yielded several reasonable
structures for calbindin (Table 1). The best struc-
ture in the 100 runs described in Table 1 is shown
in Figure 9; the similarity in topology is clear both
in the ribbon drawing (Figure 9A) and in the con-
tact map (Figure 9B).

The success in folding this set of helical proteins
using a fairly broad range of methods is encoura-
ging, but we, like others, have had much less suc-
cess with b sheet containing proteins. Monge et al.
(1994) and Dandekar & Argos (1996) did obtain
good structures for a number of b strand contain-
ing proteins, but since the secondary structure was
held ®xed in most of these cases, the results are
not directly comparable to ours. Three structures
with less than 7 AÊ rmsd from the native state were
obtained in 100 simulations with protein G, an a/b
protein. Interestingly, the central helix was very
often present in the simulated structures, and the
two b hairpins were often partially formed, but the
secondary structural elements were not properly
packed. The ribosomal fragment, 1ctf, has three
helices and a three-stranded b sheet in which the
paired strands are not adjacent in the sequence. In
simulations, the helices and strands frequently
formed, but the strands did not come together to
form the sheet; the best structure in 100 runs had
an rmsd of 5.3 AÊ . The generation of b sheets from
unpaired b strands will require an explicit b strand
pairing term in P(structure) (see equation (2)); there
is nothing in our current expression for P(structure)
which favors strand pairing.

Evaluation of scoring functions using
decoy sets

The evaluation of the simulated structures using
alternative scoring functions provides insights into
both the structures and the scoring functions. The
scoring functions developed by Levitt's group cap-
ture a variety of different features of the residue
distributions in protein structures. The average
scores of close to native structures are better than
those of the overall population for all of the func-
tions, but the Z-scores are quite modest (ÿ0.23 to
ÿ0.69). On the positive side, this indicates that the
simulated structures have substantial protein-like
properties. On the negative side, the scoring func-
tions have relatively little discriminatory power:
this is highlighted in the score versus rmsd plots
shown in Figure 8. Among the contact based scor-
ing functions, the Shell functions appear to be
more discriminating than the Contact functions.
The histogram function was less discriminating
than the other distance dependent functions; this is



Figure 9. Comparison of the best calbindin structure generated in 100 simulations to the native structure. This
structure has an rmsd from native of 4.9 AÊ , and a dme of 3.8 AÊ . A, Stereo view of ribbon diagrams as depicted by
MOLSCRIPT (Kraulis, 1991). B, Contact maps. Native calbindin is in the upper right triangle, the simulated structure
on the lower left. Residue pairs separated by less than 7, 10, 15 AÊ are indicated by black, dark grey and light grey
squares, respectively.
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probably related to the fact that the histogram
function is very similar to that used in the gener-
ation of the simulated structures (equation (5)).
Park & Levitt (1996) tested the ability of the func-
tions to discriminate native-like from non-native
structures in large sets of compact self-avoiding
conformations with native-like secondary structure:
the average Z-scores for native-like structures were
considerably lower in their test case (� ÿ 1.5) than
for our simulated structures. The simulated struc-
tures are a more stringent test of the functions
since there are many fewer obviously incorrect
con®gurations (with hydrophobic residues ex-
posed, for example); because the functions are not
orthogonal, conformations with good scores using
one set of functions are more likely to have good
scores using the other functions than are exhaus-
tively generated structures.

Directions for future work

Current scoring functions evidently are not
capable of consistently distinguishing native-like
from non-native-like structures. What might be
missing? The most obvious feature that might dis-
tinguish native structure from the incorrect struc-
tures is side-chain packing, but preliminary side-
chain modeling studies have shown that many of
the non-native structures accommodate the side-
chains as well as the native-like structures (T.
Lybrand, D. Alonso & V. Daggett, personal com-
munication). An expert protein modeller concluded
that low resolution crystal structures are more
readily distinguished from true structures using
standard molecular modeling tools than many of
the non-native structures generated in this study
(T. Lybrand, personal communication). Other pos-
sibilities include differences in con®gurational en-
tropy (native structures may populate particularly
broad energy minima) and kinetic accessibility.

There is considerable room for improvement of
our current approach. A better expression for
P(structure) (see equation (2)) should improve the
results with b strand containing proteins. The ex-
pression for P(sequence j structure) should be im-
proved by incorporating additional features of the
residue environment such as secondary structure,
avoiding the binary cutoff in the de®nition of resi-
due burial (as indicated in Figure 3A, the cutoff at
16 neighbors misses most of the buried residues in
small proteins; better results are obtained with
lower cutoffs), and improving the treatment of the
limited data problem. Finally, further improve-
ments in the restriction of the conformational
search space could partially compensate for imper-
fect scoring functions. Nearest neighbor methods
are not optimal solutions to classi®cation problems
(Duda & Hart, 1973), and thus more sophisticated
procedures may yield better sets of starting frag-
ments; we are currently re®ning the sequence pat-
terns which correlate with local structure toward
this end (C. Bystroff & D.B., unpublished results).
Improvements in the search procedure such as
local moves (Elofsson et al., 1995) and genetic al-
gorithms are unfortunately not likely to help with
the current scoring functions: even the crude simu-
lated annealing method used here (10,000 cycles,
�three minutes of cpu time per structure) readily
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generated structures with better scores than the
native structure.

As found in earlier studies (Mumenthaler &
Braun, 1995; Park & Levitt, 1996), for any sequence
there are many conformations with substantial
amounts of native secondary structure in which
almost all the hydrophobic residues are buried.
Why the native state is so strongly preferred over
plausible incorrect structures with buried hydro-
phobic residues and substantial secondary struc-
ture is an important challenge for current studies
of protein folding.

Methods

Structure generation

Structures are represented using a simpli®ed model
consisting of the heavy atoms of the main-chain and the
Cb atom of the side-chain. For glycine residues, a virtual
Cb atom is used. All bond lengths and angles are held
constant according to the ideal geometry of alanine
(Engh & Huber, 1991); the only remaining variables are
the backbone torsional angles.

We use a simple nearest neighbor procedure to de®ne
the conformational search space. In previous studies, we
found stronger correlation between local sequence and
local structure for nine residue fragments than for other
fragment lengths of less than 15 amino acids (Bystroff
et al., 1996); thus we chose to build structures from seg-
ments of nine residues. Frequency distributions for the
20 amino acids at each position in the protein being
folded and in proteins of known structure (pdb select_25
Oct 95 list, Hobohm et al., 1992) were generated using
multiple sequence information when available from the
HSSP database (Sander & Schneider, 1991) and substi-
tution matrix based pseudo-counts (Henikoff &
Henikoff, 1996). For each segment S of length 9 in the
protein being folded, the 25 nearest sequence neighbors
in the structure database were identi®ed using a simple
distance measure (Han & Baker, 1995) that compares the
amino acid frequency distributions at each position in
the two segments:

DISTANCE �
X9

i

X20

aa

j S�aa; i� ÿ X�aa; i� j �9�

where S(aa,i) and X(aa,i) are the frequencies of amino
acid aa at position i in nine residue segments of either
the sequence being folded (S) or of one of the proteins in
Table 4. Similarity in structure of sequence nearest
neighbors to the experimentally observed structure

Sequence information used to
®nd fragments % Similar

Multiple sequence alignment 20.8
Single sequence 17.5
Random sequence 8.0

25 nearest neighbors of nine-residue fragments were chosen for
every position in a set of ten proteins (1aaj, 1edt, 1ifc, 1rec,
2pcdA, 1cskA, 1htp, 1lpe, 2ayh, 5p21; 1519 positions in total)
using the simple city block metric as described in Methods. The
percentage of the 25 neighbors within 1.0 AÊ dme from the
native structures are indicated. Pseudo-counts were added to
sequence pro®les using the BLOSUM62 substitution matrix
(Henikoff & Henikoff, 1992).
the pdb_select_25 set (X). The test of the nearest neigh-
bor strategy described in Table 4 shows that the percen-
tage of neighbors structurally similar to the true
structure is greater when multiple sequence information
is available and is considerably greater when either
single or multiple sequence information is used than ex-
pected by chance.

The conformation of each segment is chosen from the
ensemble of structures adopted by these sequence near-
est neighbors. Because the torsion space representation
assumes ideal bond lengths and angles, considerable in-
accuracies result from the use of torsion angles of PDB
structures directly. To minimize these problems, a ran-
dom torsion space search around torsion angles calcu-
lated from the crystal structure was conducted for each
PDB structure to identify a con®guration with ideal
bond lengths and angles with low rmsd of atomic coor-
dinates from the experimental structure. Torsional angles
for the nearest neighbors were taken from these ideal-
ized structures. All homologs of the proteins (greater
than 25% sequence identity) being folded were removed
from the data set to eliminate bias in both the fragments
and the scoring function.

The consistency of structure among the sequence near-
est neighbors of a segment reports on the consistency of
the sequence to structure mapping around the segment
in question (Han & Baker, 1995), and thus the reliability
of a prediction based on a set of nearest neighbors can
potentially be assessed even in the absence of knowledge
of the true structure (Yi & Lander, 1993). The correlation
between consistency of structure among the nearest
neighbors and the average similarity of the neighbors to
the true structure is quite striking (Figure 10). This corre-
lation can be used to choose optimal fragment sets for
building up a structure from the many local segments
with different boundaries and lengths which cover each
position in the sequence.

The starting con®guration in all simulations was the
fully extended chain. A move consists of substituting the
torsional angles of a randomly chosen neighbor at a ran-
domly chosen position for those of the current con®gur-
ation. The junctions between fragments were not
constrained and thus the local structure repertoire is
somewhat larger than that de®ned by the nearest neigh-
bor sets alone. Moves which bring two atoms within
2.5 AÊ are immediately rejected; other moves are evalu-
ated according to the Metropolis criterion using equation
(6). Simulated annealing was carried out by reducing the
temperature from 2500 to 10 linearly over the course of
10,000 cycles (attempted moves). To verify that native-
like structures exist in the conformational space de®ned
by the neighbor sets, simulated annealing runs were car-
ried out for each structure starting from an extended
chain using the distance matrix error (dme) as the scor-
ing function (Table 5; Bowie & Eisenberg, 1994). The
quality of the match was considerably better for the
shorter proteins, but still respectable for the longer pro-
teins. This sets the ``gold standard'' for the structurally
unbiased simulations described in Results. Local moves
(Elofsson et al., 1995) and genetic algorithms (Pederson &
Moult, 1996) might substantially improve the generation
of native-like structures.

Fidelis et al. (1994) suggested that building structures
from fragments was likely to be unsuccessful because of
the structural divergence of local fragments and the
weakness of local sequence-structural correlation. The
success of our procedure and others like it may be due
to two reasons: one, reasonable tertiary structures can be
assembled without near perfect local structural agree-



Table 5. Native-like structures can be generated from
the nearest neighbor fragment sets in less than 10,000
cycles of simulated annealing

Protein Fold rmsd (AÊ )

Homeodomain (a) 0.87
Calbindin (a) 3.45
Protein A (a) 0.42
Cro repressor (a) 2.97
Protein G (a/b) 4.61
Ribosomal fragment (a/b) 3.78

The sum of squares of the differences in the distances between
pairs of residues in the native and simulated structures was
minimized by simulated annealing. Only distances between
pairs of residues separated by less than 15 AÊ in the native
structure were considered. The rmsd of the most native-like
structure generated in 100 runs is indicated.

Figure 10. Correlation between structural variability
and similarity to the true structure in nearest neighbor
sets. For A and B, sequence nearest neighbors were
identi®ed for a series of different segment lengths for
positions 30 to 40 of calbindin. A, Average rmsd in phi
over residues i, i � 1, and i � 2 for the neighbor sets
indicated at the top. B, Average rmsd from the true
structure of calbindin for the same neighbor sets. The
lowest values in each row are indicated in red; there is
a strong correlation between low variability in the
neighbor sets and low rmsd from the true structure. C,
Variability in phi and rmsd from the native structure for
entire calbindin sequence. Each position is represented
by the segment with the lowest variability (red in A).
The four helices in the native structure are indicated by
hatched bars.
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ment between simulated and native structures and two,
even weak local sequence biases can signi®cantly affect
the likelihood of generating different tertiary structures.

Scoring functions

Implementation of equation (8) requires de®nition of
the residue environments. There is an obvious tradeoff
between the increase in quality of the representation
with the number of different environments considered
and the reduction in the amount of data available for
the estimates in the second term in equation (8). For
this paper we have adopted a compromise approach:
the environment is de®ned in both terms of equation
(8) by the number of Cb atoms of other residues within
10 AÊ of the residue in question, but in the ®rst term
where there is plenty of data, each number of neigh-
bors is considered a separate environment, whereas in
the second term, only two environments de®ned by a
binary cutoff at 16 neighbors are used. Limited data
problems were crudely treated by neglecting terms de-
termined by fewer than ten observations in the data-
base.

Noise in the scoring functions is more of a problem in
ab initio folding than in threading because con®gurations
can relax to ®t the noise. The HSSP database of multiple
sequence alignments for proteins of known structure
(Sander & Schneider, 1991) was used to increase the
number of counts contributing to the scoring functions.
Because the different sequences in a multiple sequence
alignment are not independent, each pair of residues
contributed a factor of 1/(number of sequences in the family)
to the relevant pairwise histograms; the total contri-
butions of each family to the scoring functions are thus
equal. To assess the quality of the additional information
in multiple sequence alignments, we constructed scoring
functions corresponding to equation (5) for a frequently
occurring pair, isoleucine-leucine, using a subset of the
protein families such that the total number of counts was
roughly the same as that for very rare pairs of amino
acids when all families were used. To clarify the differ-
ences between the functions, the small data correction
was not made for this test. The scoring function con-
structed from the multiple sequence alignments for the
small protein subset (Figure 11, open circles) is much clo-
ser to the scoring function derived from all of the fa-
milies (Figure 11, ®lled circles) than is the scoring
function constructed from single sequences (Figure 11,
open triangles). Thus, multiple sequence alignments



Figure 11. Multiple sequence information can reduce
small sample size related noise in scoring functions. The
negative logarithm of equation (5) for isoleucine-leucine
pairs was calculated using either the entire pdbselect 25
set of proteins (®lled circles), a randomly selected pro-
tein subset of the pdbselect set (triangles), or the same
subset and the corresponding HSSP ®les to augment the
numbers of residue pair counts (open circles). The mul-
tiple sequence information considerably reduces the
noise in the small subset functions without biasing them
substantially away from the best estimate obtained
using all of the data.
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should improve the quality of the scoring functions for
rare amino acid pairs. Unless otherwise indicated, mul-
tiple sequence alignments were used for both fragment
picking and in the generation of the scoring functions in
all simulations.

Assessment of structure quality

For each protein under study, 100 simulations were
performed using a variety of different conditions (sum-
marized in Table 1). The average rmsd from the native
state for random compact structures increases with chain
length (Cohen & Sternberg, 1980) and thus the number
of low rmsd structures is expected to be greater for
shorter sequences. To derive a length independent
measure of the success of simulations, we evaluated the
mean and standard deviation of the rmsd from the
native state for randomly generated compact structures
with the same length as the native sequence (random all,
Table 1). Following Cohen & Sternberg (1980) we de®ne
a length independent quality factor Q:

Q � hrmsdisimulated ÿ hrmsdirandom compact

srandom compact
�10�

where hrmsdisimulated is the average rmsd from the native
state among the 100 structures generated for each simu-
lation condition, and hrmsdirandom and srandom are the
mean and the standard deviation in rmsd from the
native state for the random compact structures.

Protein coordinates were taken from the Brook-
haven National Archive (Bernstein et al., 1977). Homeo-
domain, 1HDD chain C (Kissinger et al., 1990);
calbindin, 4ICB (Svensson et al., 1992); protein A, 1FC2
chain C (Deisenhofer, 1981); cro repressor, 2CRO (Mon-
dragon et al., 1989b), 434 repressor, 1R69 (Mondragon
et al., 1989a); protein G, 2GB1 (Gronenborn & Clore,
1991); ribosomal fragment, 1CTF (Leijonmarck & Liljas,
1987).
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