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ABSTRACT A major limitation of current com-
parative modeling methods is the accuracy with
which regions that are structurally divergent from
homologues of known structure can be modeled.
Because structural differences between homolo-
gous proteins are responsible for variations in pro-
tein function and specificity, the ability to model
these differences has important functional conse-
quences. Although existing methods can provide
reasonably accurate models of short loop regions,
modeling longer structurally divergent regions is
an unsolved problem. Here we describe a method
based on the de novo structure prediction algo-
rithm, Rosetta, for predicting conformations of struc-
turally divergent regions in comparative models.
Initial conformations for short segments are se-
lected from the protein structure database, whereas
longer segments are built up by using three- and
nine-residue fragments drawn from the database
and combined by using the Rosetta algorithm. A gap
closure term in the potential in combination with
modified Newton’s method for gradient descent mini-
mization is used to ensure continuity of the peptide
backbone. Conformations of variable regions are
refined in the context of a fixed template structure
using Monte Carlo minimization together with rapid
repacking of side-chains to iteratively optimize back-
bone torsion angles and side-chain rotamers. For
short loops, mean accuracies of 0.69, 1.45, and 3.62 Å
are obtained for 4, 8, and 12 residue loops, respec-
tively. In addition, the method can provide reason-
able models of conformations of longer protein seg-
ments: predicted conformations of 3Å root-mean-
square deviation or better were obtained for 5 of 10
examples of segments ranging from 13 to 34 resi-
dues. In combination with a sequence alignment
algorithm, this method generates complete, un-
gapped models of protein structures, including re-
gions both similar to and divergent from a homolo-
gous structure. This combined method was used to
make predictions for 28 protein domains in the
Critical Assessment of Protein Structure 4 (CASP 4)
and 59 domains in CASP 5, where the method ranked
highly among comparative modeling and fold recog-
nition methods. Model accuracy in these blind pre-
dictions is dominated by alignment quality, but in
the context of accurate alignments, long protein

segments can be accurately modeled. Notably, the
method correctly predicted the local structure of a
39-residue insertion into a TIM barrel in CASP 5
target T0186. Proteins 2004;55:656–677.
© 2004 Wiley-Liss, Inc.
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INTRODUCTION

Comparative modeling is based on the observation that
proteins with similar sequences almost always share
similar structures (for review, see Ref. 1). Structure predic-
tion by comparative modeling is initiated by aligning the
query sequence to a parent sequence of known structure.
For residues that can be aligned, the backbone coordinates
of the model are based closely on the coordinates of the
parent structure. Residues in the query sequence that
cannot be aligned to the parent sequence because of
insertions and deletions cannot, by definition, be modeled
by using the parent structure as a template. Models for
such segments of the protein must be constructed by
alternate prediction methods. In addition, regions where
sequence similarity is weak and/or alignment uncertain
are also candidates for methods targeted at predicting
conformations for protein segments corresponding to align-
ment gaps. Currently, �30% of known sequences have
sufficient sequence similarity to a known structure for
current comparative modeling methods. One third of these
sequences are similar over �80% of their length; conse-
quently, complete three-dimensional (3D) models cannot
be generated by homology-based methods alone.2 Because
sequence and structure divergence between homologous
family members is responsible for changes in protein
function and specificity, accurately modeling the struc-
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tural differences between similar structures is an impor-
tant goal of protein structure prediction.

Traditionally, loop modeling is defined as the problem of
constructing 3D atomic models for short protein segments
corresponding to loops on the proteins surface that connect
regular secondary structure elements. Much attention has
been focused on this problem, and several methods have
been described that predict loop conformations up to about
8–12 residues with accuracies comparable to the accuracy
of models obtained by homology-based methods. Modeling
of longer segments of protein structures has received
significantly less attention and remains generally an
unsolved problem. Here, we use the term structurally
variable region (SVR) modeling to refer to prediction of the
conformation of any protein segment in the context of a
framework or template structure, regardless of the seg-
ment length, secondary structure content, or surface expo-
sure. We describe a method based on the successful de
novo structure prediction method Rosetta3,4 for modeling
SVRs. In combination with an alignment algorithm to
generate template structures, the SVR modeling method
allows complete atomic models of proteins to be generated
by combining both homology-based and de novo strategies.
Complete models for comparative modeling and fold recog-
nition targets were predicted by using this combined
strategy and submitted to the Critical Assessment of
Structure Prediction (CASP 4 and CASP 5), where the
method was ranked highly.5,6

A thorough review of the extensive literature on loop
modeling methodologies is beyond the scope of this article.
Instead, we focus here on general approaches to and
distinctions among loop modeling strategies to place the
Rosetta-based strategy in context with respect to other
methods, as well as to highlight novel contributions. Loop
modeling methods primarily differ in the method of confor-
mation generation and in the evaluation or scoring of
alternate conformations. Algorithms can be generally
grouped into knowledge-based methods, de novo or ab
initio strategies, and combined approaches. The knowledge-
based approach uses the database of experimental protein
structures as a source of loop conformations.7–14 Gener-
ally, such loop conformations are evaluated by using a
knowledge-based potential or rule-based filters, evaluat-
ing such criteria as geometric fit and sequence similarity
to select likely loop conformations. In the de novo ap-
proach, loop conformations are generated by a variety of
methods including molecular dynamics,15,16 simulated
annealing,17,18 exhaustive enumeration or heuristic sam-
pling of a discrete set of (�, �) angles,19–23 random
tweak,24,25 or analytical methods.26,27 Such de novo gener-
ated conformations are often evaluated by using compo-
nents of molecular mechanics force fields, with a variety of
treatments of electrostatics and solvation.18,25,28 Knowl-
edge-based potentials have also been used in combination
with conformational sampling methods, as have energy
functions that combine molecular mechanics force-field
terms with statistical potentials.17

Several studies have also combined knowledge-based
and de novo methods in a hybrid approach to loop model-

ing. Mas et al.29 used a combination of database and
conformational search methods to model the hypervari-
able loops in an antibody; the conformational search
method was used both to verify conformations selected
from the set of canonical structures and to model de novo
the conformation of one loop for which canonical conforma-
tions could not be reliably identified. Martin et al.30

proposed a method that relied on conformational search
for short (�5 residues) loops and database search for
medium (6–7 residues) loops; long loops were predicted by
a hybrid approach in which the central residues in a
database-selected conformation were reconstructed by con-
formational search. In a sequential approach to combining
database and conformational searching, VanVlijmen and
Karplus11 demonstrated that performance of a database
method could be improved by subsequent optimization and
ranking with a molecular mechanics potential. Deane and
Blundell13 described a combined approach that uses the
consensus predictions of a knowledge-based and de novo
loop modeling method. Sudarsanam et al.31 used exhaus-
tive sampling of dimers of discrete set of (�, �) angles but
derived this angle set from angles sampled in known
protein structures.

The Rosetta-based method described here is a novel
approach to combining database-derived conformations
and de novo prediction for loop modeling. In the Rosetta
method, originally developed for de novo prediction of
entire protein domains, structures sampled by local se-
quences are approximated by the distribution of structures
seen for those short sequences and related sequences in
the Protein Data Bank (PDB). These fragments are then
assembled in a Monte Carlo search strategy using a
scoring function that favors nonlocal properties of native
protein structures such as hydrophobic burial, compact-
ness, and pairing of �-strands. Using only primary se-
quence information, successful de novo Rosetta predic-
tions of entire protein domains yield models on the order of
3–7 Å C� root-mean-square deviation (RMSD) to native for
substantial fragments (�60 residues) of the query se-
quence.32,33

The fragment assembly strategy used by Rosetta is
currently perhaps the most successful method for de novo
structure prediction, and it may be particularly well suited
to modeling SVRs in proteins. By building conformations
from smaller fragments, the problem of adequate sampling
in the database for longer loops encountered in knowledge-
based methods can be potentially overcome, while still
restricting the conformational search to a tractable size—a
problem encountered by de novo loop modeling methods
for longer segments. Furthermore, the fragment buildup
strategy allows regular secondary structure to be easily
incorporated in predictions for longer SVRs, overcoming a
limitation of many de novo loop modeling strategies.
Consequently, the method is not limited to protein loops
but is applicable to SVRs of any size. A final novel
approach used in the current method is the simultaneous
modeling of side-chain and backbone conformations using
idealized geometry and a rotamer approximation of side-
chain conformation. The use of rotamer representations of
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the side-chains during optimization of backbone conforma-
tions further reduces the complexity of the search space
while allowing an atom-based potential function to be used
for optimization.

MATERIALS AND METHODS

The SVR modeling method described here uses the
Rosetta scoring function and fragment insertion methodolo-
gies developed for de novo structure prediction.3,4 In brief,
a customized library of fragments for each three-and
nine-residue window in the protein sequence is selected
from a database of known protein structures on the basis
of local sequence similarity and similarity between the
known and predicted secondary structure. These frag-
ments are then assembled by using a Monte Carlo simu-
lated annealing search strategy in which fragments are
randomly inserted into the protein chain by replacing the
backbone torsion angles in the protein chain with those in
the fragment. The resulting protein conformation is then
evaluated according to a protein database-derived scoring
function that rewards native-like protein properties (see
below). In the standard Rosetta protocol for de novo
structure prediction, a reduced representation of the pro-
tein is used: backbone heavy atoms and C� atoms are
explicitly included, whereas side-chains are represented
by a single centroid. As described below, structure predic-
tion simulations used a combination of this reduced pro-
tein representation and an all heavy atom representation
with explicit side-chain rotamers.

Database Search

Like the de novo Rosetta protocol, the modeling strategy
used here also uses a combination of database-derived
fragments that approximate local conformational prefer-
ences and a Monte Carlo simulated annealing minimiza-
tion of a target energy function. Given a sequence align-
ment between the query and a parent homologue of known
structure, the protein structure is divided into template
regions and SVRs, which are defined as sections of the
chain whose torsion angles cannot be approximated by
using those of the parent structure and may include loops,
larger insertions, regions of uncertain alignment, and
aligned regions where significant structural perturbations
are expected. Template regions include all residues whose
backbone torsion angles and Cartesian coordinates are
taken directly from the parent structure and held fixed
throughout the simulations. Cofactors and ligands present
in the homologue structure are included in the fixed
template coordinates. As in the standard Rosetta protocol,
a customized library of three- and nine-residue fragments
is selected for the protein sequence and used as described
below.

For each SVR of 15 residues or less, an additional
customized library of 200–300 possible conformations for
the SVR is extracted from the protein structure database.
The scoring function used to evaluate these initial loop
conformations is a modified form of the scoring function
used to generate fragment libraries in the de novo Rosetta
protocol and ranks protein segments according to four

criteria: 1) sequence profile–profile similarity over the
SVR, 2) similarity of the predicted and known secondary
structure over the SVR, 3) similarity between secondary
structure of template residues adjacent to the SVR in the
query and the candidate database conformation, and 4)
geometric fit of the database conformation to the template.
The process proceeds in two stages. First, a large database
representative of the diversity in the nonredundant PDB
is coarsely screened for the top 2000 segments that score
well by a composite of the four criteria. To select a final set
from this pool of 2000, the segments are ranked first by one
of the criteria listed above; the top 250 conformations are
then reranked by a second criteria, and the top 25 confor-
mations are retained. The culling process is then repeated
with use of other criteria. A variety of orders of ranking
criteria are used in the culling sequence, and then all the
sets are combined into the final library with duplicates
removed. The resulting database of initial conformations
is comprised of a narrow set of segments when there is a
consensus among the methods and a diverse set when
there is a lack of consensus, consistent with the philosophy
that a diverse set is preferable to a narrower but poten-
tially incorrect set.

Conformational Search

Multiple independent Monte Carlo-simulated annealing
optimizations are conducted from different random seeds
for each SVR. For each individual simulation, an initial
database conformation is selected randomly from the
customized library and built onto the fixed template by
requiring chain connectivity at either the N- or C-terminal
template-SVR junction and allowing discontinuities in the
protein backbone at the other junction. The selection of the
junction for chain discontinuity is random for each simula-
tion. Initial conformations for SVRs � 15 residues in
length are generated by using the standard Rosetta de
novo protocol of randomly inserted nine-residue fragments
from the customized library into an initially extended
protein chain.3,4 The generation of these initial conforma-
tions is conducted in the context of the template but
without evaluation of the geometric fit of the variable
region to the template.

SVRs greater than seven residues in length are then
subjected to Monte Carlo optimization by using a move set
of three- and nine- (for SVRs longer than 15 residues)
residue fragments. Fragments are either selected ran-
domly from the library or prescreened to bias selection
toward fragments that improve the geometric fit of the
SVR to the template stems as measured by a gap penalty
(see below). Fragment insertions are also combined with a
“wobble” operation in which backbone (�, �) angles within
or adjacent to the fragment insertion site are perturbed to
minimize a cost function consisting of the gap penalty and
the torsion potential (see below). In addition to fragment
insertions, backbone conformations of SVRs are also modi-
fied by using random small changes in �, � angle pairs of
individual residues or compensating changes of (�i-1, �i)
pairs. These random angle perturbation moves are also
combined with the wobble operation. The combination of
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the various types of conformation modification operators is
selected so that moves become progressively more local
and less globally perturbing during the course of the
simulation. The conformational search is conducted by
using a Monte Carlo search followed by a two-stage Monte
Carlo minimization strategy.34 In the first stage, a single
line minimization along the gradient is conducted for each
attempted move, whereas in the second, the variable
metric method of Davidon–Fletcher–Powell is used to find
the nearest local minimum of the potential energy surface
following each initial conformation modification.35

Following the optimization using centroid side-chain
representations, full-atom coordinates of the side-chains
are generated by using a simulated annealing algorithm
and a backbone-dependent rotamer library.36,37 Addi-
tional optimization using small backbone torsion angle
perturbations and the full-atom potential (see below) is
conducted by using the Monte Carlo minimization strat-
egy, iteratively updating the backbone and side-chain
conformations. After modification of the backbone torsion
angles, side-chain coordinates are updated by adjusting 	
angles to their preferred values for the particular rotamer
given the new backbone torsion angles. Rotamers at each

position in the SVR and spatially adjacent template re-
gions are then updated, in a randomly selected order, by
using the rotamer at each position that gives the best
energy according to the full-atom potential (see below). At
the conclusion of the energy minimization protocol, the
side-chains at all positions are completely repacked by
using the simulated annealing protocol.

Energy Function

The standard Rosetta potential is derived from a Bayes-
ian treatment of native protein structures and is com-
prised of two general classes of terms.3,4 The first class of
terms, which describe the probability of a structure inde-
pendent of sequence, reward native-like arrangements of
secondary structure and overall compactness. A second
class of terms, describing the probability of a particular
sequence given a structure, reward burial of hydrophobic
residues and specific pair interactions and penalize van
der Waals clashes. For the portions of simulations using
reduced side-chain representations, this standard Rosetta
potential is modified to include a gap penalty that penal-
izes chain discontinuities. This gap penalty is calculated
as the RMSD between the fixed coordinates of the first

TABLE I. Short Loop Reconstruction Results

Protein Length Residues
Native
score

Best scoreb

Enrichment

Best RMSD-G

RMSD-L
(Å)

RMSD-G
(Å) Rankc Score

RMSD-L
(Å)

RMSD-G
(Å) Score

2act 8 198–205 
66 2.38 3.79 192 
694 2.84 1.42 2.10 
677
2apr 8 76–83 
914 1.06 2.54 226 
930 1.33 0.33 0.53 
912
2fb4 7 H26–H32 
949 1.12 1.79 15 
961 4.80 0.64 0.97 
958
2fbj 7 H100–H106 
1772 0.34 0.98 1 
1744 4.89 0.34 0.98 
1744
3blm 5 131–135 
1191 0.18 0.43 84 
1215 4.89 0.18 0.21 
1200
3dfr 4 20–23 
1215 0.44 0.80 84 
1237 3.20 0.19 0.34 
1215
3dfr 5 89–93 
1215 0.78 0.96 21 
1256 0.71 0.42 0.83 
1234
3dfr 5 120–124 
1215 0.64 0.76 98 
1231 1.69 0.27 0.34 
1181
3grs 7 83–89 
1447 0.61 0.97 23 
1484 6.04 0.29 0.30 
1464
3sgb 9 E199–E211 
1422 0.80 1.10 6 
1393 1.24 0.66 0.90 
1371
5cpa 7 231–237 
824 0.89 1.22 36 
847 3.38 0.54 0.77 
821
8abp 6 203–208 
913 0.44 0.56 35 
949 4.44 0.27 0.31 
933
8tln 7 E32–E38 
1180 2.10 2.62 71 
1220 0.44 0.84 1.24 
1168
8tln 8 E248–E255 
1221 0.75 1.52 11 
1250 5.78 0.42 0.76 
1239

aRatio of the relative occurrence of the 15% lowest RMSD-G conformations in the 15% best scoring population compared with the entire
population.
bBest-scoring conformation of 500 independent optimizations.
cRank order by RMSD-G of the best-scoring conformation.

TABLE II. Accuracy of 4-, 8- and 12-Residue Segment Predictions†

Length

Best scorea

Mean
enrichmentb

Best RMSD-G

Mean (median)
RMSD-L (Å)

Mean (median)
RMSD-G (Å)

Mean (median)
RMSD-L (Å)

Mean (median)
RMSD-G (Å)

4 0.42 � 0.05 (0.31) 0.69 � 0.06 (0.54) 2.9 � 0.3 0.21 � 0.02 (0.18) 0.30 � 0.03 (0.25)
8 0.97 � 0.10 (0.79) 1.45 � 0.14 (1.20) 3.6 � 0.2 0.50 � 0.03 (0.47) 0.67 � 0.05 (0.59)

12 2.23 � 0.15 (2.29) 3.62 � 0.31 (3.65) 2.6 � 0.2 1.28 � 0.08 (1.30) 1.66 � 0.10 (1.76)
†Reported uncertainties are the standard error of the mean.
aBest-scoring conformation of 1000 independent optimizations.
bRatio of the relative occurrence of the 15% lowest RMSD-G conformations in the 15% best-scoring population compared with the entire
population.
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template residue at each discontinuous template-variable
segment junction and the coordinates of this residue
determined from the dihedral angles and coordinates of
the adjacent variable residue. This same gap penalty score
is used in evaluating geometric fit of database conforma-
tions to the template.

For all backbone conformation modifications that intro-
duce (�, �) angles not taken directly from the fragment
library (i.e., random angle perturbation, “wobble” opera-
tions, and minimization), torsion angles are evaluated by
using a secondary structure-dependent torsion poten-
tial.38 This knowledge-based potential is derived from a
nonredundant set of protein X-ray structures of �2.5 Å
resolution. For each of the 20 amino acid types in each of
three secondary structure types (helix, strand, and other
as defined by DSSP39), the frequency of (�, �) pairs was
determined for 10° � 10° bins. Probability distributions
were smoothed by using pseudocounts, and the potential
was calculated by taking the logarithm of the interpolated
probabilities. Randomly selected small angle perturba-
tions, which move backbone conformations away from
those represented in the fragment libraries, are discarded
according to a Boltzman criterion if they represent an
increase in this torsion energy. For moves involving pertur-
bation of backbone angles to minimize a cost function, the

torsion potential was included in the target cost function.
Backbone  angles are only modified by fragment insertion
and are not evaluated in the torsion potential.

The rotamer packing and rotamer replacement algo-
rithms use the full-atom potential of Kuhlman and Baker37

with the following modifications: The hydrogen bond poten-
tial term used by Kuhlman and Baker is replaced with a
hydrogen bond potential derived from PDB statistics. The
energies of main-chain–main-chain, side-chain–side-chain,
and main-chain–side-chain hydrogen bonds are estimated
as a function of the donor and acceptor hybridization and
the geometry of the hydrogen bond based on the observed
distribution of these parameters in protein crystal struc-
tures.40 The full-atom potential was also supplemented
with the torsion potential and gap penalty that was
incorporated into the standard Rosetta potential (see
above). The complete full-atom potential is thus comprised
of 1) the attractive portion of the 12-6 Lennard–Jones
potential, 2) a linear repulsive term used in place of the
repulsive portion of the 12-6 potential, 3) backbone-
dependent internal free energies of the rotamers esti-
mated from PDB statistics, 4) solvation energies calcu-
lated by using the model of Lazaridis and Karplus,41 5) a
knowledge-based pair potential, 6) the hydrogen-bonding
potential described above, 7) the knowledge-based back-
bone torsion potential described above, and 8) the gap
penalty described above. This potential is used both for
iterative optimization of the SVR backbone and all rotam-
ers and to rank the final population of conformations.

CASP Predictions

For CASP predictions, alignments between the query
and parent homologue sequences were generated by using
a Smith–Waterman algorithm using PSI-BLAST42 profile–
profile scores, similarity of predicted and known secondary
structure, and structural and functional constraints im-
plied by FSSP/DALI topological family sequence profiles.43

Penalties for insertions and deletions were assigned in a
structure-dependent manner using known protein struc-
tures to assess the probability of an insertion or deletion of
a particular length given the spatial and geometric con-
straints imposed by flanking residues in the parent struc-
ture.44 Given the alignment between the target sequence
and a homologous parent, gaps, insertions, and regions of
low-confidence alignment were treated as SVRs.

All SVRs in the target were simultaneously optimized.
From the set of resulting models, conformations for each
SVR were ranked independently in the context of the fixed
template, discarding any conformations that resulted in
knots or large-chain discontinuities and retaining the
lowest-energy conformations. Combinations of low-energy
conformations for each SVR were then evaluated simulta-
neously to identify low-energy combinations of conforma-
tions for all SVRs. The modeling strategy used for CASP 4
targets was an earlier version of the current method and
differs from the method described above in several aspects.
The primary differences are as follows: 1) the Monte Carlo
plus minimization strategy was not used, and all optimiza-
tion occurred by Monte Carlo search, 2) optimizations

Fig. 1. Comparison of accuracies for loops in Table I predicted by four
different methods. The accuracies of previously published predictions by
three methods are shown as black plus symbols (Van Vlijmen and
Karplus11), green x symbols (Fiser et al.17), and red squares (Deane and
Blundell13). Prediction accuracies from the current work are shown as
blue circles. RMSD-G is the RMSD of loop residues after superposition of
the stem residues (see text). For the Fiser et al. and Rosetta predictions,
all backbone heavy atoms (N, CA, C, O) are included in RMSD-G
evaluations. For the predictions of Van Vlijmen and Karplus and Deane
and Blundell, only N, CA, and C atoms are included in RMSD-G
evaluations. Modeled segments are identified by PDB code and first
residue.
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generally used only centroid representations of side-
chains, although complete heavy atom side-chain coordi-
nates were generated for the final models using the
simulated annealing rotamer-packing algorithm, and 3)
coding errors present at the time of CASP 4 limited the
effectiveness of the optimization. CASP 5 targets used the
standard protocol described here, but final loop conforma-
tions were selected manually from the top ranked confor-
mations (ranked by energy or cluster size in single-linkage
cluster analysis) to eliminate loop combinations resulting
in models with steric clashes and/or knots. In addition,
although homologous proteins were excluded from the
structure database for segment reconstruction tests, ho-

mologous proteins were used when available for CASP
predictions.

Evaluation of Model Accuracy

To evaluate both the accuracy of the SVR itself, as well
as the accuracy of the SVR orientation with respect to the
rest of the protein, we report two metrics of model accu-
racy. RMSD-L is a measure of the model accuracy in a local
context and is the RMSD between the model and native
over all backbone heavy atoms in the SVR after optimal
superposition of the SVR. RMSD-G reports the correctness
of both the predicted SVR conformation and its orientation
with respect to the template and is the RMSD between the

TABLE III. Four-Residue Segment Reconstruction Predictions

Protein Residues Sequence

Best scorea

Enrichmentb

Best RMSG

RMSD-L RMSD-G RMSD-L RMSD-G

1aaj 82–85 FTEA 0.14 0.25 4.58 0.13 0.21
1ads 99–102 LKLD 0.22 0.28 2.44 0.16 0.18
1bam 92–95 PIDV 0.61 1.07 5.82 0.62 1.03
1bgc 40–43 HKLC 0.89 1.03 1.47 0.51 0.55
1cbs 21–24 VLGV 0.12 0.29 3.64 0.16 0.18
1fkf 42–45 RNKP 0.16 0.28 3.51 0.11 0.13
1frd 59–62 DQSD 1.07 1.75 0.40 0.24 0.29
1gpr 123–126 NVPS 0.55 0.97 3.20 0.28 0.35
1iab 100–103 FYHE 0.58 0.75 2.89 0.17 0.28
1mba 97–100 GFGV 0.23 1.01 3.56 0.15 0.22
1nfp 37–40 EDTS 1.20 1.49 1.56 0.53 0.58
1pbe 117–120 GATT 0.29 0.57 3.47 0.19 0.25
1pda 139–142 RRPD 0.23 0.32 2.71 0.15 0.17
1pgs 226–229 LGAL 0.83 1.38 0.76 0.17 0.28
1plc 74–77 LSNK 0.37 0.44 3.47 0.26 0.27
1ppn 42–45 TGNL 0.19 0.23 1.29 0.15 0.19
1prn 66–69 GNAA 0.26 0.39 2.98 0.21 0.24
1rcf 111–114 QRGG 0.16 0.25 2.67 0.16 0.25
1tca 287–290 AGPK 0.27 0.43 1.11 0.17 0.22
1thw 194–197 PGSS 1.09 1.28 0.53 0.18 0.28
1tib 46–49 KADA 1.18 1.38 1.24 0.10 0.16
1tml 42–45 FAHH 0.36 0.50 4.22 0.36 0.50
1tys 131–134 SAWN 0.67 1.15 3.07 0.21 0.56
1xif 82–85 TGMK 0.30 0.41 1.87 0.14 0.19
1xnb 30–33 WSNT 0.20 0.51 5.20 0.39 0.44
2cmd 163–166 GKQP 0.28 0.60 2.00 0.19 0.22
2cy3 101–104 KDKK 0.33 0.55 2.53 0.16 0.25
2cyp 127–130 RCGR 0.47 0.81 2.18 0.20 0.33
2cyrc 69–71 HAK 0.23 1.12 3.07 0.16 0.45
2exo 161–164 DPTA 0.48 1.03 4.67 0.38 0.40
2sga 44–47 LGFN 0.33 0.43 5.24 0.15 0.25
2sil 220–223 LPSG 0.32 0.66 1.16 0.19 0.26
2tgi 72–75 ASAS 0.34 0.50 5.02 0.15 0.19
3cla 27–30 HRLP 0.13 0.39 0.58 0.11 0.25
4enl 335–338 EKKA 0.25 0.54 6.62 0.17 0.28
4gcr 116–119 FHLT 0.41 0.58 2.49 0.15 0.21
5fd1 81–84 ITEK 0.21 0.53 0.62 0.21 0.31
5p21 75–78 GEGF 0.46 0.87 1.51 0.16 0.28
7rsa 47–50 VHES 0.11 0.18 5.02 0.12 0.17
8abp 55–58 ASGA 0.13 0.20 3.82 0.12 0.16

aTop-scoring conformation of 1000 independent optimizations.
bRatio of the relative occurrence of the 15% lowest RMSD-G conformations found in the 15% best-scoring population compared with the entire
population.
cThree residues only; conformation A of Lys 71 was used as native reference.
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model and native of all heavy backbone atoms in the SVR
after optimal superposition of three adjacent stem resi-
dues on each side of the SVR. For short loops, RMSD-G is
the critical measure of accuracy. Most interactions of
atoms in short loops are with the template portion of the
protein, and correctly predicting the orientation of the loop
with respect to the protein core is the primary goal of
modeling. For longer SVRs, including insertions compris-
ing intact structural modules, RMSD-L becomes an increas-
ingly relevant metric of model accuracy. Although correct
prediction of both the structure of the segment itself and
its orientation with respect to the protein core is the end
goal of SVR modeling, this goal is generally beyond the
capabilities of current methods. Consequently, the accu-
racy with which SVR structure can be predicted without

requiring correct global orientation is a relevant quality
indicator. Furthermore, models with correct structure but
incorrect orientation likely still include useful structural
information.

For purposes of evaluating SVR modeling in CASP
targets, a third metric, RMSD-E, is also evaluated to
quantify the structural accuracy of the local environment
in which the SVR is predicted. RMSD-E is the RMSD
between the model and native conformations evaluated
over the three stem residues N- and C-terminally adjacent
to the SVR after optimal superposition of these residues.
For the segment reconstruction tests, the “template” corre-
sponds exactly to the native protein backbone structure,
and all RMSD-E values are 0 Å. For CASP targets and, in
fact any realistic comparative modeling problem, both

TABLE IV. Eight-Residue Segment Reconstruction Predictions

Protein Residues Sequence

Best scorea

Enrichmentb

Best RMSG

RMSD-L RMSD-G RMSD-L RMSD-G

1351 84–91 LSSDITAS 1.37 1.63 2.44 0.59 0.66
1alc 34–41 SGYDTQAI 0.79 1.09 5.29 0.30 0.46
1art 88–95 FGKGSALI 2.08 3.16 3.82 1.00 1.46
1btl 50–57 DLNSGKIL 0.43 0.63 6.04 0.27 0.41
1cbs 55–62 STTVRTTE 0.52 0.76 4.40 0.35 0.50
1clc 313–320 FRPYDPQY 0.29 1.01 6.27 0.38 0.50
1ddt 127–134 FGDGASRV 2.10 2.94 1.02 0.44 0.69
1fnd 262–269 LKKDNTYV 0.36 0.51 4.22 0.25 0.28
1gky 72–79 QFSGNYYG 0.38 0.72 5.64 0.41 0.48
1gof 606–613 VPSDSGVA 0.76 1.11 3.07 0.54 0.60
1hbq 31–38 DPEGLFLQ 1.17 2.37 1.91 1.21 1.32
1hfc 142–149 SNVTPLTF 0.56 0.68 1.33 0.46 0.49
1iab 48–55 RTTESDYV 2.11 2.92 2.18 0.77 0.83
1ivd 413–420 EGKSCINR 0.97 1.36 4.84 0.51 0.65
1lst 101–108 PIQPTLES 0.47 1.02 2.93 0.35 0.54
1mpp 74–81 TYGTGGAN 1.57 2.55 2.76 0.67 0.73
1nar 192–199 FSNQQKPV 1.04 1.27 4.71 0.50 0.73
1oyc 80–87 GGYDNAPG 0.60 0.68 6.09 0.41 0.51
1phf 85–92 CPFIPREA 0.71 1.12 2.31 0.71 1.12
1poa 71–78 CSQGTLTC 1.15 1.80 4.40 0.50 0.89
1prn 150–157 DPDQTVDS 2.38 2.76 3.20 0.63 0.69
1sbp 107–114 KQIHDWND 0.32 1.07 3.87 0.30 0.45
1thw 18–25 SKGDAALD 0.62 1.01 0.67 0.62 1.01
1tml 187–194 NTSNYRWT 0.75 1.51 3.78 0.37 0.50
1tys 83–90 WADENGDL 0.46 0.86 2.22 0.37 0.47
1xnb 99–106 KSDGGTYD 0.34 0.72 3.87 0.24 0.39
2ayh 123–130 YTNGVGGH 1.32 1.61 3.29 0.31 0.37
2cmd 270–277 LGKNGVEE 1.49 2.55 6.62 0.64 0.95
2ctc 89–96 DYGQDPSF 0.89 1.35 4.53 0.87 1.18
2dri 161–168 PADFDRIK 1.19 1.40 3.60 0.33 0.51
2exo 262–269 MQVTRCQG 0.35 0.41 1.96 0.35 0.41
2ran 26–33 MKGLGTDE 2.33 3.26 2.67 0.90 1.17
2sga 32–43 TTGGSRCS 0.88 1.41 4.93 0.48 0.65
2sns 17–24 AIDGDTVK 0.49 0.59 4.98 0.51 0.57
3cox 109–116 GRGVGGGS 0.78 0.84 3.42 0.38 0.44
3grs 424–431 ANKEEKVV 1.62 3.20 2.84 0.41 0.49
4enl 24–31 TTEKGVFR 0.85 1.43 1.29 0.47 0.69
4fxn 88–95 YGWGDGKW 1.61 1.66 4.18 0.59 1.22
5p21 45–52 VIDGETCL 0.28 0.45 3.47 0.19 0.26
8dfr 65–72 RPLKDRIN 0.41 0.67 3.64 0.51 0.63

aTop-scoring conformation of 1000 independent optimizations.
bRatio of the relative occurrence of the 15% lowest RMSD-G conformations found in the 15% best-scoring population compared with the entire
population.
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alignment errors and template perturbations contribute to
the accuracy of the template from which SVRs are mod-
eled, and these modeling errors result in non-zero RMSD-E
values. RMSD-E measures the accuracy only of the stem
residues sequentially adjacent to the SVR and does not
reflect the structural accuracy of other spatially adjacent
residues. Consequently, small RMSD-E values for regions
modeled as SVRs in homology models indicate only that
the local geometry constraining the ends of the SVR is
approximately correct.

RESULTS

The SVR modeling method described here is intended to
comprise part of a complete modeling strategy for struc-

ture prediction by comparative modeling and fold recogni-
tion and was, in fact, applied in combination with an
alignment algorithm to generate complete models for all
targets in CASP 4 and CASP 5 for which a homologous
protein of known structure could be identified. The double-
blind CASP experiment offers a realistic test of compara-
tive modeling methods because both alignment errors and
structural deviations between a query sequence and the
parent structure degrade the accuracy of the local environ-
ment in which SVRs must be modeled. However, the blind
evaluation of CASP targets is conducted without knowl-
edge of which portions of the model were generated by
alignment and which were modeled as structurally diver-
gent. To supplement the analysis of model quality pro-

TABLE V. Twelve-Residue Segment Reconstruction Predictions

Protein Residues Sequence

Best scorea

Enrichmentb

Best RMSG

RMSD-L RMSD-G RMSD-L RMSD-G

1541 153–164 NVRSYARMDIGT 0.99 1.51 2.89 0.67 0.97
1arp 201–212 LDSTPQVFDTQF 0.49 0.77 0.93 0.60 0.76
1ctm 9–12 YENPREATGRIV 3.81 5.64 2.00 1.16 2.31
1dts 41–52 SGSEKTPEGLRN 1.58 4.97 1.02 1.33 2.52
1eco 35–46 MAKFTQFAGKDL 3.13 4.15 2.53 0.64 0.94
1ede 150–161 CLMTDPVTQPAF 0.86 0.89 4.84 0.86 0.89
1ezm 122–133 FGDGATMFYPLV 2.06 4.46 3.11 2.06 2.18
1hfc 165–176 RGDHRDNSPFDG 2.33 3.80 1.20 1.79 2.46
1ivd 365–376 TISKDLRSGYET 2.72 4.23 1.38 1.04 1.26
1msc 9–20 LVDNGGTGDVTV 2.75 9.18 2.84 1.85 2.43
1onc 23–34 MSTNLFHCKDKN 2.82 4.03 1.11 1.61 1.72
1pbe 129–140 LHDLQGERPYVT 1.83 2.90 3.38 0.76 0.92
1pmy 77–88 KCAPHYMMGMVA 3.03 4.08 4.00 1.28 1.58
1prn 15–26 VEDRGVGLEDTI 3.16 6.44 3.91 1.98 2.31
1rcf 88–99 TGDQIGYADNFQ 2.15 3.60 1.87 1.83 2.04
1rro 17–28 ECQDPDTFEPQK 2.05 2.66 2.00 0.77 1.02
1scs 199–210 IKSPDSHPADGI 1.85 3.17 2.40 1.06 1.18
1srp 311–322 SDVGGLKGNVSI 1.12 1.16 4.00 0.97 1.10
1tca 305–316 AVGKRTCSGIVT 2.42 3.75 3.91 1.65 1.84
1thg 127–138 WIYGGAFVYGSS 2.89 4.17 2.04 1.89 2.29
1thw 178–189 PDAFSYVLDKPT 2.28 2.83 0.58 1.52 2.09
1tib 99–110 EINDICSGCRGH 2.69 3.12 1.73 0.78 0.94
1tml 243–254 STTNTGDPMIDA 2.97 5.80 3.64 1.75 2.19
1xif 203–214 IERLERPELYGV 1.34 1.64 3.78 0.64 1.08
2cpl 145–156 FGSRNGKTSKKI 3.64 7.45 1.07 1.79 2.07
2cyp 191–202 WGAANNVFTNEF 2.18 2.84 2.13 1.61 2.29
2ebn 136–147 YQTPPPSGFVTP 2.56 3.28 2.09 0.64 0.94
2exo 293–304 LVWDASYAKKPA 1.00 1.51 0.84 0.66 0.96
2pgd 361–372 WRGGCIIRSVFL 2.61 4.32 2.44 1.44 2.04
2rn2 90–101 WKTADKKPVKNV 4.23 7.09 5.47 1.55 2.26
2sil 255–266 ETKDFGKTWTEF 0.53 0.68 5.64 0.53 0.68
2sns 111–122 VAYVYKPNNTHE 1.89 3.14 4.40 2.37 3.02
2tgi 48–59 CPYLWSSDTQHS 2.19 2.86 4.13 1.72 1.96
3b5c 12–23 IQKHNNSKSTWL 3.05 5.22 2.27 0.87 1.04
3cla 176–187 AKYQQEGDRLLL 1.20 1.49 4.49 1.20 1.49
3cox 478–489 VPGNVGVNPFVT 1.65 1.97 1.38 1.26 1.60
3hsc 72–93 RLIGRRFDDAVV 0.55 0.70 2.53 0.51 0.64
451c 16–27 HAIDTKMVGPAY 3.47 5.59 1.51 1.75 2.53
4enl 372–383 SHRSGETEDTFI 2.30 3.69 1.96 1.36 1.79
4ilb 46–57 FVQGEESNDKIP 2.92 4.02 2.04 1.48 2.20

aTop-scoring conformation of 1000 independent optimizations.
bRatio of the relative occurrence of the 15% lowest RMSD-G conformations found in the 15% best-scoring population compared with the entire
population.
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vided by the CASP assessors and to assess the perfor-
mance of the Rosetta-based method in the context of
realistic modeling errors, we report here the accuracy of
the CASP 4 and CASP 5 predictions specifically for seg-
ments modeled as SVRs. Complete lists of all regions
modeled as SVRs in both CASP 4 and CASP 5 targets for
which structures have been released, along with the
template and prediction accuracies, are reported here.

In addition to blind CASP predictions of SVRs made in
the context of realistic modeling errors, we also present
results of predictions in which segments of proteins of
known structure are reconstructed in the context of exact
templates. Segment reconstruction, although artificial in
the sense that it does not represent a realistic structure
prediction problem, does allow the SVR method to be
assessed in the absence of propagated errors resulting
from incorrect alignment and template perturbation. In
addition, segment reconstruction has been used as a
standard method for assessment of loop modeling methods
and allows direct comparison of different modeling strate-
gies. Notably, in the segment reconstruction predictions
here, none of the native side-chain conformations are

retained; instead, all side-chains are replaced by using the
simulated anneal rotamer-packing algorithm. Conse-
quently, although the template backbone is exact, the
template side-chain conformations are not, making the
segment reconstruction test somewhat more realistic.

Prediction of Short Protein Loops

Results of segment reconstruction predictions made for
sets of surface-exposed protein loops, selected and previ-
ously predicted by other authors, are given in Tables I and
II. The fourteen loops in Table I, varying in length from
four to nine residues, are provided as representative
examples of predictions for short to medium loops. Several
other groups have made predictions for these same seg-
ments, allowing direct comparison of several methods on
identical examples (Fig. 1). Table II summarizes results
obtained for 40 loops each of 4, 8, and 12 residues. Results
for all individual predictions in these sets are given in
Tables III–V.

For short loops, the Rosetta method effectively sam-
ples low RMSD-G conformations. For 38 of 44 loops in
the 4- to 5-residue range, conformations �0.5 Å
RMSD-G are sampled; in the 7- to 9-residue range,
conformations �1 Å are sampled in 40 of 49 cases; and
for 30 of 40 12-residue loops, conformations � 2.2 Å are
sampled. In most cases, conformations that have ener-
gies equal or better than the native loop conformation
are sampled (Table I). The effectiveness of the sampling

Fig. 2. Mean prediction accuracy as a function of number of indepen-
dent optimizations.

Fig. 3. Box plots of distributions of RMSD-G values for SVRs of
lengths 5–13 residues in CASP 5 targets. Only SVRs modeled in the
context of reasonably accurate environments (RMSD-E � 1.5Å; see
Materials and Methods) are included in the figure. The number in each
box indicates the number of modeled SVRs contributing to each distribu-
tion.
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method is further illustrated by examining the mean
prediction accuracy as a function of the number of in-
dependent optimizations conducted (Fig. 2). An increase
in mean prediction accuracy on doubling the number of
optimizations from 500 to 1000 is seen only for the
12-residue loops. For short loops, the accuracy of pre-
diction is generally limited by discrimination, although
ranking of conformations by the potential function does
result in significant enrichment (Tables I and II).

Although accurate predictions are made in the context of
the native protein, significantly poorer performance is
seen for short loop modeling in CASP targets where local
template geometries are less than perfect. In CASP 5, 59
domains were modeled by using homology to a protein of
known structure. In the targets for which structures are
available, 215 regions of �13 residues were modeled as
SVRs. Of these, 177 are nonterminal segments, with
template-imposed geometric constraints similar to those of
the segments reconstructed in native proteins. Ninety-
seven of these SVRs were modeled in the context of
reasonably accurate local templates (RMSD-E � 1.5 Å).
The distribution of prediction accuracies for loops meeting
these criteria are shown in Figure 3. The mean accuracies
of loop predictions are significantly worse than those seen
in the segment reconstruction tests, indicating, as noted
by many previous authors, that the accuracy of loop
modeling in real comparative modeling applications is
determined almost entirely by alignment accuracy and
template distortions. In addition, loop modeling in real
homology models is complicated by the fact that multiple,
potentially interacting, loops must be modeled within the
same structure.

Prediction of Long SVRs

A motivating goal in developing Rosetta for SVR model-
ing is to provide a modeling method that is not limited only
to short loops but is also applicable to predicting longer
insertions and structural differences between homologous

proteins. To examine the accuracy of the Rosetta method
in predicting conformations of longer SVRs, 10 segments
ranging from 13 to 34 residues were selected from CASP 4
comparative modeling targets to be reconstructed in the
context of the native protein. For each of the proteins, the
region of greatest structural divergence with respect to the
closest structural match in the PDB, as determined by the
CASP 4 assessors,45 was selected as the segment to be
reconstructed. Unlike the shorter protein loops discussed
above, these segments do not necessarily correspond to
surface-exposed protein loops. Results for these 10 predic-
tions are given in Table VI, and structures of low-energy
conformations for some successful predictions are given in
Figure 4. For these longer protein segments, the accuracy

Fig. 4. Top scoring conformations for representative long segment
reconstructions. The backbone of the modeled region is shown in blue
(native conformation) and red (predicted conformation). The remainder of
the backbone structure is shown in gray as a ribbon diagram. Protein
structure diagrams were made by using MolMol.49

Fig. 6. Selected CASP 5 comparative modeling predictions. Structure
diagrams of CASP 5 targets T0130 and T186, residues 44–332, are
shown in panels A and B, respectively. The experimental structure is
shown on the left, and the first-ranked model is on the right. Regions
colored in shades of blue were modeled by using coordinates of a
homologue of known structure, whereas regions in shades of orange were
modeled as SVRs. For each target, an optimal subset of superimposable
residues was found by using the LGA algorithm.46 Given this structural
superposition, the CA deviation between the model and native structure at
each position is indicated by color intensity. Regions in dark orange/dark
blue have CA deviations of �2 Å after superposition; regions in medium
orange/medium blue have CA deviations between 2 and 4 Å, and regions
in pale orange/pale blue have CA deviations � 4 Å. Residues are colored
identically in the predicted model and experimental structure diagrams.
For T0186 (B), residues 256–294 have been independently superim-
posed by using the LGA algorithm. The dotted lines indicate the stem
regions to which the SVR termini are connected. Selected SVRs,
indicated by arrows, are identified by residue number. Prediction accura-
cies for these SVRs are given in parenthesis (RMSD-L, RMSD-G,
RMSD-E). See text for details. Protein structure diagrams were generated
by using Molscript.50
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of the predictions is limited both by the conformational
search and by discrimination. Native structures show
significantly better scores than all sampled conformations
in 7 of the 10 examples. In most cases, some correlation
between the accuracy of the predicted segment conforma-
tions and the evaluated scores is observed (Fig. 5), with an
average enrichment of 2.5 � 0.9 (Table VI), suggesting
that additional sampling might result in improved predic-
tion accuracies.

The Rosetta method was also used to make predictions
for long SVRs in CASP 4 and CASP 5 targets. Fifty SVRs
ranging in length from 14 to 78 residues were predicted in
CASP 4 targets for which structures are available, and 74
SVRs ranging in length from 14 to 123 residues were
predicted in CASP 5 targets for which structures are
available. Table VII gives results of the long SVR predic-
tions in CASP 5 targets that were modeled in the most
accurate local template environments (RMSD-E � 2.5Å)
and the identity and prediction accuracies for all SVRs in

all CASP 4 and CASP 5 targets are given in Tables VIII
and IX. As with short loops, performance on long SVRs
degrades significantly in the context of realistic modeling
errors. In segment reconstruction, 7 of 10 examples have
RMSD_L � 3 Å and 5 have RMSD-G � 3 Å. Of 32 long
SVRs in CASP 5 targets (Table VII), 12 have RMSD-L � 3
Å, and only 2 have RMSD-G � 3 Å. As noted above (see
Materials and Methods), RMSD-E only measures the
correctness of stem geometry, not the overall accuracy of
the environment. Because longer segments generally have
more nonlocal contacts than short, surface-exposed loops,
RMSD-E significantly underestimates the true environ-
ment error for long SVR predictions. Consequently, exam-
ining predictions that have correct local structures, even in
the absence of correct orientation is warranted. However,
it is important to note that many of the predictions with
best local accuracy correspond to single regular secondary
structure elements (e.g., a single helix in a TIM barrel that
was modeled as an SVR because of alignment uncertain-

Fig. 5. Conformation discrimination for long SVR reconstructions. The correlation between the final score
and RMSD-L is shown for independent optimizations of each predicted segment in Table III. The score of the
native segment conformation in each case is indicated by the open square.

TABLE VI. Long Segment Reconstruction Results

Protein Residues Length
Native
score

Best scorea

Enrichmentb

Best RMSD-L

RMSD-L
(Å)

RMSD-G
(Å) Rankc Score

RMSD-L
(Å)

RMSD-G
(Å) Score

T090 77–91 15 
1402 3.54 6.11 474 
1434 1.6 1.33 3.45 
1394
T096 19–31 13 
572 1.21 2.42 3 
521 1.8 1.12 2.82 
460
T108 139–155 17 
1452 2.05 2.84 1 
1415 2.8 2.05 2.84 
1415
T109 48–81 34 
1393 4.00 20.4 49 
1302 2.7 2.62 9.72 
1242
T113 203–223 21 
2092 2.91 3.91 19 
2145 3.0 2.21 2.62 
2080
T114 51–65 15 
264 2.22 3.08 163 
325 3.1 0.84 1.28 
275
T117 138–159 22 
1557 2.19 2.39 24 
1471 2.4 1.60 3.93 
1401
T121 65–82 18 
2089 0.51 0.88 1 
1913 1.5 0.51 0.88 
1913
T123 28–41 14 
1082 3.88 6.95 360 
1047 1.2 2.29 3.78 
996
T125 94–118 25 
1165 0.84 2.48 2 
1076 4.3 0.82 2.23 
1058

aBest-scoring conformation of 1000 independent optimizations.
bRatio of the relative occurrence of the 15% lowest RMSD-L conformations in the 15% best-scoring population compared with the entire
population.
cRank order by RMSD-L of the best-scoring conformation.
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ties). The end-to-end distance of each SVR in the native
protein is reported to help identify those SVRs whose
conformations are highly constrained by stem locations.

Despite the difficulty in drawing general conclusions
from SVRs in CASP targets, these predictions illustrate
the promise of the method for long SVR modeling. Ex-
amples from two CASP 5 targets are shown in Figure 6.
The template portion of T0130 was generated by align-
ment to 1fbaA [blue region in Fig. 6(A)]. The two proteins
are 23% identical over the structurally superimposable
portions, permitting a reasonably accurate alignment to be
obtained. Relative to the optimal structural superposition
of 1fbaA and experimental T0130 structure, the alignment
in the CASP 5 model is 76% accurate and 29% complete.
By intent, our alignment algorithm was biased for high
specificity at the expense of sensitivity, and we relied on
SVR modeling with Rosetta to complete the models. Two
internal segments of T0130 were modeled as SVRs: resi-
dues 21–30 comprise the C-terminus of the first helix, the
N-terminus of the first strand, and the intervening loop;
residues 51–78 comprise the second helix and the two long
loops connecting this helix to the sheet. Both of these loops

are among the best predictions made for loops of their size
in CASP 5 targets [Fig. 6(A)].

The template portion of T0186, residues 44–332, was
generated by alignment to 1gkpA. The two proteins are 15%
identical over structurally superimposable regions, and the
alignment used to generate the template is only 46% accu-
rate and 50% complete with respect to the structural superpo-
sition. Despite significant alignment errors, four SVRs were
modeled in the context of reasonably accurate stem geom-
etries (RMSD-E � 1.8 Å). Residues 83–100 comprise one
helix on the surface of the TIM barrel along with the
connecting loops; residues 188–193 are a loop connecting a
helix-strand pair, and residues 301–309 are a loop connect-
ing a helix–helix pair on one end of the barrel. As in T0130,
these three SVR predictions are among the most accurate
predictions for SVRs of their size in the CASP 5 targets. In
addition, when the entire protein model is compared with
the experimental structure without concern for the model-
ing method used, these three SVRs, as well as the two
internal SVRs in T0130 discussed above, are of approxi-
mately the same accuracy as regions of the model gener-
ated by accurate alignment (see Fig. 6).

TABLE VII. Long SVR Predictions in CASP 5 Targets†

Target Region Length
RMSD-L

(Å)
RMSD-G

(Å)
RMSD-E

(Å)
End-to-end
distance (Å)

T0147 7–20 14 3.85 5.42 1.90 16.3
T0168 298–311 14 3.51 7.29 0.44 8.5
T0149 19–33 15 3.18 6.33 1.35 15.3
T0168 249–263 15 3.54 6.47 1.06 8.0
T0168 279–293 15 4.23 12.15 1.78 4.5
T0169 124–138 15 5.53 12.46 0.85 19.9
T0184 108–122 15 4.25 7.77 0.39 12.6
T0185 176–190 15 4.61 7.68 0.98 17.3
T0186 197–211 15 4.42 7.75 1.37 10.6
T0134 161–176 16 3.18 6.30 2.11 22.1
T0151 84–99 16 0.73 1.46 0.56 5.8
T0154 15–30 16 0.59 1.89 0.36 20.8
T0185 248–263 16 2.07 4.13 1.57 13.4
T0195 58–73 16 3.07 8.02 2.49 21.0
T0165 224–240 17 3.90 8.42 2.17 13.5
T0168 222–238 17 2.14 4.72 2.49 9.3
T0183 96–112 17 0.68 2.39 0.99 21.7
T0184 35–51 17 4.40 8.16 0.92 14.6
T0186 116–132 17 2.63 11.08 2.28 12.4
T0189 16–33 18 4.67 12.38 1.21 4.6
T0193 149–166 18 1.04 3.40 0.56 15.7
T0160 94–112 19 2.30 6.52 0.92 6.2
T0172 56–75 20 1.97 3.08 0.42 11.6
T0133 228–251 24 0.87 1.18 0.41 12.7
T0141 86–111 26 6.42 18.99 2.01 15.2
T0149 98–124 27 3.04 5.39 0.48 12.3
T0130 51–78 28 2.81 4.34 0.65 8.6
T0142 45–72 28 3.41 4.59 0.47 19.7
T0186 83–110 28 2.38 7.12 0.78 11.0
T0165 120–150 31 7.45 12.82 1.23 13.0
T0195 91–124 34 6.58 20.45 1.84 11.4
T0186 256–294 39 5.20 17.27 1.71 9.3
†Predictions for SVRs of length 14 and greater submitted as part of first-ranked models in CASP 5. Only predictions made in the context of the
most accurate local environments (RMSD-E � 2.5Å) are included in the table.

MODELING SVRS WITH ROSETTA 667



TABLE VIII. All SVR Predictions In First-Ranked Models of CASP 4 Targets

Target Regiona Length RMSLb (Å) RMSGc (Å) RMSEd (Å)

T0089 1–10 10 1.41 4.07 2.98
T0089 26–31 6 2.55 5.26 3.12
T0089 46–54 9 3.94 10.39 0.25
T0089 64–93 30 10.35 19.83 0.10
T0089 119–159 41 11.16 20.95 0.28
T0089 166–170 5 2.01 4.64 1.73
T0089 198–206 9 2.61 4.47 1.19
T0089 223–230 8 1.94 3.49 1.16
T0089 249–253 5 0.56 1.36 7.25
T0089 263–290 28 4.68 7.69 0.26
T0089 312–331 20 3.70 6.78 0.43
T0089 359–419 61 6.88 16.68 5.97
T0090 1–57 57 13.94 26.44 0.86
T0090 66–70 5 0.58 1.61 1.26
T0090 78–91 14 4.35 14.36 3.99
T0090 149–158 10 2.05 10.17 1.24
T0090 177–209 33 4.55 21.44 2.01
T0092 1–38 38 4.82 20.58 0.45
T0092 51–57 7 1.47 2.97 2.03
T0092 74–82 9 2.56 4.35 0.14
T0092 98–111 14 2.43 5.83 2.31
T0092 116–127 12 1.97 4.14 0.09
T0092 132–144 13 2.37 2.67 0.63
T0092 162–210 49 5.51 26.03 3.20
T0092 218–222 5 0.66 1.47 0.89
T0092 229–234 6 2.66 7.43 2.01
T0096 1–9 9 1.67 4.71 1.09
T0096 21–34 14 4.02 8.14 0.67
T0096 41–46 6 0.45 0.62 0.58
T0096 64–70 7 2.74 4.97 7.82
T0100 25–44 20 8.85 16.36 0.09
T0100 54–58 5 1.48 5.57 1.99
T0100 69–73 5 0.88 1.76 2.18
T0100 75–78 4 1.87 2.48 0.78
T0100 92–114 23 5.94 8.05 1.99
T0100 118–121 4 0.91 1.92 0.54
T0100 131–154 24 3.94 6.69 3.94
T0100 158–166 9 2.50 3.61 3.26
T0100 176–179 4 2.02 3.46 2.02
T0100 182–186 5 1.56 2.14 0.89
T0100 196–199 4 1.68 4.36 2.86
T0100 202–206 5 1.58 2.79 2.16
T0100 216–232 17 3.73 7.69 4.76
T0100 253–262 10 2.83 4.42 3.55
T0100 266–287 22 3.82 13.42 2.78
T0100 299–315 17 5.85 12.50 4.00
T0100 319–323 5 1.91 5.53 2.14
T0100 332–352 21 4.98 24.82 2.63
T0100 361–366 6 2.80 8.65 1.30
T0101 26–47 22 5.69 34.03 1.75
T0101 57–64 8 2.45 6.16 2.70
T0101 70–75 6 1.81 4.34 2.77
T0101 84–94 11 1.93 6.32 0.67
T0101 96–105 10 4.81 8.87 2.31
T0101 117–134 18 3.67 4.35 2.01
T0101 150–178 29 6.52 23.77 1.03
T0101 181–190 10 1.43 2.00 0.76
T0101 196–232 37 8.47 25.72 0.90
T0101 239–244 6 1.61 2.02 1.98
T0101 260–283 24 9.71 16.07 7.95
T0101 300–307 8 2.12 3.08 1.94
T0101 317–328 12 3.77 9.20 3.97

668 C.A. ROHL ET AL.



TABLE VIII. (Continued)

Target Regiona Length RMSLb (Å) RMSGc (Å) RMSEd (Å)

T0101 342–362 21 5.26 20.54 4.65
T0101 419–425 7 2.71 9.82 1.60
T0103 1–23 23 3.73 17.70 0.50
T0103 34–36 3 1.23 1.52 2.24
T0103 54–58 5 3.09 5.20 1.04
T0103 66–71 6 1.75 8.55 2.01
T0103 124–128 5 1.63 1.94 1.06
T0103 137–147 11 3.23 3.98 3.26
T0103 172–187 16 5.36 13.04 0.69
T0103 204–213 10 4.22 8.17 0.25
T0103 229–285 57 15.77 17.49 0.37
T0103 318–372 55 10.18 21.59 0.14
T0108 1–39 39 3.58 18.76 1.35
T0108 44–48 5 1.44 3.37 3.55
T0108 53–59 7 1.84 6.27 1.19
T0108 72–86 15 5.79 9.22 1.48
T0108 94–103 10 2.66 2.95 2.73
T0108 147–158 12 2.41 13.81 1.45
T0108 164–174 11 3.31 5.84 0.46
T0108 190–196 7 2.04 5.34 1.12
T0109 1–8 8 1.88 9.59 2.60
T0109 32–44 13 4.48 11.02 0.15
T0109 50–85 36 4.75 13.61 5.45
T0109 118–129 12 1.92 6.40 2.70
T0109 134–158 25 6.29 13.43 3.25
T0109 177–182 6 3.47 9.16 0.31
T0111 1–1 1 0.63 2.04 0.72
T0111 30–33 4 2.09 2.88 0.50
T0111 79–85 7 1.25 1.94 0.64
T0111 139–142 4 1.81 3.78 2.63
T0111 199–203 5 0.46 1.04 3.51
T0111 234–239 6 0.61 1.23 10.19
T0111 261–267 7 1.64 4.20 4.68
T0111 306–310 5 0.58 0.85 0.40
T0112 11–15 5 2.00 3.62 2.86
T0112 48–53 6 2.03 5.39 1.39
T0112 113–122 10 3.79 7.61 0.29
T0112 151–154 4 0.17 1.28 2.61
T0112 160–165 6 0.68 1.92 1.94
T0112 190–194 5 0.34 0.84 0.95
T0112 212–216 5 2.02 2.87 2.16
T0112 220–228 9 3.23 6.16 0.76
T0112 261–264 4 0.98 1.10 1.43
T0112 273–283 11 2.68 4.44 0.77
T0112 336–342 7 2.31 4.00 2.18
T0112 349–352 4 0.61 3.92 1.67
T0113 1–12 12 1.84 5.84 4.65
T0113 96–110 15 4.79 6.14 3.97
T0113 137–146 10 3.37 8.72 2.63
T0113 202–227 26 2.83 4.94 2.14
T0113 241–247 7 0.99 1.25 0.81
T0113 256–261 6 2.29 15.73 0.21
T0114 1–15 15 5.70 24.34 1.25
T0114 59–62 4 2.44 5.77 0.46
T0114 70–72 3 1.58 3.72 0.22
T0115 1–4 4 0.97 3.92 2.81
T0115 9–13 5 1.28 5.27 0.73
T0115 29–95 67 10.47 20.40 1.30
T0115 136–168 33 8.69 13.72 2.60
T0115 181–186 6 1.98 10.69 4.02
T0115 194–222 29 9.44 26.52 1.70
T0116 1–18 18 6.31 45.22 0.13
T0116 43–59 17 7.46 12.99 2.54
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The fourth SVR in T0186, residues 256 –294, is a
small subdomain inserted into the TIM barrel. Al-
though the relative orientation of this SVR was not
predicted correctly (RMSD-G � 17Å), the local structure
of four-stranded meander is correctly predicted with an
RMSD-L of 5.2Å (Fig. 6). If the distortions at the SVR
termini are disregarded, the local RMSD significantly
improves: a sequence-dependent iterative superposition
with a 4 Å cutoff using the LGA algorithm46 yields an
optimal fragment match of 30 residues with an RMSD-L
of 2.4 Å. Notably, the prediction of this SVR by the
Rosetta-based method was significantly better than any
other submitted prediction.

DISCUSSION

The Rosetta-based method for SVR modeling represents
a new approach to combining database and de novo
strategies for modeling protein segments, both short loops
and longer SVRs. The assembly of conformations from
smaller fragments allows the benefits of database methods
and de novo loop modeling methods to be combined.
Iterative optimization of the backbone and side-chain
conformations, using a rotamer approximation for side-
chains, which to our knowledge has not been previously
applied to loop modeling, allows detailed atomic interac-
tions to be evaluated, while significantly restricting the
complexity of the conformational search. Allowable confor-

TABLE VIII. (Continued)

Target Regiona Length RMSLb (Å) RMSGc (Å) RMSEd (Å)

T0116 72–82 11 3.54 5.48 0.78
T0116 104–117 14 4.86 9.14 4.70
T0116 124–130 7 3.29 4.33 2.77
T0116 136–151 16 3.73 10.57 1.14
T0116 158–164 7 1.63 2.37 0.64
T0116 168–174 7 2.61 8.28 0.84
T0116 180–252 73 2.49 21.74 0.46
T0117 1–23 23 1.56 4.82 1.99
T0117 36–46 11 1.97 3.44 1.51
T0117 71–78 8 2.04 2.88 1.54
T0117 89–101 13 3.77 5.90 1.94
T0117 135–146 12 1.30 3.17 0.90
T0117 173–176 4 1.88 3.91 1.64
T0117 191–200 10 3.11 7.43 1.60
T121 1–3 3 N/A N/A N/A

T0121 67–76 10 3.89 5.94 1.56
T0121 102–112 11 0.61 1.07 2.78
T0121 132–136 5 2.16 4.69 0.62
T0121 188–191 4 1.94 2.64 3.94
T0122 1–2 2 0.76 6.87 4.41
T0122 26–33 8 0.77 1.05 14.68
T0122 77–81 5 1.06 1.66 3.00
T0122 173–180 8 1.42 5.10 4.00
T0122 241–248 8 2.63 4.48 1.03
T0125 1–10 10 1.85 3.04 4.76
T0125 32–43 12 1.12 1.67 0.15
T0125 67–83 17 3.08 5.09 6.51
T0125 99–117 19 3.75 5.89 7.95
T0125 135–141 7 1.31 8.13 1.00
T0127 1–23 23 2.56 7.25 0.23
T0127 41–47 7 1.60 2.71 1.85
T0127 68–145 78 13.14 14.26 7.23
T0127 153–161 9 0.59 1.39 0.62
T0127 170–185 16 2.84 9.34 4.74
T0128 1–12 12 0.62 2.39 1.95
T0128 66–72 7 1.73 4.39 2.02
T0128 147–151 5 0.52 1.89 0.87
T0128 212–222 11 4.01 11.02 0.86
aNot adjusted for missing density in experimental PDB files. Superposition and RMSD calculations use only atoms for which density is reported
in the experimental PDB file.
bRoot-mean-square deviation of residues in the SVR following optimal superposition of the SVR residues.
cRoot-mean-square deviation of residues in the SVR following optimal superposition of the three stem residues N- and C-terminally adjacent to
the SVR.
dRoot-mean-square deviation of the three stem residues N- and C-terminally adjacent to the SVR following optimal superposition of these stem
residues.
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TABLE IX. All SVR Predictions in First-Ranked Models of CASP 5 Targets

Target Regiona Length RMSLb (Å) RMSGc (Å) RMSEd (Å)

T0130 1–13 13 2.98 6.55 0.22
T0130 21–30 10 1.44 2.84 0.90
T0130 51–78 28 2.81 4.34 0.65
T0130 81–114 34 5.02 9.34 0.37
T0132 1–18 18 7.33 15.51 0.56
T0132 52–57 6 3.45 5.11 2.58
T0132 101–112 12 2.76 7.21 0.51
T0132 122–130 9 2.34 2.77 1.59
T0132 133–154 22 1.50 3.63 0.38
T0133 1–29 29 2.04 20.19 0.13
T0133 59–66 8 2.43 3.45 1.05
T0133 98–109 12 1.71 3.42 1.42
T0133 117–126 10 3.03 6.33 1.22
T0133 145–179 35 6.18 16.17 3.02
T0133 197–215 19 4.82 8.89 3.49
T0133 228–251 24 0.87 1.18 0.41
T0133 270–279 10 1.15 1.83 1.25
T0133 287–312 26 9.20 18.34 1.57
T0134 878–882 5 0.87 11.92 0.56
T0134 899–905 7 2.00 2.86 1.10
T0134 928–943 11 3.44 5.17 0.98
T0134 966–976 12 1.15 3.40 0.54
T0134 982–993 3 0.41 1.29 1.74
T0134 1003–1005 13 5.01 7.97 4.66
T0134 1020–1032 16 3.18 6.30 2.11
T0134 1038–1053 5 2.46 6.78 4.29
T0134 1060–1064 7 4.08 8.52 5.39
T0134 1070–1076 6 2.00 3.15 2.76
T0134 1082–1087 7 0.46 0.90 0.23
T0137 41–49 9 0.80 1.36 0.44
T0137 97–102 6 2.21 4.20 0.61
T0137 108–112 5 0.26 2.03 0.41
T0137 119–123 5 0.30 1.06 0.25
T0138 1–4 4 1.94 5.28 0.52
T0138 46–53 8 2.25 2.94 1.11
T0138 58–63 6 1.69 4.13 1.37
T0138 84–89 6 2.55 9.55 3.86
T0138 96–103 8 3.26 7.12 4.09
T0138 106–116 11 2.20 3.21 1.65
T0138 132–135 4 1.24 7.76 1.42
T0141 1–30 30 8.06 22.10 0.31
T0141 55–75 21 4.25 9.05 3.37
T0141 86–111 26 6.42 18.99 2.01
T0141 118–128 11 2.86 3.87 0.69
T0141 144–150 7 2.75 4.07 2.12
T0141 154–171 18 5.27 10.23 2.62
T0141 175–187 13 4.00 13.20 0.14
T0142 1–8 8 1.60 2.35 0.16
T0142 45–72 28 3.41 4.59 0.47
T0142 91–103 13 3.10 3.87 2.05
T0142 106–114 9 2.73 3.19 1.70
T0142 136–144 9 2.66 6.58 2.85
T0142 155–164 10 3.13 5.64 2.10
T0142 200–208 9 1.31 1.73 0.49
T0142 234–239 6 0.86 1.46 0.86
T0142 248–257 10 2.76 3.48 0.92
T0142 262–269 8 2.26 2.73 0.97
T0142 279–282 4 0.35 4.27 0.18
T0147 1–3 3 0.80 3.95 0.69
T0147 7–20 14 3.85 5.42 1.90
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TABLE IX. (Continued)

Target Regiona Length RMSLb (Å) RMSGc (Å) RMSEd (Å)

T0147 38–52 15 2.66 5.79 2.65
T0147 62–68 7 2.93 6.16 2.56
T0147 72–82 11 2.93 9.76 2.53
T0147 90–94 5 1.12 2.70 2.21
T0147 98–116 19 4.47 10.77 2.71
T0147 121–127 7 1.90 3.37 3.31
T0147 131–141 11 3.67 5.41 2.63
T0147 149–154 6 1.57 3.29 1.63
T0147 158–175 18 2.54 5.29 2.08
T0147 182–186 5 0.64 2.52 1.61
T0147 190–202 13 4.40 8.07 2.12
T0147 210–216 7 2.01 4.39 2.66
T0147 219–245 27 5.01 14.47 1.75
T0149 1–5 5 0.81 7.72 0.21
T0149 19–33 15 3.18 6.33 1.35
T0149 37–43 7 2.95 5.19 3.53
T0149 58–77 20 6.36 20.28 4.95
T0149 84–94 11 3.59 5.16 2.74
T0149 98–124 27 3.04 5.39 0.48
T0149 148–154 7 2.65 4.66 2.21
T0149 174–184 11 3.01 4.56 1.96
T0149 186–193 8 4.11 7.12 4.35
T0149 195–318 124 15.98 33.44 1.76
T0150 –2–6 8 3.03 4.88 0.07
T0150 94–100 7 0.37 2.25 0.38
T0151 1–6 6 2.10 3.04 0.34
T0151 21–28 8 2.02 3.08 0.76
T0151 36–52 17 1.84 2.64 0.75
T0151 84–99 16 0.73 1.46 0.56
T0151 103–164 62 6.35 9.32 0.19
T0153 30–35 6 1.11 1.28 0.85
T0153 52–58 7 0.42 0.77 0.56
T0153 95–103 9 1.10 2.14 0.49
T0153 119–154 36 6.60 24.15 0.26
T0154 1–11 11 3.67 18.61 0.12
T0154 15–30 16 0.59 1.89 0.36
T0154 54–62 9 1.83 2.36 0.32
T0154 110–117 8 2.57 3.43 0.77
T0154 241–248 8 2.26 3.52 1.82
T0154 254–266 13 3.93 9.87 0.44
T0154 286–309 24 2.13 9.09 0.37
T0155 84–91 8 0.43 1.13 0.37
T0155 119–133 15 0.69 2.82 0.67
T0157 1–2 2 0.47 4.60 0.51
T0157 21–26 6 0.46 2.37 1.73
T0157 35–42 8 1.71 6.74 1.21
T0157 59–71 13 2.95 4.97 1.94
T0157 95–121 27 4.46 5.61 1.70
T0157 133–138 6 0.45 1.06 0.21
T0159 1–8 8 2.30 11.74 0.31
T0159 12–18 7 2.01 2.54 2.55
T0159 31–40 10 3.37 4.58 2.96
T0159 54–59 6 1.43 3.31 1.72
T0159 63–73 11 3.43 4.02 1.40
T0159 77–88 12 3.15 5.46 2.11
T0159 103–111 9 3.53 6.84 1.58
T0159 114–124 11 1.55 7.51 2.50
T0159 146–153 8 2.74 5.61 3.26
T0159 186–193 8 2.37 6.04 1.86
T0159 211–229 19 5.79 15.98 2.55
T0159 265–282 18 3.95 14.68 4.28
T0159 291–296 6 2.11 3.97 1.73
T0159 298–309 12 1.39 11.66 1.46
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TABLE IX. (Continued)

Target Regiona Length RMSLb (Å) RMSGc (Å) RMSEd (Å)

T0160 
3–7 10 3.84 8.91 0.22
T0160 76–84 9 3.27 4.91 0.65
T0160 94–112 19 2.30 6.52 0.92
T0165 1–54 54 18.78 41.91 0.29
T0165 64–68 5 1.02 1.35 0.80
T0165 75–82 8 2.17 4.88 0.80
T0165 87–91 5 1.05 1.27 1.29
T0165 95–101 7 2.74 3.53 3.20
T0165 105–111 7 0.40 1.24 1.98
T0165 120–150 31 7.45 12.82 1.23
T0165 167–171 5 1.36 3.08 1.27
T0165 189–199 11 1.79 3.63 0.37
T0165 206–212 7 1.84 2.98 0.79
T0165 224–240 17 3.90 8.42 2.17
T0165 252–260 9 1.01 2.70 0.76
T0165 284–289 6 1.94 2.55 0.43
T0165 298–304 7 0.78 1.15 0.46
T0167 1–4 4 2.05 3.38 0.12
T0167 111–123 13 3.01 3.11 0.28
T0167 127–146 20 5.66 6.82 0.58
T0167 183–185 3 1.21 4.77 0.61
T0168 56–59 4 0.50 1.40 0.51
T0168 63–69 7 2.83 3.84 1.08
T0168 91–129 39 11.76 22.63 5.98
T0168 150–164 15 5.36 10.73 6.24
T0168 196–209 14 5.40 10.41 9.40
T0168 222–238 17 2.14 4.72 2.49
T0168 249–263 15 3.54 6.47 1.06
T0168 271–275 5 1.94 3.46 2.20
T0168 279–293 15 4.23 12.15 1.78
T0168 298–311 14 3.51 7.29 0.44
T0168 323–327 5 1.65 11.86 0.28
T0169 5–10 6 0.43 1.49 0.92
T0169 23–28 6 1.41 7.53 2.90
T0169 36–42 7 1.17 1.74 1.36
T0169 62–67 6 2.65 3.71 0.56
T0169 110–115 6 2.23 4.60 0.75
T0169 124–138 15 5.53 12.46 0.85
T0172 1–7 7 2.43 13.43 1.71
T0172 19–27 9 2.85 4.62 3.06
T0172 45–49 5 0.49 0.99 0.50
T0172 56–75 20 1.97 3.08 0.42
T0172 80–85 6 0.85 1.43 2.00
T0172 107–218 112 13.48 17.59 3.33
T0172 245–249 5 2.06 3.55 2.00
T0172 264–282 19 6.25 9.20 4.53
T0172 293–299 7 0.53 4.96 1.17
T0182 1–5 5 0.77 2.16 0.12
T0182 47–52 6 0.31 0.52 0.51
T0182 249–250 2 0.55 1.86 0.73
T0183 1–26 26 4.79 43.44 0.60
T0183 40–47 8 0.49 0.78 0.31
T0183 56–63 8 0.45 1.15 0.36
T0183 78–84 7 1.36 1.70 0.57
T0183 96–112 17 0.68 2.39 0.99
T0183 142–148 7 0.73 1.18 0.25
T0183 155–166 12 0.47 1.44 0.43
T0183 183–189 7 1.98 2.54 0.38
T0183 197–206 10 0.53 0.74 0.59
T0183 221–229 9 0.51 0.64 0.40
T0183 235–248 14 1.21 15.27 0.34
T0184 1–9 9 0.48 1.74 0.20
T0184 35–51 17 4.40 8.16 0.92
T0184 70–79 10 1.11 1.87 0.74
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TABLE IX. (Continued)

Target Regiona Length RMSLb (Å) RMSGc (Å) RMSEd (Å)

T0184 108–122 15 4.25 7.77 0.39
T0184 139–146 8 1.13 1.57 0.81
T0184 162–172 11 4.21 6.92 4.26
T0184 178–185 8 1.66 2.23 0.75
T0184 193–199 7 0.95 2.40 0.71
T0184 207–212 6 1.55 4.07 0.37
T0184 235–240 6 0.83 1.87 0.14
T0185 1–3 3 0.33 1.83 0.22
T0185 15–27 13 2.65 3.75 2.46
T0185 51–60 10 1.73 3.01 0.39
T0185 88–103 16 2.04 4.93 2.67
T0185 127–133 7 2.39 3.09 2.00
T0185 160–172 13 2.91 3.65 0.56
T0185 176–190 15 4.61 7.68 0.98
T0185 217–221 5 1.78 2.48 0.60
T0185 236–243 8 3.08 8.28 2.77
T0185 248–263 16 2.07 4.13 1.57
T0185 306–312 7 0.62 2.23 0.32
T0185 317–322 6 0.82 1.94 0.38
T0185 329–341 13 0.83 1.77 0.93
T0185 346–369 24 2.39 3.47 2.15
T0185 374–407 34 4.92 11.48 1.49
T0185 416–421 6 2.16 4.15 0.78
T0185 426–433 8 2.75 3.40 1.44
T0185 443–457 15 0.26 0.99 0.14
T0186 10–14 5 1.29 2.61 0.50
T0186 27–34 8 2.86 6.19 4.00
T0186 52–63 12 4.39 9.40 0.79
T0186 83–110 28 2.38 7.12 0.78
T0186 116–132 17 2.63 11.08 2.28
T0186 150–159 10 2.63 5.49 2.64
T0186 177–181 5 2.52 3.93 1.97
T0186 188–193 6 0.85 2.36 1.51
T0186 197–211 15 4.42 7.75 1.37
T0186 230–238 9 3.46 8.29 3.26
T0186 244–250 7 2.12 3.33 1.35
T0186 256–294 39 5.20 17.27 1.71
T0186 301–309 9 1.12 1.73 1.44
T0186 327–331 5 0.94 1.35 0.35
T0186 344–351 8 1.02 5.11 2.06
T0186 354–359 6 1.59 2.46 1.96
T0188 6–16 11 2.87 6.06 1.34
T0188 46–56 11 2.88 4.87 1.11
T0189 1–3 3 0.30 0.65 0.25
T0189 16–33 18 4.67 12.38 1.21
T0189 63–68 6 1.00 1.63 0.56
T0189 74–81 8 1.36 2.94 1.13
T0189 88–95 8 2.85 3.80 3.26
T0189 101–107 7 2.63 5.57 4.70
T0189 112–124 13 0.79 1.78 1.90
T0189 141–151 11 1.35 3.52 0.75
T0189 174–185 12 3.15 3.97 2.00
T0189 193–202 10 3.72 6.98 1.65
T0189 219–223 5 0.59 1.19 0.72
T0189 229–235 7 1.73 3.00 2.08
T0189 241–250 10 2.33 4.83 2.06
T0189 273–279 7 1.57 2.07 0.54
T0189 299–307 9 2.03 5.71 1.92
T0189 317–319 3 1.33 11.06 1.42
T0190 1–5 5 0.66 1.34 0.21
T0190 29–34 6 0.95 1.83 0.39
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mations for protein segments up to about five or six
residues are adequately sampled in known protein struc-
tures,47 and fragment assembly is unlikely to significantly
improve the accuracy of predictions for segments below
this size. Because accurate backbone conformations can be
selected from known structures, however, the benefits of
the rotamer approximation for optimizing atomic interac-
tions likely do contribute to the accuracy of the method for
such short segments. Conversely, for long SVRs, sampled
conformations may not be sufficiently accurate that optimi-
zation of detailed atomic interactions can improve the

predictions, but fragment assembly is likely to be critical
for effective sampling of backbone conformations.

For short loops, the mean prediction accuracies obtained
by the Rosetta method are comparable with those obtained
by other loop modeling approaches. Among the best results
reported are those of Fiser et al.17 who obtain RMSD-G
values of 0.79, 1.89, and 4.24 Å for 4, 8, and 12 residue
loops, respectively. Other recent successful methods have
reported mean RMSD-G values of 0.85 and 1.45 for five
and eight residue loops24 and 1.00 and 3.09 Å for four- and
eight-residue loops.13 The mean prediction accuracies

TABLE IX. (Continued)

Target Regiona Length RMSLb (Å) RMSGc (Å) RMSEd (Å)

T0190 51–62 12 2.90 3.59 1.30
T0190 90–96 7 2.68 3.55 0.89
T0191 1–105 105 6.64 10.39 0.21
T0191 143–147 5 1.79 5.28 1.06
T0191 164–175 12 2.70 8.64 3.29
T0191 180–190 11 3.27 6.89 1.32
T0191 196–208 13 4.62 8.97 1.18
T0191 215–219 5 1.99 2.69 0.87
T0191 224–234 11 3.52 6.95 1.94
T0191 254–268 15 3.31 14.61 5.43
T0192 1–3 3 0.76 2.52 0.32
T0192 27–36 10 2.45 4.25 1.42
T0192 41–45 5 0.69 1.21 2.04
T0192 47–51 5 2.04 4.07 1.68
T0192 58–70 13 4.14 13.77 2.04
T0192 78–89 12 0.70 2.14 0.26
T0192 143–153 11 4.04 7.25 1.49
T0192 159–171 13 1.45 21.24 0.18
T0193 1–13 13 3.63 5.54 0.24
T0193 22–28 7 1.20 2.14 2.46
T0193 54–60 7 1.06 6.91 2.85
T0193 64–81 18 4.63 7.00 4.35
T0193 98–105 8 2.73 4.40 0.74
T0193 114–125 12 4.49 6.73 1.83
T0193 132–141 10 2.28 4.26 1.61
T0193 149–166 18 1.04 3.40 0.56
T0193 170–178 9 2.14 6.91 3.80
T0193 189–195 7 3.33 8.54 5.64
T0193 199–211 13 3.09 13.25 1.52
T0195 1–12 12 4.92 11.85 0.24
T0195 35–47 13 3.61 3.82 0.71
T0195 58–73 16 3.07 8.02 2.49
T0195 77–79 3 0.85 4.54 2.97
T0195 91–124 34 6.58 20.45 1.84
T0195 142–154 13 4.60 6.77 1.25
T0195 173–180 8 0.96 1.43 0.59
T0195 188–215 28 5.90 11.07 4.59
T0195 217–232 16 4.00 6.43 3.43
T0195 242–253 12 2.23 3.10 1.50
T0195 259–266 8 1.87 2.68 1.39
T0195 291–299 9 3.10 5.62 0.14
aNot adjusted for missing density in experimental PDB files. Superposition and RMSD calculations use only atoms for which density is reported
in the experimental PDB file.
bRoot-mean-square deviation of residues in the SVR following optimal superposition of the SVR residues.
cRoot-mean-square deviation of residues in the SVR following optimal superposition of the three stem residues N- and C-terminally adjacent to
the SVR.
dRoot-mean-square deviation of the three stem residues N- and C-terminally adjacent to the SVR following optimal superposition of these stem
residues.
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obtained here, 0.59, 1.45, and 3.62 Å for 4, 8, and 12
residue loops, are at least comparable with these methods.
Given that real loop modeling does not happen in environ-
ments of perfect accuracy, it is unclear what significance, if
any, the differences in performance of various methods in
the segment reconstruction test have for actual loop
modeling. Although the mean prediction accuracies of the
best methods are reasonably comparable, the most accu-
rate method for any particular loop region varies, as
illustrated in Figure 1. In this small sample set, the de
novo prediction method of Fiser et al.17 and the consensus
hybrid approach of Deane and Blundell13 are the most
likely to yield the best prediction, whereas the database
method of Van Vlijmen and Karplus11 yields the best
prediction in two cases. The Rosetta method gives good
predictions on average but does not result in the top
ranked prediction in any of these examples. The fact that
the Rosetta-based method does not use native side-chain
conformation information in segment reconstructions may
contribute in part to this ranking.

Although a variety of methods can predict short loop
conformations with reasonable accuracy, reliable predic-
tion of the conformation of long SVRs is an unsolved
problem. Because the conformational space accessible to a
polypeptide chain increases exponentially with increasing
chain length, the difficulty of the structure prediction
problem increases dramatically as chain length increases
and, consequently, the accuracy with which protein seg-
ments are predicted decreases. A hypothesis guiding this
work is that the fragment buildup strategy used in the
Rosetta method could combine the strengths of database
methods with conformational search methods. By assem-
bling shorter fragments to generate conformations for
longer regions, the conformational database can be extrapo-
lated, allowing longer protein segments to be modeled with
greater accuracy. The predictions obtained for 13- to
35-residue segments, although insufficient to give statisti-
cally significant estimates of mean accuracies, illustrate
that the method is indeed extendable to long SVRs. In 5 of
the 10 cases examined, predictions �2.5 Å RMSD-G were
obtained for segments ranging from 13 to 34 residues. In
addition, examples from CASP 5 comparative modeling
targets, although anecdotal, are quite promising. In sev-
eral cases where long SVRs were modeled in the context of
reasonably accurate alignments, regions modeled as SVRs
have accuracies comparable with regions modeled by
alignment to a homologue of known structure (Fig. 6).

Given these promising results, how can additional im-
provements in the method be obtained? For longer seg-
ments, conformational sampling becomes a limiting factor
in the accuracy of predictions. The native conformation is
frequently significantly lower in energy than the lowest-
energy conformation sampled (Fig. 5), indicating that
significant improvement in the accuracy of long segment
predictions could be obtained by additional sampling. For
short segments, the potential is not sufficiently accurate to
identify the native conformation in general (Table I).
Although improvements in the potential clearly would be
required to improve the accuracy of the short segment

predictions, a bigger practical limitation on the accuracy of
short segments is the alignment and environment accu-
racy. Perhaps the most fruitful target for improvements to
the method is in the selection of optimal predictions from
the population of sampled conformations. The current
discrimination scheme relies solely on ranking conforma-
tions according to the potential used for optimization.
Clustering has been previously shown to improve discrimi-
nation in both de novo structure prediction48 and loop
modeling13,24 by identifying conformations corresponding
to wide energy basins. Addition of clustering to the discrimi-
nation scheme is likely to yield an improvement in the
current method as well.

CONCLUSION

Comparative modeling provides 3D models for proteins
based on sequence similarity to a protein of known struc-
ture, and improving the accuracy and completeness of such
models requires methods capable of modeling structural
divergences between homologous proteins. Because the
differences between related structures are responsible for
differences in functional specificity, the ability to accu-
rately model SVRs in homologous sequences is required to
fully exploit comparative models for functional insight.
Although both optimization and database search methods
are able to provide accurate models for short loop regions
in proteins, accurate structural modeling of longer SVRs in
proteins is an unsolved problem. Providing accurate mod-
els of longer insertions and template perturbations, how-
ever, is perhaps the most biologically relevant application
of comparative modeling because such structural changes
add novel functions and specificities to protein scaffolds.
Here we use the fragment buildup strategy of the de novo
prediction algorithm Rosetta in an attempt to overcome
some of the sampling limitations that restrict the accuracy
of modeling methods by extrapolating the structure data-
base to cover longer protein segments. The resulting
method performs as well as existing loop modeling meth-
ods on short loops, and initial results for longer segments
illustrate the promise of the method for predicting struc-
tures of long SVRs as well.
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NOTE ADDED IN PROOF

The Rosetta potential and methods for local sampling
and rapid fragment screening used in this study are
described in detail in a forthcoming volume of Methods in
Enzymology (Rohl CA, Strauss CEM, Misura KMS, Baker
D. Meth Enzym 2004;383:66–93).
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