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Hydrogen bonding is a key contributor to the exquisite specificity
of the interactions within and between biological macromolecules,
and hence accurate modeling of such interactions requires an
accurate description of hydrogen bonding energetics. Here we
investigate the orientation and distance dependence of hydrogen
bonding energetics by combining two quite disparate but comple-
mentary approaches: quantum mechanical electronic structure
calculations and protein structural analysis. We find a remarkable
agreement between the energy landscapes obtained from the
electronic structure calculations and the distributions of hydrogen
bond geometries observed in protein structures. In contrast, mo-
lecular mechanics force fields commonly used for biomolecular
simulations do not consistently exhibit close correspondence to
either quantum mechanical calculations or experimentally ob-
served hydrogen bonding geometries. These results suggest a
route to improved energy functions for biological macromolecules
that combines the generality of quantum mechanical electronic
structure calculations with the accurate context dependence im-
plicit in protein structural analysis.

Hydrogen bonds are partially covalent interactions between a
hydrogen atom covalently bound to an electronegative atom

and an electronegative acceptor atom (1). They play an impor-
tant role in defining the structure and function of biological
macromolecular systems and contribute to the specificity of
molecular recognition (2), the formation of secondary structures
(3), and the energetics of protein folding (4). Numerous studies
of experimentally available protein and small molecule struc-
tures have revealed the directional character of hydrogen bonds
and in particular the nonlinear geometry at the acceptor atom
(5–8). Computational modeling of hydrogen bonding energy
landscapes is a challenging problem; current approaches include
quantum mechanical calculations on model systems (usually
small molecules analogous to either a main-chain peptide unit or
an amino acid side chain) (9, 10), molecular mechanics (force
field) approaches (11–13), and knowledge-based potentials de-
rived from small molecule structure databases (14) or the
Protein Data Bank (PDB) (15, 16).

For application to macromolecular systems, different ap-
proaches have complementary strengths and weaknesses. Quan-
tum mechanical electronic structure calculations are clearly the
most fundamental and general but can be carried out at a
rigorous level of theory only for systems much smaller than
biological macromolecules, and the results are not necessarily
transferable to the complex macromolecular environment. Em-
pirical molecular mechanics force fields are constructed to apply
generally to macromolecules and so are not subject to the size
limitations of electronic structure calculations, but their accu-
racy may be limited by the (necessary) simplification of the
quantum mechanical system and the large number of parameters
that need to be obtained by fitting against experimental data.
Inference of interaction energy landscapes directly from mac-
romolecular structures has the advantage that macromolecular
context effects are directly accounted for, and no assumptions
about transferability are required, but the physical origin of the

resultant potentials of mean force cannot be directly inferred,
and the construction of detailed landscapes is limited by the
number of observations in high-resolution macromolecular
structures. Here we attempt to combine the strengths of the
different approaches by comparing quantum mechanics and
molecular mechanics energy landscapes for small molecule
hydrogen bonded dimers with experimental data on hydrogen
bond geometries observed in the Protein Data Bank (PDB) (16).
We find a close correspondence between the quantum mechan-
ical energy landscape and the energy landscape inferred from the
distribution of side-chain–side-chain hydrogen bonds in protein
structures. In contrast, a comparison with several molecular
mechanics force fields widely used in molecular dynamics sim-
ulations of proteins, nucleic acids, and small molecules reveals
systematic deviations from electronic structure calculations and
protein structure statistics.

Methods
Choice of Small Molecule Model. It is a nontrivial problem to choose
a small hydrogen bonded dimer that accurately represents
hydrogen bonds found in protein side chains and main chains.
Formamide, acetamide, N-methylacetamide (NMA), form-
amide–formaldehyde, and water dimers (and combinations
thereof) have been explored in the literature, primarily with the
purpose of identifying various local and global minima in a given
complex (9, 10, 17–23). Although NMA dimers are routinely
used to model main-chain hydrogen bonds, the methyl groups on
both ends can contribute significantly to the dimerization energy
surface (13, 21), and hence formamide is a better model for
amino acid side-chain hydrogen bonds. A number of low-energy
dimer arrangements (parallel, antiparallel, and out-of-plane)
have been described in the literature (17, 18, 21, 22). For
comparison with protein side-chain statistics, we used an out-
of-plane formamide dimer with a single hydrogen bond (Fig.
1A). Cyclic conformations with two NOH���OAC hydrogen
bonds occupy global minima for both formamide and NMA
dimers (21, 22); however, we wanted to model single hydrogen
bonds often occurring in proteins, deferring the issue of multiple
hydrogen bonds and cooperativity to a later study. The starting
geometry for the formamide dimer optimization was taken from
ab initio calculations carried out in ref. 24; it corresponds to one
of the out-of-plane conformations identified in ref. 21. We also
carried out electronic structure calculations for the out-of-plane
acetamide dimer; the conformation of this dimer before opti-
mization was created by adding methylene groups to the out-
of-plane formamide dimer. The starting points for the scans of
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the potential energy surface were generated by unconstrained
optimization of these initial conformations (Table 1).

Generation of Dimerization Energy Landscapes. The potential en-
ergy surface for the interacting dimers was sampled by system-
atically varying one of the four parameters describing the

hydrogen bond geometry (�HA, �, �, and X; defined in Fig. 1B)
while keeping the other three fixed at their optimal starting
values (Table 1). In calculations aimed at comparison with the
PDB statistics, the bond lengths and bond angles of the mole-
cules but not the hydrogen bond geometric parameters were
allowed to relax for each sample conformation; very similar
results are obtained when the three hydrogen bond parameters
not being sampled in a given projection of the landscape are
allowed to vary during the optimization process as well (data not
shown).

Electronic Structure Calculations. NWCHEM 4.1 quantum chemistry
software (25) was used for all electronic structure calculations in
this paper. We used the aug-cc-pVDZ basis set for density
functional theory (DFT) calculations and took the counterpoise
(CP) correction (26) into account when computing dimerization
energies to correct for the basis set superposition error resulting
from the use of finite basis sets. When dimer geometry optimi-
zations were involved, the CP correction was applied separately
to each monomer in a single point calculation. The geometry of
the monomers was given by the fully optimized dimer geometry.
For DFT calculations, we used the Perdew, Burke, and Ernzer-
hof correlation-exchange functional (PBE96) (27), which repro-
duces other ab initio hydrogen bonding calculations with rea-
sonable accuracy (28–30). To test the applicability of this
functional, we carried out dimerization and conformational
energy calculations on a set of small molecules taken from ref.
24 by using both PBE96 and B3LYP (31) correlation-exchange
functionals and found no significant discrepancies between the
two (data not shown).

To obtain an independent check of the DFT results, we also
carried out second-order Moller–Plesset perturbation theory
(MP2) calculations on the same systems. MP2 calculations were
counterpoise (CP)-corrected and also used the aug-cc-pVDZ
basis set. Previous work on ab initio calculations of small
molecules in the gas phase has demonstrated that absolute
dimerization energies of hydrogen bonded dimers computed by
using CP-corrected MP2 with the aug-cc-pVDZ basis set are
within a few tenths of kcal�mol of the experimentally observed
values (20). The difference in dimerization energies of two
alternative conformations is expected to be even more accurate
due to the cancellation of errors related to finite basis sets.

Molecular Mechanics Calculations. Force-field calculations were
carried out by using the TINKER 4.0 molecular modeling package
(32) (http:��dasher.wustl.edu�tinker). We considered
CHARMM27 (33), OPLS-AA (34), and MM3-2000 force fields (35); all
atoms were modeled explicitly. All molecular mechanics calcu-
lations were set up in the absence of solvent and at zero
temperature.

Hydrogen Bond Geometries in Protein Structures. The knowledge-
based hydrogen bonding potential is derived as described in ref.
16. Briefly, statistical distributions of the geometric parameters
�HA, �, �, and X (defined in Fig. 1B) describing the geometry of
hydrogen bonds were obtained from a data set of 698 proteins
with a resolution of 1.6 Å or better and a crystallographic R
factor of 0.25 or better, taken from the Dunbrack-culled PDB
collection (http:��dunbrack.fccc.edu). CHARMM19 standard
bond angles (36) were used to add polar hydrogens in cases
where their position was defined by the chemistry of the donor
group (His, Asn, Gln, Arg, and Trp). The donor-hydrogen bond
length of 1.0 Å, supported by neutron diffraction data (5), was
used to define hydrogen positions given by the donor chemistry.
Hydrogens attached with rotatable bonds (Ser, Thr, Tyr, and
Lys) were not considered in the derivation of hydrogen bonding
geometries as their positions would be influenced by the energy
function used for rotatable bond optimization. For determina-

Fig. 1. (A) Three representative conformations of a formamide dimer. The
angle at the acceptor (�) is varied, with all other geometric parameters held
fixed at the optimized dimer values. (B) Schematic representation of the
hydrogen bond geometry. D, donor atom; H, hydrogen atom; A, acceptor
atom; AB, acceptor base; R1,R2, atoms bound to the acceptor base, R1

� , R2
� ,

atoms bound to the donor atom. Hydrogen bond geometric parameters
considered here are: �HA, distance between hydrogen and acceptor atoms; �,
angle at the acceptor atom; �, angle at the hydrogen atom; X, torsional angle
around the A–AB axis.

Table 1. Hydrogen bond geometry parameters for the
formamide dimer optimized with quantum chemistry (DFTf,
MP2, HF) and molecular mechanics methods (CHARMM27, OPLS-AA,
MM3-2000), and the acetamide dimer optimized with the DFT
method (DFTa)

Method �HA, Å �,° �,° X,°

DFTa 1.94 112.34 159.43 �177.51
DFTf 1.94 112.91 161.57 179.78
MP2 1.97 110.49 155.33 �179.49
HF 2.10 138.16 170.94 �179.54
CHARMM27 1.82 170.25 170.83 �106.83
OPLS-AA 1.75 165.04 175.61 145.12
MM3-2000 1.98 121.16 161.07 149.63
PDB 1.93 115.00 175.00 175.00

Knowledge-based minima (PDB) are based on the most populated fre-
quency bins (see Methods). The geometry parameters are defined in Fig. 1B.
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tion of amino acid protonation states, we used the unperturbed
ionization constants of the amino acids and assumed a pH value
of 7. Perturbed ionization constants occur mainly in enzyme
active sites and are likely not to influence the observed distri-
butions significantly. We preserved the crystal structure confor-
mation of His, Asn, and Gln, without taking into account
possible swapping of N, O, and C atoms due to uncertainty in
interpreting the crystallographic electron density. We expect an
incorrect assignment to result on average in a complete failure
to detect a hydrogen bond, rather than in a distortion of the
observed hydrogen bonding geometry. For comparison with ab
initio calculations on the formamide dimer, in this paper we
consider only protein side-chain–side-chain hydrogen bonds
involving sp2 hybridized acceptor atoms.

Generation of a Potential of Mean Force from PDB Statistics. The
inverting of frequency distributions to obtain potentials of mean
force is justified for a set of systems frozen in very low energy
states, where the total energy is the sum of many independent
contributions that are functions of some parameter p; in such
ensembles, the negative logarithm of the frequency of occur-
rence of a particular value of p is proportional to the interaction
energy for that value of p (14). A set of protein crystal structures
constitutes such an ensemble to a good approximation, and
hence the frequencies fprotein(p), p � (�HA, �, �, X) with which
hydrogen bond parameters �HA, �, �, or X are observed in
protein structures can be related to the hydrogen bond interac-
tion energies according to the Boltzmann-like expression:

E�p� � � ln fprotein(p). [1]

The energy functions E(p) for the four geometric parameters
�HA, �, �, and X were obtained by using

E�p� � � ln �fprotein �p�

fref�p� � , [2]

where fprotein(p) describes the frequency at which a geometric
parameter p � �HA, �, �, X is observed in a certain bin in the
protein dataset, and fref(p) is a reference frequency assuming
an unbiased distribution over all bins. The angular distribu-
tions were computed for all hydrogen-acceptor distances
between 1.4 and 2.1 Å; the distance distribution was obtained
by using a distance cutoff of 3.0 Å (16). We used 10° bins for
all angular distributions and 0.05-Å bins for the distance
distribution. For the minima of the knowledge-based potential
in Table 1, we report values corresponding to the middle of the
most populated bin.

Results and Discussion
Our overall goal is to develop an accurate description of the
energetics of side-chain–side-chain hydrogen bonds in proteins.
Characterization of the energy landscape by using quantum
mechanical calculations requires the choice of a suitable small
molecule model for side-chain hydrogen bonds. Truncation of
the hydrogen bonding moieties of asparagine and glutamine
yields formamide, and the primary model for side-chain hydro-
gen bonds in this paper consists of two formamide molecules
interacting via a single hydrogen bond. We confirm the accuracy
of this model with calculations on acetamide (Table 1), which
corresponds to the hydrogen bonding groups plus the preceding
methylene group on the side chain. NMA, although a reasonable
model for the protein backbone is less appropriate for side-
chain–side-chain hydrogen bonds because of steric clashes in-
volving the additional methyl groups. We model protein side-
chain hydrogen bonds by using the formamide dimer shown in
Fig. 1A and the corresponding acetamide dimer (see Methods).

We use DFT for our electronic structure calculations because
it has been extensively tested on hydrogen bonded systems and
was found to reproduce dimerization energies obtained exper-
imentally or through other theoretical methods with reasonable
accuracy (28–30, 37). We also use second-order Moller–Plesset
perturbation theory (MP2) applied to the Hartree–Fock (HF)
self-consistent field method to ensure that our conclusions are
not method dependent.

Description of the hydrogen bonding energy landscape re-
quires the choice of a suitable set of geometric parameters. In
general, six parameters are required to describe the relative
orientation of two rigid bodies. The parameters we chose to
describe hydrogen bond geometry are shown in Fig. 1B: we
consider the distance between the hydrogen atom and the
acceptor atom (H���A, �HA), the angle at the acceptor atom
(ABAA���H, �), the angle at the hydrogen atom (DOH���A, �),
and the torsional angle around the acceptor–acceptor base bond
(R1OABAA���H, X). The dihedral angle X is measured with
respect to the hydrogen atom covalently attached to the carbonyl
carbon of the acceptor. The relative orientation of the monomers
in a dimer with a given hydrogen bond geometry is determined
by two additional degrees of freedom, torsional angles around
the hydrogen bond and around the hydrogen–donor bond.

Because the full hydrogen bonding energy surface is four
dimensional, it is difficult to visualize and adequately sample by
using high-level quantum mechanical methods. Moreover, a full
multidimensional dimerization energy landscape cannot be re-
liably inferred from experimental hydrogen bond distributions
due to the limited number of observations. A more practical
approach is to examine a 1D projection of the energy surface,
where only one parameter (�HA, �, �, or X) is changed, whereas
the others stay equal to those in an optimal hydrogen bond
arrangement identified by unconstrained geometry optimization
of the initial dimer conformation (see Fig. 1a for three repre-
sentative dimer conformations with different values of � and
Methods for computational details).

Using DFT, we obtained the dimerization energies as a
function of �HA, �, �, and X, shown as green (solid) curves in Fig.
2. There are pronounced minima in the �HA, �, and X energy
dependences (see also Table 1, which shows hydrogen bond
geometries resulting from unconstrained optimizations of the

Fig. 2. Formamide dimer hydrogen bonding energies (kcal�mol) vs. �HA (Å),
�, �, and X (°). Green (solid), DFT; blue (short dashes), MP2; cyan (dots), HF SCF;
red (dots and dashes), CHARMM27; black (long dashes), OPLS-AA; magenta (long
and short dashes), MM3-2000. All abbreviations are defined in the text.
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formamide dimer via various force field and quantum mechan-
ical approaches) and a shallower minimum in the � dependence.
The results are essentially identical to MP2 calculations per-
formed for the same geometries (blue curves with short dashes
in Fig. 2). However, the less accurate HF method, which neglects
explicit electron–electron correlations, exhibits substantial dif-
ferences, especially in the location and the magnitude of the
dimerization energy minimum as a function of �HA and � (cyan
curves with dots in Fig. 2). HF results are well known to
overestimate hydrogen bonding lengths (1); they also appear to
favor making the angle at the acceptor atom more linear. When
the electron–electron correlation energies are subtracted from
the total DFT dimerization energy, the shape of the energy
surface becomes closer to that computed by using HF theory,
with all minima positions shifted and dimerization energies
underestimated as in the case of HF calculations (data not
shown).

Current molecular mechanics force fields widely used in
biomolecular simulations essentially model hydrogen bonding as
a purely electrostatic interaction: positive partial charges are
placed on the proton and the acceptor base and negative partial
charges, on the acceptor and donor atoms (38, 39). The hydrogen
bond modeled in this way is dominated by dipole–dipole inter-
action and the energy of two dipoles is at a minimum when all
four atoms are collinear. Fig. 2 shows a comparison of DFT,
MM3-2000 (11, 12, 35), OPLS-AA (34), and CHARMM27 (33) energy
surfaces, carried out for dimer sets produced from a DFT-
minimized hydrogen bonded complex, as described above. We
observe significant differences in the OPLS-AA and CHARMM27
calculations when compared to the DFT results, in particular for
the dependence of the dimerization energy on �. The CHARMM27
potential function is most favorable for � close to 180°, whereas
the OPLS-AA function does exhibit a shallow minimum at �
�110°; however, the energy cost of going to larger angles is so
small that an OPLS-AA optimized dimer ends up having an almost
linear hydrogen bond (Table 1). Indeed, Fabiola et al. (40) and
Lii et al. (11, 12) have argued that hydrogen bond directionality
is not correctly reproduced by molecular mechanics force fields
unless an explicitly orientation-dependent hydrogen bonding
potential is added to the total molecular energy. A purely
electrostatic model was also found to be insufficient to model
hydrogen bonding in ice (41).

In Fig. 3, we compare the dimerization energy obtained from
DFT (both with and without constrained optimization) calcula-
tions with the potential of mean force [E(p), Eq. 2] obtained
from protein structures. There is a striking correspondence
between the electronic structure calculations and the distribu-
tion of experimentally observed side-chain–side-chain hydrogen
bond geometries. It is especially remarkable because E(p) (Eq.
2) is a potential of mean force, averaged over solvent degrees of
freedom and the degrees of freedom of the hydrogen bonded
dimer not explicitly taken into account in Eq. 2, such as
side-chain bond lengths and bond angles. This similarity between
quantum mechanical dimerization energies and hydrogen bond
geometry distributions observed in proteins suggests that the
DFT and MP2 calculations on the small molecule models
capture the essential features of hydrogen bonding interactions
between amino acid side chains in protein structures, perhaps
because the very short range partially covalent nature of the
hydrogen bond makes it relatively insensitive to the large dif-
ferences in the surrounding environment.

The largest difference between the electronic structure
calculations and the PDB statistics on the one hand and the
molecular mechanics force fields on the other is in the
dependence of the energy on �. The lowest energy value of �
in CHARMM27 and OPLS-AA molecular mechanics force fields is
close to 180° (Table 1 and Fig. 2); in contrast, the most
frequently observed value of � for side-chain–side-chain hy-

drogen bonds in proteins is close to 120°, as is the minimum
energy conformation of the formamide dimer in the DFT and
MP2 calculations (Table 1; MM3, which has an explicitly
orientation-dependent hydrogen bonding potential, has a min-
imum near 120°). From an elementary chemistry viewpoint,
one might expect that the lone pairs of the sp2 hybridized
oxygen atom are at positions corresponding to � � 120°, and
hence that hydrogen bonds with � � 120° would be most
favorable. However, a previous study found only a very small
energy difference between the 120° and 180° conformations
(42), and this was part of the basis for dropping an explicit
hydrogen bonding potential from the CHARMM force field (33,
36). It is possible, therefore, that both the electronic structure
calculations and the PDB statistics are f lawed, and their
agreement is fortuitous. We consider these possibilities in
more detail in the following two paragraphs.

To further check the electronic structure calculations, we
carried out optimized MP2 calculations on formamide dimers
with � equal to 120° and 175°. In these calculations, all degrees
of freedom except the acceptor angle were allowed to relax. The
results of these calculations are in very close agreement with the
optimized DFT calculations in Fig. 3: the dimerization energies
at 120° are �6.90 kcal�mol for MP2 and �6.82 kcal�mol for
DFT, whereas the dimerization energies at 175° are �5.99
kcal�mol for MP2 and �5.74 kcal�mol for DFT. Because DFT
and MP2 calculations use different treatments of electron cor-
relation and exchange, the similarity in the results strongly
suggests that the difference in energy between the two config-
urations is on the order of 1 kcal�mol, considerably larger than
that found in older studies using semiempirical methods (43) or
HF calculations over the full � range supplemented with limited
Moller–Plesset results for near linear geometries (42), which
suggested weak hydrogen bonding energy dependence on the
acceptor angle or even preference for more linear hydrogen
bonds.

We next considered possible sources of bias in the protein
structure analysis (see Methods). There is always a possibility
when inferring a potential of mean force from observed distri-
butions that secondary effects introduce considerable bias. In
the case of hydrogen bonding, it is possible that the relatively

Fig. 3. Formamide dimer hydrogen bonding energies (kcal�mol) vs. �HA (Å),
�, �, and X (°). Green (solid), DFT (same as in Fig. 2); black (dashes), DFT with
constrained optimization; cyan (solid with filled circles), knowledge-based
potential (negative logarithm of frequency distributions for side-chain–side-
chain interactions in protein structures, binned as described in Methods).

Morozov et al. PNAS � May 4, 2004 � vol. 101 � no. 18 � 6949

BI
O

PH
YS

IC
S



high frequency of hydrogen bonds with � � 120° in proteins
does not ref lect an intrinsic energetic preference for this
orientation but rather that many hydrogen bond acceptor
atoms in proteins make two hydrogen bonds, and that to
accommodate two hydrogen bonds � must be close to 120°. To
avoid possible bias in hydrogen bond geometries involving
acceptor atoms making multiple hydrogen bonds, we calcu-
lated distributions separately for acceptor atoms making only
one hydrogen bond (side chains with multiple hydrogen bonds
involving different acceptor atoms were not automatically
excluded by this procedure). As is evident from Fig. 4, the
distributions for the singly hydrogen bonding acceptor atoms
are very similar to those obtained for all acceptor atoms,

suggesting that the preference for the acceptor angle of 120°
over 180° ref lects the energy differences between the two
orientations and is not simply a consequence of steric con-
straints on the formation of multiple hydrogen bonds. Very
similar orientation dependencies were also observed for hy-
drogen bonds involving different types of side-chain donor
atoms (Fig. 4).

The calculations in the preceding paragraphs suggest that the
agreement between the electronic structure calculations and the
protein structure statistics is not fortuitous, and that both reflect
the energetics of hydrogen bonding more accurately than the
dipole–dipole treatment in molecular mechanics force fields.
We emphasize that, whereas the above results suggest that
current force fields are inaccurate for side-chain–side-chain
hydrogen bonds in proteins, they appear to work reasonably well
for main-chain hydrogen bonds, which are usually more linear
due to steric constraints in secondary structure elements, and
possibly due to the more dipolar nature of main-chain hydrogen
bonds (8, 16, 40).

Conclusion
The main observation of this paper is the striking correspon-
dence between the knowledge-based potential derived from
side-chain–side-chain hydrogen bond geometries in high-
resolution protein structures and the ab initio DFT and MP2
quantum mechanical calculations of the formamide and acet-
amide dimer hydrogen bonding energies. This close correspon-
dence suggests that the orientation dependence of side-chain–
side-chain hydrogen bonds is well modeled by formamide and
acetamide dimers, and that the hydrogen bonding distributions
in protein structures are surprisingly context independent and
close to the Boltzmann-like distribution defined by Eq. 2. This
finding suggests that the assumption of additivity and transfer-
ability of the properties of the functional groups to proteins is
valid for side-chain hydrogen bonds, and implies more generally
that short-range recurrent interactions in complex macromole-
cules can be analyzed by using quantum mechanical calculations
on small molecule models (44). Finally, because our quantum
mechanical calculations are performed in vacuum, it appears
that the electrostatic effects due to solvent polarization around
interacting residues do not play a major role in determining
short-range hydrogen bonding geometries.

Another observation is the limited degree of accuracy exhib-
ited by molecular mechanics force fields when applied to hy-
drogen bonded systems (11, 12, 40, 44). To accurately capture the
physics of hydrogen bonds, a next generation of molecular
mechanics force fields incorporating off atom charges, higher-
order multipole interactions and�or electronic polarizability will
be necessary (39, 45–47). As it stands now, parameterizations of
van der Waals and point charge atom-centered Coulomb inter-
actions used in CHARMM27 and OPLS-AA tend to make hydrogen
bonds too linear, consistent with a simple dipole–dipole model
of a hydrogen bond. This appears to be less of a problem in
main-chain hydrogen bonds, where observed hydrogen bonding
geometries depend on the secondary structure and are hence
constrained to be more linear (5, 8, 16).

The knowledge-based hydrogen bonding potential compared
with ab initio electronic structure calculations in this paper has
seen considerable success in such diverse applications as protein
structure prediction, fixed backbone sequence redesign, protein–
protein docking, and prediction of hot spots in protein interfaces
(16, 48–50). Based on this observation, we suggest a new
approach for creating free energy functions suitable for protein
structure prediction and sequence design, in which knowledge-
based potentials are augmented by quantum mechanical calcu-
lations on small molecule models representative of specific
aspects of protein interactions, such as hydrogen bonding, �–�
and cation–� interactions. There is considerable synergy be-

Fig. 4. Distributions of the acceptor angle � for hydrogen bonds observed in
high-resolution protein crystal structures. Shown are the distributions for all
side-chain–side-chain hydrogen bonds with sp2 hybridized acceptor atoms in
the data set of 698 protein crystal structures, a subset of those hydrogen bonds
where only a single hydrogen bond is made to each acceptor atom, and
subsets of the single hydrogen bonds split by the type of the donor amino acid
(R, arginine; N, asparagine; Q, glutamine; H, histidine; W, tryptophan). Raw
counts were corrected for the different volume elements encompassed by the
bins; the angular correction is sin(�).
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tween ab initio electronic structure methods and inferring of
interaction energies from the distributions observed in protein
structures: the former are more general, provide fundamental
physical understanding, and are not limited by sparse sampling,
whereas the latter require no assumptions about the validity of
a small molecule model for biomolecular interactions. The
opportunity for synergy is apparent in Fig. 3; the bumpiness of
the empirical potential, which stems from the limited number of
observations in the PDB, could be replaced by the smoother
potential derived from the quantum mechanical calculations.
Furthermore, unlike knowledge-based potentials, quantum me-
chanical calculations can, given sufficient computer time, be
used to create more informative multidimensional dimerization
energy landscapes. Together, the knowledge-based methods can

guide the evaluation of the transferability of the ab initio results,
and the quantum mechanical methods can then be used to
augment and generalize the observed statistics.
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