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In order adequately to sample conformational space, methods for protein
structure prediction make necessary simpli®cations that also prevent
them from being as accurate as desired. Thus, the idea of feeding them,
hierarchically, into a more accurate method that samples less effectively
was introduced a decade ago but has not met with more than limited
success in a few isolated instances. Ideally, the ®nal stages should be able
to identify the native state, show a good correlation with native similarity
in order to add value to the selection process, and re®ne the structures
even further. In this work, we explore the possibility of using state-of-
the-art explicit solvent molecular dynamics and implicit solvent free
energy calculations to accomplish all three of those objectives on 12
small, single-domain proteins, four each of alpha, beta and mixed topolo-
gies. We ®nd that this approach is very successful in ranking the native
and also enhances the structure selection of predictions generated from
the Rosetta method.
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Introduction

Approaches for predicting three-dimensional
protein structure based on amino acid sequence,
ranging from ab initio to comparative modeling, all
make considerable approximations in order to con-
tend with the otherwise intractable number of
possible conformations. Commonly in ab initio
methods, a simpli®ed energy potential is used
together with a reduced representation of the pro-
tein, in which case side-chains are often rep-
resented by centroids, hydrogen atoms are usually
omitted, and only a few discrete torsional angles
are allowed. Comparative modeling methods also
rely on many of the same approximations, albeit
primarily on the non-homologous regions. These
simpli®cations, while bene®cial in that they ®lter
out the majority of unrealistic and improbable
structures, limit the degree of accuracy that can be
obtained. Even over the homologous regions of a
comparative modeling effort, the exact native
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olecular mechanics-
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statics.
structure of any sequence inevitably differs from
its nearest structural neighbor template, particu-
larly in localized areas that may allow for small
global superposition differences, despite large,
local deviations that can not be corrected without a
more accurate representation of the protein and the
energy potential, as well as suf®cient sampling.

The solution for overcoming the limiting simpli-
®cations is not to remove them from the outset,
but rather to add in the detail when necessary,
because introducing a higher level of accuracy to
the energy potential makes for a more rugged sur-
face that is more dif®cult to sample, thereby
restricting the distance in conformational space
that can be sampled on a practical time scale.
Thus, the current structure prediction methods
must draw the tertiary structure suf®ciently close
to the correct structure, within a ``radius of conver-
gence'', before all-atom detail with a continuum
torsional space may be capable of improving them
further.

The ®rst attempts at using all-atom models as
the ®nal stage of a hierarchical approach took
place a decade ago,1,2 before control simulations
were even capable of maintaining the native state,
at a time when the computer power required for
even short simulations was very demanding. These
investigators applied their methods to the GCN4
leucine zipper, which has a very simple coiled-coil
homodimer topology consisting of two 33-mer
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418 MD in the Endgame of Structure Prediction
monomers, of which all 33 residues were a-helical.
In the end, they obtained �1 AÊ backbone RMSD
structures, but only with the help of a-helical con-
straints applied to every residue. While having
brought forth the enticing idea of hierarchical pro-
tein structure prediction, these studies were only
successful because they knew the correct structure
to begin with and used native constraints to
severely reduce the conformational search. Samu-
drala et al.3 later attempted a hierarchical approach
by building all-atom models from a subset of off-
lattice predictions on a set of 13 proteins and
applying minimization alone, leading to the correct
global topology in six of the cases. However, in
this study, it was not demonstrated, and is unli-
kely, that, the ®nal stage of this hierarchical effort
added any value to the initial off-lattice models,
since minimization affords extremely limited con-
formational sampling at best. More recently, with
advances in simulation methods, most notably
being accurate means for treatment of long-range
electrostatics4 that allows for maintenance of native
protein structures,5 our group used an enhanced
sampling protocol called ``locally enhanced
sampling'',6 which has been shown to lower
energy barriers using a mean-®eld approach, that
drove a 3.7 AÊ 29-mer protein structure with an
incorrectly packed b-sheet to a 2.2 AÊ conformation
with the correct topology.7 Even more recently, we
ran nanosecond time scale, state-of-the-art molecu-
lar dynamics simulations, with accurate long-range
electrostatics and explicit solvent, on initial struc-
ture predictions for the 36-mer HP-36 and the 65-
mer S15 alpha proteins, not only improving some
of the model predictions to sub-2.0 AÊ Ca RMSD
structures, but also demonstrating that the highest
resolution models also had the best predicted mol-
ecular mechanics-Poisson-Boltzmann Surface Area
Table 1. Native state stability

Proteina Residues hRMSDiinit
b

Alpha
1gab 47 1.7
1utg 62 1.5
1uxd 43 1.3
1pou 70 2.0

Beta
1sro 66 1.9
1qyp 42 2.3
1vif 48 0.9
2cdx 54 2.6

Mixed
1leb 63 1.5
2ptl 60 1.9
5icb 72 1.6
5znf 25 1.6

11 of the 12 native state one ns trajectories did not leave the initi
values under 2.0 A.

1gab spent 90 % of the simulation in the initial family.
a 1utg, 1vif and 5icb are X-ray crystal structures. The remaining ni
b In the NMR cases, the average NMR structure was used as the r
(MM-PBSA) free energies among a handful of
other models with less native similarity.8

In the current work, we further explore the
promise of using explicit solvent molecular
dynamics simulations together with MM-PBSA for
the endgame of structure predictions on 12 other
small single-domain proteins, four alpha, four beta
and four mixed. The three main objectives are: (1)
identi®cation the native state; (2) improved ®lter-
ing over the previous stage by providing better
correlation with native similarity; and (3) re®ne-
ment of the structures.

Results and Discussion

Conformational families

For each of the 12 proteins, 30 Rosetta model
predictions were compared: the centers of the ®ve
most highly populated clusters, and among the
remaining Rosetta predictions, the ®ve with the
best Ca RMSD predictions, and the 20 with the
most favorable Rosetta energy scores. We equili-
brated each of these Rosetta models and the exper-
imental structures in a box of TIP3P9 water with a
10 AÊ buffer and ran one ns production phase tra-
jectories, for a total of 372 explicit solvent one ns
simulations. After having clustered the resulting
trajectories, using a 2.5 AÊ Ca RMSD cutoff (see
Methods), we observe that the Rosetta model pre-
dictions had an average of 1.8 conformational
families over the course of the nanosecond simu-
lation; more speci®cally, the alpha proteins aver-
aged 1.5, the beta proteins 2.4, and the mixed
proteins 1.6. In comparison, 11 of the 12 trajectories
on experimental structures had only a single con-
formational family, with the lone exception, 1gab,
spending 90 % of the time in the initial confor-
mational family that had a slightly more favorable
MM-PBSA free energy (Table 1). The ensemble-
hRMSDi2nd hQiinit
b hQi2nd

2.3 85.4 84.8
91.1
86.2
84.4

76.9
72.3
89.8
74.1

88.5
79.8
87.0
86.9

al conformational family, most of which had average Ca RMSD

ne are NMR structures.
eference, as it best represents the whole ensemble.
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average values for the MM-PBSA as a function of
two native similarity metrics, Ca RMSD on the left
and percentage of native contacts on the right,
are plotted for each conformational family in
Figures 1-3.

Native states

The proteins for this study were selected only on
the basis of size and topology, without regards to
the experimental method used for the structure
determination, leading to a total of nine NMR and
three X-ray cases. Table 1 shows that, for the most
part, control simulations led to very stable native
states having average Ca RMSDs values under
2.0 AÊ and on average a percentage of native con-
tacts (Q-values) greater than 80 %. Among the
exceptions, the NMR model for 1pou seemed to
have a hCa RMSDi on the high end, although it
still had a very good Q-value of 84 %. The three
beta proteins with NMR structures, 1sro, 1qyp and
2cdx, had RMSD's on the high end as well as
Q-values on the low end, when being compared to
their respective average NMR structures. For 2cdx,
the one with the greatest deviation from the NMR
models, the snapshots from the 1 ns trajectory
showed an average pair-wise Ca RMSD of 1.36 AÊ

from one another with a standard deviation of
0.36 AÊ , and consisted of a single conformational
family. Similarly, for 1sro and 1qyp, the average
pair-wise RMSD values were 1.42 and 1.32 AÊ , with
standard deviations of 0.41 and 0.43 AÊ , respect-
ively, and they too populated single conformation-
al families throughout their simulations. These
®ndings are in agreement with a separate study,10

in which we suggest that the approximate treat-
ment of solvent used in solving NMR structures
causes them to be less reliable than crystal struc-
tures.

MM-PBSA parameters

In the MM-PBSA free energy method, there are a
few parameters that one cannot derive from ``®rst
principles.`` Perhaps the greatest dif®culty lies in
deciding what interior dielectric constant (eint) is
most appropriate. On the one hand, because the
atomic point charges in our force ®eld have been
derived based on high level quantum mechanical
charges with a dielectric constant of 1, we may be
justi®ed in using eint � 1. On the other hand, the
experimental dielectric constant in proteins is �4.
Thus, the choice of eint may be system dependent,
with larger dielectric constants than 1 likely to be
appropriate in some instances.

Another uncertainty is in deciding which par-
ameters to use for describing the backbone tor-
sional potentials. Because the original Cornell et al.
force ®eld (PARM94),11 which was parameterized
on a set of dipeptides, was shown to slightly favor
a-helical conformations on a training set of tetra-
peptides,12 the torsions for phi and psi had been
modi®ed in response to high level ab initio calcu-
lations on the alanine tetrapeptide, which led to a
signi®cantly better agreement between molecular
mechanical and quantum mechanical relative free
energies on the tetrapeptide training set, giving
rise to the PARM9613 force ®eld. However, it is still
not clear that one is more generally the better
choice for proteins, particularly in the post-proces-
sing stage of MM-PBSA calculations.

The non-polar component of the solvation free
energy is a third area in which one may explore
multiple values or functional forms. In principle,
this term should account for all of the non-electro-
static contributions associated with solvating a
molecule, primarily including the entropically
unfavorable cost of cavity formation and the
always attractive dispersion interactions between
solute and solvent. Since it has been reasoned that
both of the primary factors involved in this term
are roughly proportional to the solvent-accessible
surface area (SASA), as found in alkanes, MM-
PBSA and other methods that calculate the sol-
vation free energy with a continuum solvent14 ± 17

use a small positive linear g coef®cient to scale this
term as a function of SASA, which assumes that
the relative weighting of the unfavorable cavitation
is stronger than that of the attractive dispersion.
An alternative approach, long used by Cramer's
and Truhlar's groups, has been to calculate atomic
surface tensions that depend on properties such as
atom type and nearest-neighbor recognition,18

which does not always lead the non-polar sol-
vation free energy to be positive. Recently, Pitera
& van Gunsteren19 demonstrated the importance
of considering all solute-solvent van der Waals
(VDW) interactions including those buried in the
protein interior, indicating that solvent excluded
volume may be more appropriate than surface area
in relating to the favorable aspect of non-electro-
static solvation free energies. While we continue to
make the linear approximation, we explore the
effect of using different g coef®cients.

Studies applying MM-PBSA to binding free
energies20 and relative free energies of stability on
proteins8,21 have been successful using values
between 1 and 4 for eint, the PARM96 force ®eld,
and
a g coef®cient between 5 and 7 cal molÿ1 AÊ ÿ2

(1 cal � 4.184 J). Figures 1-3 graphically depict the
results using our standard values: eint � 4, PARM96
and g � 5.42 cal molÿ1 AÊ ÿ2 and Tables 2-4 show
the effects of changing eint, the dihedral component
of the force ®eld, and g on the ability to rank the
native structure and on the strength of relationship
with Ca RMSD, which we discuss below.

Native rank

Table 2 shows the native rank of the confor-
mational families containing the equilibrated
experimental structures, according to its VDW and
total electrostatics (eel_tot) components, and
according to MM-PBSA, using various permu-
tations of the three parameters mentioned above.



Figure 1. Alpha proteins. For each protein, simulations on 31 initial conformations were carried out: the experimen-
tal structure, the top ®ve Rosetta predictions, and 25 other Rosetta predictions. For each conformation, the ensemble-
average MM-PBSA was plotted as a function of either Ca RMSD (left panels) or Q (right panels), % of native contacts,
for every conformational family with a life of more than 100 ps. The conformational families containing the native
state are illustrated as closed red circles, those containing the ®ve most favorable Rosetta initial structures as closed
orange circles, and those having started from the remaining Rosetta structures as open blue circles. Correlation coef®-
cients were determined using every available data point. On the left panels, it is calculated separately for all points
below a 5 AÊ Ca RMSD limit (see the text) and for those above the limit.
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Figure 2. Beta proteins. See the legend of Figure 1.
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With the standard set, MM-PBSA predicts the
native family as most energetically favorable in
eight of the 12 proteins (Table 2). In the alpha pro-
teins 1gab and 1uxd, the average Ca RMSD of con-
formational families lower in free energy is only
2.08 and 1.80 AÊ , respectively, with the lowest



Table 2. Native rank

MM-PBSA

Protein VDWa eel_totb Standard setc eint � 1d PARM94e g � 54.2f n

Alpha
1gab 9 25 7 (2.08 AÊ ) 12 (2.42 AÊ ) 8 (2.14 AÊ ) 10 (2.24 AÊ ) 39
1utg 4 18 1 4 (9.00 AÊ ) 1 2 (10.40 AÊ ) 55
1uxd 2 35 23 (1.80 AÊ ) 27 (1.90 AÊ ) 10 (1.56 AÊ ) 17 (1.70 AÊ ) 36
1pou 18 1 17 (11.01 AÊ ) 1 10 (10.24 AÊ ) 1 53

Beta
1sro 2 37 1 1 4 (4.27 AÊ ) 1 70
1qyp 1 65 1 1 2 (8.60 AÊ ) 1 71
1vif 1 16 1 1 1 1 73
2cdx 8 53 1 1 32 (10.16 AÊ ) 3 (10.45 AÊ ) 77

Mixed
1leb 1 48 1 4 (7.07 AÊ ) 3 (7.95 AÊ ) 1 53
2ptl 1 46 5 (3.70 AÊ ) 13 (3.84 AÊ ) 4 (3.67 AÊ ) 1 54
5icb 1 49 1 9 (5.74 AÊ ) 4 (6.33 AÊ ) 1 53
5znf 9 26 1 1 1 1 38

Weighted avg.a 4.46 36.23 4.11 5.11 7.20 2.69

In parenthesis are the average RMSD values of the conformational families having lower energies than the native. With the
standard set of parameters, MM-PBSA ranked the experimental structures as best in eight of 12, with two (lgab and 1uxd) of the
four false negatives amidst other structures that are arguably part of the native state as well.

a Van der Waals energy.
b Total electrostatic energy, using eint � 4: intra-solute Coulombic � �Gsolv.pol.
c Standard set is eint � 4, PARM96, and g � 5.42 cal/mol AÊ 2.
d Standard set, except for eint.
e Standard set, except for the force ®eld.
f Standard set, except for g.
g Weighted according to n (see Methods).
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energy 1gab Rosetta structures having as good a
RMSD as the NMR model, and with one having
even more native contacts (from the average NMR
structure) than the NMR model (Figure 1). In the
mixed protein 2ptl, only three of the 54 confor-
mational families had a lower predicted free
energy, all three of which were low RMSD struc-
tures. Only in the case of the four-helix bundle
1pou do the standard parameters decidedly fail,
where nearly half of the 53 conformational families
scored better than native. VDW alone performs
worse than the standard set MM-PBSA, predicting
the native family as most favorable in only ®ve of
the same eight that the standard set MM-PBSA did
and no others. Interestingly, eel_tot predicts the
native as best in only a single instance, 1pou, the
protein that the standard set had the most dif®-
culty with, and otherwise ranks very inadequately.
Along those lines, using the lower eint � 1 allows
MM-PBSA to correctly rank native in 1pou, while
really only worsening three others, the alpha pro-
tein 1utg and the two mixed proteins 1leb and
5icb. The PARM94 force ®eld, which has been
suggested to unduly favor a-helices,12 performs
similarly to PARM96 on the alpha proteins, but
worse on the beta and mixed proteins. Finally,
amplifying the g coef®cient, which would more
heavily weight the unfavorable cavitation term's
dependence on SASA, also allows MM-PBSA to
correctly rank 1pou and 2ptl, but slightly upsets
the correct ranking of 1utg and 2cdx, with a net
effect of ranking a bit better than the standard set.
While others have reportedly demonstrated near
100 % success in discriminating native from
decoys,17,22 the decoys have been far less challen-
ging than those investigated in the current work.
While the Park & Levitt set23 spans a wide range
of RMSD values, the deviations from native are
achieved by relatively minor perturbations of back-
bone dihedrals from the experimental structure.
The other source of decoys in these works, struc-
tures threaded onto incorrect sequences, have
many unpaired and incorrectly paired tertiary con-
tacts, as well as locally unsatis®ed terms, such as
helical residues represented as strands. In contrast,
the Rosetta decoys for any particular protein con-
sist of widely varying topologies, each containing
plausible local structure with optimized tertiary
contacts, and are thus considerably more challen-
ging, as corroborated in a study by Gatchell et al.24

Correlation with native similarity

In order for any energy function to be useful for
structure prediction, it must exhibit a good associ-
ation with native similarity, not just correctly rank
the native structure among a set of decoys. More-
over, in a successful hierarchical approach, the
®nal stage must be more effective at correlating
with native similarity than the initial structure pre-
diction methods. In this study, we examine the lin-
ear correlation coef®cient between Ca RMSD and
the various energies as above, but only for struc-
tural families that were less than 5 AÊ from the



Figure 3. Mixed proteins. See the legend of Figure 1.
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experimental structures. We impose this 5 AÊ limit,
because we suggest, in a separate work,10 based
both on the notion of a globally convex free energy
landscape and on data of large decoy sets, that the
relationship between Ca RMSD and an effective
free energy such as MM-PBSA is only linear near
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the native state, that the relationship weakens dra-
matically beyond 5 AÊ Ca RMSD.

In Table 3, we summarize our ®ndings, which
show that the standard parameter set MM-PBSA
correlates with Ca RMSD as well as any of the
other terms or MM-PBSA parameter permutations.
Somewhat surprisingly, VDW does as well as the
much more computationally demanding entire
effective free energy function itself, even though it
did not rank native as well. Eel_tot shows virtually
no correlation, which causes the MM-PBSA with
eint � 1 to have a lesser association. The PARM94
force ®eld performs similarly to PARM96 and the
higher g coef®cient seem to have no effect on the
strength of association between MM-PBSA and Ca

RMSD.
Part of the reason why the relationship of our

free energy with RMSD falls off beyond a certain
point stems from RMSD not being the best way of
describing native similarity. For instance, a single
hinge motion between two domains can lead to
very large RMSD values, despite native similarity
being otherwise very high. Thus, Q-values, the per-
centage of formed native contacts, provide another
way of judging how similar a given conformation
is to the reference point, and should not lose their
association with a free energy as readily as RMSD.
This notion is supported by Figures 1-3, where the
relationship of MM-PBSA is roughly more well
behaved with respect to Q than RMSD in three
(1gab, 1utg and 1uxd) of the four alpha proteins,
in two (1sro and 1vif) of the four beta proteins,
and in all four of the mixed proteins. Furthermore,
Table 3. Strength of association with Ca RMSD

Protein VDWa eel_totb Standard setc

Alpha
1gab 0.77 0.07 0.77
1utg 0.64 ÿ0.31 0.63
1uxd 0.78 ÿ0.52 0.74
1pou 0.82 ÿ0.40 0.76

Beta
1sro 0.08 0.05 0.25
1qyp 0.57 ÿ0.35 0.61
1vif 0.81 0.12 0.78
2cdx

Mixed
1leb 0.50 ÿ0.90 0.63
2ptl 0.46 ÿ0.05 0.39
5icb 0.24 ÿ0.27 0.16
5znf 0.48 ÿ0.08 0.63

Weighted avg.g 0.53 ÿ0.18 0.55

These values represent the Pearson product-moment correlation co
As seen in the Figures, the linear relationship falls apart for structure
to generally demarcate the limit.

a Van der Waals energy.
b Total electrostatic energy: intra-solute Coulombic � �Gsolv.pol.
c Standard set is eint � 4, PARM96, and g � 5.42 cal molÿ1 AÊ ÿ2.
d Standard set, except for eint.
e Standard set, except for the force ®eld.
f Standard set, except for g.
g Weighted according to n (see Methods).
Table 4 shows that MM-PBSA correlates with the
Q-value over all structural families to the same
extent as it does with RMSD below the 5 AÊ mark.

Although it is useful to have a scoring function
that relates to native similarity, the more relevant
issue, in the context of hierarchical protein struc-
ture prediction, is whether or not MM-PBSA pro-
vides a better ®lter than Rosetta at selecting the
most promising predictions. Because Rosetta does
not rely entirely on its energy score in identifying
its most favored conformations, it is not appropri-
ate to calculate a correlation coef®cient between its
score and Ca RMSD. Instead, to evaluate whether
or not MM-PBSA or VDW is advantageous over
Rosetta in scoring its predictions, we compare the
hCa RMSDi of the best ®ve conformations in
Table 5, this being the centers of the ®ve most
highly populated clusters generated from Rosetta
and the ®ve lowest energy structures according to
MM-PBSA or VDW alone. Under each of the three
scoring functions, for each protein, we show the
average Ca RMSD values of the ®ve deemed best,
from both their initial and their ensemble-averages.
As can be seen from Table 5 and from Figures 1-3,
MM-PBSA (using the standard parameter set)
improves the structure selection process, as does
VDW. Among the alpha proteins, three of the four
bene®ted from MM-PBSA, with the initial struc-
tures being on average 2-3 AÊ better than the ®ve
chosen by Rosetta, most notably in the cases of
1gab and 1uxd, where the Rosetta selections were
on average �5 AÊ , compared to �2 AÊ from MM-
PBSA and VDW. In addition, for 1gab and 1uxd,
MM-PBSA

eint � 1d PARM94e g � 54.2f n

0.53 0.82 0.81 35
0.02 0.49 0.60 11
0.49 0.76 0.77 31
0.75 0.67 0.34 11

0.29 ÿ0.04 0.22 35
0.62 0.70 0.65 15
0.78 0.77 0.80 14

0

0.47 0.31 0.44 8
0.35 0.41 0.47 46
ÿ0.04 0.23 0.20 17
0.63 0.47 0.58 29
0.44 0.49 0.54

ef®cients among families <5 AÊ from the experimental structure.
s that are very dissimilar from the native; the 5 AÊ mark appears



Table 4. Strength of association with Q

MM-PBSA

Protein VDWa eel_totb Standard setc eint � 1d PARM94e g � 54.2f n

Alpha
1gab ÿ0.76 0.43 ÿ0.82 ÿ0.71 ÿ0.83 ÿ0.80 39
1utg ÿ0.43 ÿ0.06 ÿ0.53 ÿ0.30 ÿ0.50 ÿ0.43 55
1uxd ÿ0.88 0.00 ÿ0.87 ÿ0-81 ÿ0.85 ÿ0.89 35
1pou ÿ0.18 ÿ0.18 ÿ0.27 ÿ0.38 ÿ0.28 ÿ0.28 53

Beta
1sro ÿ0.65 0.03 ÿ0.71 ÿ0.75 ÿ0.66 ÿ0.72 70
1qyp ÿ0.58 ÿ0.04 ÿ0.64 ÿ0.64 ÿ0.70 ÿ0.65 71
1vif ÿ0.58 ÿ0.53 ÿ0.64 ÿ0.64 ÿ0.70 ÿ0.65 73
2cdx 0.09 0.11 ÿ0.08 ÿ0.02 0.30 0.01 77

Mixed
1leb ÿ0.20 0.11 ÿ0.06 0.00 ÿ0.32 ÿ0.13 53
2ptl ÿ0.47 0.20 ÿ0.58 ÿ0.47 ÿ0.42 ÿ0.60 54
5icb ÿ0.27 0.14 ÿ0.30 ÿ0.17 ÿ0.15 ÿ0.31 53
5znf ÿ0.82 0.35 ÿ0.76 ÿ0.75 ÿ0.84 ÿ0.78 38

Weighted avg.g ÿ0.44 0.02 ÿ0.50 ÿ0.45 ÿ0.46 ÿ0.49

These values, as in Table 3, represent the Pearson product-moment correlation coef®cients. As Q likely describes native similarity
better than RMSD, particularly among the dissimilar structures, no cutoff is used to evaluate a scoring functions' correlation with Q.

a Van der Waals energy.
b Total electrostatic energy: intra-solute Coulombic � �Gsolv.pol.
c Standard set is eint � 4, PARM96, and g � 5.42 cal molÿ1 AÊ ÿ2.
d Standard set, except for eint.
e Standard set, except for the force ®eld.
f Standard set, except for g.
g Weighted according to n (see Methods).
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the molecular dynamics simulations improved the
RMSD even further by an additional �0.5 AÊ . In the
beta proteins, the selection process also bene®ted
from the more accurate MM-PBSA in all four pro-
teins, albeit marginally with 2cdx, which was only
0.5 AÊ better. Finally, among the mixed proteins,
the selection process improved substantially in half
the cases, with 2ptl and 5znf structures having Ca

RMSD values that were roughly 3 AÊ lower, but
those from 1leb and 5icb were marginally worse
by one and 0.5 AÊ , respectively. Using the VDW
energy alone as the scoring function allowed for
the same qualitative areas of improvement in ®lter-
ing, although the extent of improvement was
slightly less. In summary, the average initial Ca

RMSD among the ®ve chosen by Rosetta was
7.14 AÊ , that from VDW was 5.90 AÊ , and that from
MM-PBSA was 5.53 AÊ .

Refinement

The ®nal objective in the endgame of hierarchical
protein structure prediction entails improving the
native quality of the initial predictions. As we have
found when re®ning two small alpha proteins,21

there are two aspects of re®nement: (1) relaxation
to allow for very small domain shifts and correc-
tion of locally unfavorable geometries, which have
minimal barriers and occur within �50 ps of mol-
ecular dynamics time, due to the more accurate
free energy surface in molecular mechanics and (2)
transitions over energy barriers into new confor-
mational families that may have more favorable
free energies and more native similarity. Thus, to
isolate the two potentialities, each trajectory was
clustered into conformational families with a 2.5 AÊ

cutoff, as mentioned above.
For looking at possible re®nement in the form of

relaxation, we examine the initial Ca RMSD values
in comparison to the average RMSD values of the
very ®rst conformational family (Table 6). We
further split the data into close, medium and dis-
tant bins, 0-2.5 AÊ from the experimental structure,
2.5-5.0 AÊ , and >5.0 AÊ , respectively, because we
believe that the closer the structure is to the native
to begin with, the greater the likelihood that con-
formational changes will be favorable. On average,
only the relaxation of structures in the close and
medium bins of the alpha proteins improved the
native similarity, but only slightly.

Not all of the trajectories contained more than a
single conformational family, but among those that
did, Table 7 compares the ensemble-average Ca

RMSD values of the initial and second confor-
mational families, again further split into similarity
bins. While we did not see any bin in which con-
formational changes led to more native families,
we would only expect this to happen with any
regularity in the close similarity bin, where there
were very few transitions that are probably not
statistically relevant.

Conclusions

While, in principle, progressive improvement in
detail should allow for more accurate protein struc-
ture prediction, this has not been shown to be the
case, except in a few isolated proteins, largely due



Table 5. Ability to ®lter decoys

Rosettaa MM-PBSAb VDWb

Protein Init.c Avg.d Init.c Avg.d Init.c Avg.d

Alpha
1gab 4.56 4.90 2.45 2.08 1.97 1.98
1utg 10.87 11.20 8.36 8.32 9.96 9.80
1uxd 5.31 5.52 1.82 1.52 1.70 1.58
1pou 11.45 11.34 10.88 11.08 10.88 11.06

Beta
1sro 6.12 5.66 4.34 4.56 4.72 4.48
1qyp 6.51 6.42 5.78 5.86 6.30 6.58
1vif 8.18 8.04 4.76 4.92 6.46 6.46
2cdx 10.03 10.68 9.56 10.26 9.64 10.14

Mixed
1leb 6.68 6.84 7.44 7.88 8.30 8.54
2pt1 6.43 6.86 3.48 3.46 3.50 3.92
5icb 5.33 5.48 5.96 5.86 5.62 5.44
5znf 4.26 4.26 1.58 2.38 1.78 2.48

Avg. 7.14 7.27 5.53 5.68 5.90 6.04

For each protein, a method's ®ve most favorable are chosen out of the set of 30. MM-PBSA and VDW outperform Rosetta in this
task.

a The average values of the ®ve most highly populated Rosetta structures.
b The average values of the ®ve lowest energy structures (standard parameter set).
c Initial Ca RMSD values.
d Ensemble-average Ca RMSD values from ®rst conformational families if more than one. Note that this is an average of an average.
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to the very short radius of convergence afforded
by the more accurate, detailed methods such as
molecular mechanics that include all-atom accu-
racy along with energy potentials based on ®rst
Table 6. Relaxation of initial conformations

0-2.5 AÊ

Protein Inita hRMSDiinit
b n Inita h

Alpha
1gab 2.26 2.23 9 3.35
1utg 0 3.88
1uxd 1.86 1.70 20 3.25
1pou 2.30 3.00 1 3.68

Beta
1sro 0 4.13
1qyp 0 3.99
1vif 0 3.62
2cdx 0

Mixed
1leb 2.50 2.45 2 3.35
2pt1 2.46 3.22 7 3.62
5icb 0 3.81
5znf 1.50 2.37 21 3.84

Weighted avgs.c

alpha 1.99 1.90 30 3.45
beta 0 4.02
mixed 1.79 2.57 30 3.66
all 1.89 2.24 60 3.70

Conformational families for each protein are grouped into three
native similarity relates to the propensity for relaxation closer to the
representation did not improve native similarity.

Values reported in this table are the mean values among all memb
a Initial Ca RMSD.
b Ensemble-average of the initial conformational family.
c Weighted according to n (see Methods).
principles, and due to the structure predictions not
being of high enough resolution, lying outside of
the radius of convergence. Improvements in the
initial stages of protein structure prediction by a
2.5-5.0 AÊ >5.0 AÊ

RMSDiinit
b n Inita hRMSDiinit

b n

3.11 20 8.10 8.80 1
4.42 5 10.36 10.52 25
3.38 6 6.73 7.00 3
3.63 4 11.43 11.57 25

4.18 19 7.47 7.20 10
4.54 8 6.49 6.57 21
4.02 5 9.02 8.93 23

0 9.10 9.61 29

3.58 4 8.12 8.31 25
3.84 22 9.03 9.27 3
4.02 4 7.53 7.62 24
4.50 8 6.50 6.40 1

3.40 35 10.61 10.78 54
4.25 32 8.22 8.36 83
3.97 38 7.87 8.02 53
3.86 105 8.80 8.95 190

bins, based on their initial Ca RMSD, to see if initial extent of
native state. In the majority of cases, relaxation in the all-atom

ers in the bin.



Table 7. Transitions from initial conformations

0-2.5 AÊ 2.5-5.0 AÊ >5.0 AÊ

Protein hRMSDiinit
a hRMSDi2nd

b n hRMSDiinit
a hRMSDi2nd

b n hRMSDiinit
a hRMSDi2nd

b n

Mixed
1leb 0 3.20 3.40 1 8.59 8.58 19
2ptl 3.20 3.55 4 3.86 4.00 14 10.95 10.86 3
5icb 0 4.16 4.16 5 7.60 7.75 19
5znf 2.77 3.63 2 5.43 5.88 3 0

Alpha
1gab 2.65 3.25 2 3.43 3.83 3 8.80 9.00 1
1utg 0 4.42 4.26 5 10.55 10.47 15
1uxd 2.13 2.23 3 3.40 3.30 1 9.30 9.20 1
1pou 3.00 3.10 1 3.67 3.90 3 11.73 11.27 16

Beta
1sro 0 4.24 4.48 14 6.80 6.78 9
1qyp 0 4.80 4.96 7 6.52 6.78 18

1vif 0 4.01 4.14 5 8.92 8.87 20
2cdx 0 0 9.44 9.67 24

Weighted
avg.c 2.75 3.15 12 4.17 4.32 61 8.88 8.90 145

Trajectories for each protein that underwent a structural transition are grouped into three bins based on their initial Ca RMSD, in
order to see what effect transitions had on native similarity. No improvement appears to accompany these structural changes.

Values reported in this table are the mean values among all members in the bin.
a Ensemble-average of the initial conformational family.
b Ensemble-average of the second conformational family.
c Weighted according to n (see Methods).
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small handful of methods, most notably the Roset-
ta method, and development of accurate methods
for evaluating the relative free energies of stability,
have provided us with the opportunity to demon-
strate a successful hierarchical collaboration.

Native rank, ®ltering and re®nement are the
three main objectives for the endgame of protein
structure prediction. Among the 12 proteins, each
with a distinctive topology, the methods presented
here handle the ®rst of these goals very well, cor-
rectly placing native as ®rst in eight of the
examples. In the remaining four, the lower energy
structures had average Ca RMSD values of only
�2 AÊ in two of the proteins, which is considered to
lie within the narrow range of natural ¯uctuation
around the native state under physiological con-
ditions,25 and 3.7 in another. In the fourth protein,
using either a lower interior dielectric constant of
unity or a higher g coef®cient for the non-polar sol-
vation free energy lead to a corrected native rank.
The methods presented here also perform ade-
quately as a ®ltering mechanism in an absolute
sense, and substantially better than Rosetta in a
relative sense. The third objective, despite our suc-
cess on the HP-36 villin headpiece and ribosomal
S15 protein,21 is one in which we do not succeed;
this does not imply that molecular dynamics made
structures worse, only that it did not improve
them.

That we were unable to really re®ne the best
structures came as somewhat of a disappointment,
but not entirely as a surprise. The nature of re®ne-
ment found in both S15 and HP-36 included small
helical domain shifts into more tightly packed
structures. While our energy function is inadequate
to improve the structures, we do feel that perhaps
one nanosecond, explicit solvent simulations are
too short for more systematic re®nement of close
structures. In order to overcome this limitation,
apart from trying to simply run longer simulations,
methods that improve the sampling may provide
the solution. Locally enhanced sampling was effec-
tive on CMTI, which has three disul®de bridges
over 29 residues, as mentioned above, but appli-
cation of this approach on proteins less stable than
the disul®de-rich CMTI led to unstable control
simulations on the native structure (unpublished
results), presumably due to the additional entropy
of the method which altered the free energy sur-
face. But because locally enhanced sampling still
stands out as a promising method for overcoming
large energy barriers, particularly when used
locally rather than globally, one might envision
application of this mean-®eld approach directed at
those regions with greater known uncertainty in
the beginning stages of a hierarchical structure pre-
diction, such as the intervening sequences between
predicted secondary structural elements. Alterna-
tively, implicit solvent simulations (R. Luo, L.
David & M. K. Gilson, unpublished results)17,26-28

provide another potential approach for improving
sampling, both in terms of the length of simulation
that can be accomplished and in terms of the more
rapid conformational changes that accompany the
absence of solvent viscosity.

Apart from the lack of success in the re®nement
aspect, the methods presented in this work still
performed admirably in ranking the native and
selecting better structures than Rosetta. With the
automation software used in this work, along with



428 MD in the Endgame of Structure Prediction
the increasingly greater computational power that
continues to emerge, the methods described for the
®nal stages of structure prediction are much more
accessible to the structure prediction community
than only a few years ago.

Materials and Methods

The AMBER 5 suite of programs29 was used for all
molecular mechanics simulations. The PARM94 all-atom
force ®eld11 was used for the molecular dynamics simu-
lations and both the PARM94 and PARM9613 force
®elds, the latter of which differs only in the f, c tor-
sional potentials of the peptide unit, was used in the
MM-PBSA free energy analysis.

Rosetta structure prediction

Rosetta builds protein structures from fragments with
similar amino acid sequences using a fragment insertion-
simulated annealing method for searching conformation-
al space and a simple side-chain centroid based energy/
scoring function which favors hydrophobic burial, strand
pairing, and other low resolution features of native pro-
tein structures.30

Molecular dynamics

We ran all production-phase molecular dynamics
simulations with a 2.0 fs time step under the isothermal-
isobaric ensemble (300 K and one atmosphere pressure)
with explicit solvent, using the TIP3P model9 for water,
periodic boundary conditions, the particle mesh Ewald
(PME) method4 for electrostatics, a 10 AÊ cutoff for Len-
nard-Jones interactions, and the use of SHAKE31 for
restricting motion of all covalent bonds involving hydro-
gen atoms. Water molecules were added around the pro-
teins using a 10 AÊ buffer from the edge of the periodic
box. The temperature and pressure were maintained by
the Berendsen coupling algorithm32 using a oÃ coupling
constants of 1.0. PME grid spacing was �1.0 AÊ and was
interpolated on a cubic B-spline, with the direct sum tol-
erance set to 10ÿ5. We removed the net center of velocity
every 100 ps to correct for the small energy drainage,
that results from the use of SHAKE, discontinuity in the
potential energy near the Lennard Jones cutoff value,
and constant pressure conditions.

For equilibration, we solvated the minimized struc-
tures, minimized the water molecules alone until the
RMSD was <0.1 kcal/mol AÊ and then slowly heated,
while allowing the water to move unrestrained for 25 ps
(with a 1.0 fs time step) in order to ®ll any vacuum
pockets.

To cluster the molecular dynamics trajectories, we
de®ned conformational families as being those with Ca

RMSD values of <2.5 AÊ from the ®rst structure in the
family, with the ®rst snapshot lying >2.5 AÊ from the ®rst
member of the initial family deemed as the ®rst structure
of the second conformational family. On those families
that were not populated for 5100 ps, we did not calcu-
late ensemble-averages and did not consider them in any
of the results we report in this study.

MM-PBSA

Coordinates from a trajectory were saved every 5 ps,
and the MM-PBSA calculation evaluated on each of
them. The MM-PBSA free energy of each snapshot is
approximated as the sum of two terms, using an interior
dielectric constant of 4: the internal energy of the protein
(EMM) and a solvation free energy (�Gsolv). EMM is the
sum of an internal strain energy (Eint), a VDW energy,
and an intra-solute electrostatic energy (EEL). �Gsolv

consists of the cost of submerging a discharged solute in
solvent (�solv_NP) and the subsequent cost of adding
the charges back to the solute (�solv_eel). �solv_NP is
approximated as being linearly related to the SASA:
g*SASA � 920 cal/mol. We adhered to the same
Poisson-Boltzmann protocol as described,14 which used
DelPhi II33 and most of its standard default parameters,
together with PARSE atomic radii and Cornell et al.
charges,11 to calculate �solv_eel. The entropy of a given
snapshot, which is mostly vibrational, can be calculated
with normal mode analysis on a Newton-Raphson mini-
mization. This, however, is the most time-intensive part
of the MM-PBSA method on a per-snapshot bases. Given
the results in our previous study,8 where we found this
term to be indistinguishable among the native state, the
folding intermediate, and the unfolded state of HP-36,
we did not perform this calculation in the current study.
For a more detailed discussion of the MM-PBSA method,
see the review by Kollman et al.20

NMR structures

When using the term ``the NMR structure'', we are
referring to model 1 in each of the NMR ensembles. We
used this as the representative for simulation purposes,
as it is more physically realistic than an average struc-
ture. The RMSD values, however, are always calculated
in reference to the average NMR structure, as it is most
representative of the various geometries of the ensemble.

Q-values

A contact is de®ned as any two residues containing
atoms 43.5 AÊ apart. A contact map is generated for the
actual experimental structure of X-ray crystals and for
the average NMR structure of NMR ensembles. The Q-
value represents the percentage of contacts in the native
contact map that are also found in the conformation
being evaluated, with the exact same topologies being
required in both the reference and target con®gurations.

Weighted averages

In Tables 2, 3, 5 and 6, we report a weighted average
according to n, which is calculated as follows:

weighted avg: �

XN

i�1

ini

N

ni is the number of samples in ensemble i, and N is the
total number of samples among all ensembles in the bin.

Automation

The bottleneck in running molecular dynamics simu-
lations and MM-PBSA calculations on a single protein
conformation lies in the computer time. However, when
dealing with larger numbers, human intervention and
data analysis assume that role. For this work, in which
we simulated nanosecond length simulations, analyzed,
and post-processed the MM-PBSA on 372 different struc-
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tures, a set of programs with the Perl scripting language
was written to automate the process of not only hand-
ling large numbers of protein structures, but also of rou-
tinely converting from standard pdb to AMBER ®le
format, equilibrating in solvent, running production
phase simulations and calculating the MM-PBSA free
energies, with a minimal working knowledge of the
AMBER suite of programs, thereby making the MM-
PBSA calculations for protein stability much more acces-
sible to protein modelers (Appendix A in thesis by M. R.
Lee34). The simulations scale with complete ef®ciency up
to the number of computer processors available, by run-
ning simulations in coarse grain parallel. The majority of
simulations in this work were run on six separate four-
processor Compaq Alpha ES40 machines, which when
combined with the automation software, allowed for 24
independent simulations running simultaneously.

Acknowledgments

This article is dedicated to the late Peter Andrew Koll-
man, who passed away on May 25, 2001, and whose
passion for science, gifted mind, and gracious heart con-
tributed immeasurably to the intellectual development of
M.R.L. and to the advancement of our scienti®c commu-
nity.

P.A.K. was grateful to the NIH for research support
(GM-29072) and M.R.L. thanks the Advanced Biomedical
Computing Center of the National Cancer Institute at
Frederick for computer time.

References

1. Vieth, M., Kolinski, A., Brooks, C. L., III & Skolnick,
J. (1994). Prediction of the folding pathways and
structure of the GCN4 leucine zipper. J. Mol. Biol.
237, 361-367.

2. Nilges, M. & Brunger, A. T. (1991). Automated mod-
eling of coiled coils - applicatino to the GCN4
dimerization region. Protein Eng. 4, 649-659.

3. Samudrala, R., Xia, Y., Huang, E. & Levitt, M.
(1999). Ab initio protein structure prediction using a
combined hierarchical approach. Proteins: Struct.
Funct. Genet. Suppl. 3, 194-198.

4. Darden, T., York, D. & Pedersen, L. (1993). Particle
mesh Ewald: an N.log(N) method for Ewald sums
in large systems. J. Chem. Phys. 98, 10089-10092.

5. Fox, T. & Kollman, P. A. (1996). The application of
different solvation and electrostatic models in mol-
ecular dynamics simulations of ubiquitin: how well
is the X-ray structure ``maintained''?. Proteins: Struct.
Funct. Genet. 25, 315-334.

6. Roitberg, A. & Elber, R. (1991). Modeling side-chains
in peptides and proteins - application of the locally
enhanced sampling and the simulated annealing
methods to ®nd minimum energy conformations.
J. Chem. Phys. 95, 9277-9287.

7. Simmerling, C., Lee, M. R., Ortiz, A. R., Kolinski, A.,
Skolnick, J. & Kollman, P. A. (2000). Combining
MONSSTER and LES/PME to predict protein struc-
ture from amino acid sequence: application to the
small protein CMTI-1. J. Am. Chem. Soc. 122, 8392-
8402.

8. Lee, M. R., Duan, Y. & Kollman, P. A. (2000). Use of
MM-PB/SA in estimating the free energies of pro-
teins: application to native, intermediates, and
unfolded villin headpiece. Proteins: Struct. Funct.
Genet. 39, 309-316.

9. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D.,
Impey, R. W. & Klein, M. L. (1983). Comparison of
simple potential functions for simulating liquid
water. J. Chem. Phys. 79, 926-935.

10. Lee, M. R. & Kollman, P. A. (submitted). Free
energy calculations highlight differences in accuracy
between X-ray and NMR structures and add value
to protein structure prediction. Structure 00, 000-000.

11. Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R.,
Merz, K. M., Ferguson, D. M. et al. (1995). A second
generation force ®eld for the simulation of proteins,
nucleic acids, and organic molecules. J. Am. Chem.
Soc. 117, 5179-5197.

12. Beachy, M. D., Chasman, D., Murphy, R. B.,
Halgren, T. A. & Friesner, R. A. (1997). Accurate
ab initio quantum chemical determination of the
relative energetics of peptide conformations and
assessment of empirical force ®elds. J. Am. Chem.
Soc. 119, 5908-5920.

13. Kollman, P., Dixon, R., Cornell, W., Fox, T., Chipot,
C. & Pohorille, A. (1997). The development/appli-
cation of a ``minimalist'' organic/biochemical mol-
ecular mechanic force ®eld using a combination of
ab initio calculations and experimental data. In Com-
puter Simulation of Biomolecular Systems (Wilkinson,
P., Weiner, P. & Van Gunsteren, W., eds), vol. 3, pp.
83-96, Elsevier, Amsterdam.

14. Srinivasan, J., Cheatham, T. E., Cieplak, P., Kollman,
P. A. & Case, D. A. (1998). Continuum solvent
studies of the stability of DNA, RNA, and phos-
phoramidate - DNA helices. J. Am. Chem. Soc. 120,
9401-9409.

15. Still, W. C., Tempcyzk, A., Hawley, R. C. &
Hendrickson, T. (1990). Semianalytical treatment of
solvation for molecular mechanics and dynamics.
J. Am. Chem. Soc. 112, 6127-6129.

16. Dominy, B. N. & Brooks, C. L., III (2001). Identifying
native-like protein structures using physics-based
potentials. J. Comp. Chem. In the press.

17. Lazaridis, T. & Karplus, M. (1999). Discrimination of
the native from misfolded protein models with an
energy function including implicit solvation. J. Mol.
Biol. 288, 477-487.

18. Giesen, D. J., Gu, M. Z., Cramer, C. J. & Truhlar,
D. G. (1996). A univeral organic solvation model.
J. Org. Chem. 61, 8720-8721.

19. Pitera, J. W. & Van Gunsteren, W. (2001). The
importance of solute-solvent van der Waals inter-
actions with interior atoms of biopolymers. J. Am.
Chem. Soc. 123, 3163-3164.

20. Kollman, P. A., Massova, I., Reyes, C., Kuhn, B.,
Huo, S. H., Chong, L. et al. (2000). Calculating struc-
tures and free energies of complex molecules: com-
bining molecular mechanics and continuum models.
Acc. Chem. Res. 33, 889-897.

21. Lee, M. R., Baker, D. & Kollman, P. A. (2001). 2.1
and 1.8 angstrom average C-alpha RMSD structure
predictions on two small proteins, HP-36 and S15.
J. Am. Chem. Soc. 123, 1040-1046.

22. Vorobjev, Y. N., Almagro, J. C. & Hermans, J.
(1998). Discrimination between native and intention-
ally misfolded conformations of proteins: ES/IS, a
new method for calculating conformational free
energy that uses both dynamics simulations with an
explicit solvent and an implicit solvent continuum
model. Proteins: Struct. Funct. Genet. 32, 399-413.



430 MD in the Endgame of Structure Prediction
23. Park, B. & Levitt, M. (1996). Energy functions that
discriminate X-ray and near-native folds from well-
constructed decoys. J. Mol. Biol. 258, 367-392.

24. Gatchell, D. W., Dennis, S. & Vajda, S. (2000). Dis-
crimination of near-native protein structures from
misfolded models by empirical free energy func-
tions. Proteins: Struct. Funct. Genet. 41, 518-534.

25. Brooks, C. L., III, Karplus, M. & Pettitt, B. M. (1988).
Proteins: a theoretical perspective of dynamics,
structure and thermodynamics. In. Advances in
Chemical Physics, vol. 71, pp. 1-259, J. Wiley, New
York.

26. Dominy, B. N. & Brooks, C. L., III. (1999). Develop-
ment of a generalized Born model parameterization
for proteins and nucleic acids. J. Comp. Chem. 103,
3765-3773.

27. Tsui, V. & Case, D. A. (2000). Molecular dynamics
simulations of nucleic acids with a generalized Born
solvation model. J. Am. Chem. Soc. 122, 2489-2498.

28. Liu, Y. & Beveridge, D. L. (2001). Exploratory stu-
dies of ab initio protein structure prediction: multiple
copy simulated annealing, AMBER energy functions
and a generalized Born/Solven accessibility
solvation model. Proteins: Struct. Funct. Genet. In the
press.
29. Case, D. A., Pearlman, D. A., Caldwell, J. A.,
Cheatham, T. E., Ross, W. S. et al. (1997). AMBER
5.0, University of California, San Francisco, San
Francisco.

30. Simons, K. T., Bonneau, R., Ruczinski, I. & Baker, D.
(1999). Ab initio protein structure prediction of
CASP III targets using ROSETTA. Proteins: Struct.
Funct. Genet. Suppl. 3, 171-176.

31. Ryckaert, J. P., Ciccotti, G. & Berendsen, H. J. C.
(1977). Numerical integration of the Cartesian
equations of motion of a system with constraints:
molecular dynamics of n-alkanes. J. Comp. Phys. 23,
327-341.

32. Berendsen, H. J. C., Postma, J. P. M., van Gunsteren,
W. F., DiNola, A. & Haak, J. R. (1984). Molecular
dynamics with coupling to an external bath. J. Chem.
Phys. 81, 3684-3690.

33. Sharp, K. A., Nicholls, A. & Sridharan, S. (1998).
Delphi II edit, Columbia University, NY.

34. Lee, M. R. (2001). Using molecular dynamics for
high resolution protein structure prediction. PhD
thesis in Pharmaceutical Chemistry, University of
California, San Francisco.
Edited by B. Honig
(Received 9 May 2001; received in revised form 17 August 2001; accepted 17 August 2001)


	Molecular Dynamics in the Endgame of Protein Structure Prediction
	Introduction
	Results and Discussion
	Figure 1
	Figure 2
	Figure 3
	Table 1
	Table 2
	Table 3
	Table 4
	Conformational families
	Native states
	MM-PBSA parameters
	Native rank
	Correlation with native similarity
	Refinement

	Conclusions
	Table 5
	Table 6
	Table 7

	Materials and Methods
	Rosetta structure prediction
	Molecular dynamics
	MM-PBSA
	NMR structures
	Q-values
	Weighted averages
	Automation

	Acknowledgments
	References


