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How large is the volume of sequence space that is compatible with
a given protein structure? Starting from random sequences, low
free energy sequences were generated for 108 protein backbone
structures by using a Monte Carlo optimization procedure and a
free energy function based primarily on Lennard–Jones packing
interactions and the Lazaridis–Karplus implicit solvation model.
Remarkably, in the designed sequences 51% of the core residues
and 27% of all residues were identical to the amino acids in the
corresponding positions in the native sequences. The lowest free
energy sequences obtained for ensembles of native-like backbone
structures were also similar to the native sequence. Furthermore,
both the individual residue frequencies and the covariances be-
tween pairs of positions observed in the very large SH3 domain
family were recapitulated in core sequences designed for SH3
domain structures. Taken together, these results suggest that the
volume of sequence space optimal for a protein structure is
surprisingly restricted to a region around the native sequence.

The sequences of naturally occurring proteins are shaped by
a complex interplay of selective pressures. In addition to the

overriding selective pressure on proper protein function, there is
presumably selection for stability and solubility as well as
random drift brought about by neutral mutations. Two questions
of particular relevance for this paper are, first, the extent to
which sequences are shaped by selection for protein stability, and
second, the extent to which this selection process has con-
verged—i.e., to what extent are sequences optimal for their
structures? These questions can be addressed by searching
sequence space [either experimentally (1, 2) or computationally
(3–5)] for low free energy sequences for naturally occurring
structures, and comparing these sequences to their naturally
occurring counterparts. In this paper we use a computational
protein design procedure (6) to carry out such a test.

There has been exciting recent progress with computer-based
protein design. Highlights have included the design of a novel
a-helical bundle protein with a right-handed superhelical twist
and of a de novo sequence that adopts the zinc finger fold (7, 8).
Interestingly, most protein redesign efforts that have used au-
tomated methods to pack side chains on the backbone of a
naturally occurring protein have yielded sequences similar to the
naturally occurring sequence. For example, in the redesign of the
DNA-binding protein Zif268, four of the eight core residues
were the same as the native amino acid, two were mutations from
His to Phe, and one was a mutation from Phe to Tyr, and the
structure of the redesigned protein showed that the conforma-
tions of the core side chains are very similar to the conformation
of the native protein (7). In a different study, sequences were
computed for the core residues of four proteins, and 51% of the
amino acids were identical to the native amino acid (4). In
another case whole sequences were generated for proteins and
the resulting profile matrices were matched with the native
sequence by the PROFILESEARCH technique (5).

Do these results indicate that the sequences of naturally
occurring proteins are close to optimal for their structures, or are
they a consequence of the structure-refinement process? The
energy functions used to refine protein structures typically have

many common features with the energy functions used for
protein design. Therefore, it is possible that refinement builds a
‘‘memory’’ of the native sequence into the structure, and the
design procedure to some extent reads this information out from
the structure. To address this issue, we have undertaken a
large-scale test of the design process with crystal structures of
various resolutions. The atomic coordinates of high-resolution
structures are less dependent on the energy functions used in
refinement, and therefore if the design process is just reversing
the refinement process, the designed sequences for the high-
resolution structures should be less native-like.

Methods
All amino acids, except for cysteine, were considered at each
sequence position. Amino acid side chains were restricted to
the conformations contained in the backbone-dependent rota-
mer library (a total of '150 rotamers for all amino acids at a
given site) of Dunbrack and Cohen (9). Rotamers rarely seen
in the Protein Data Bank (PDB), ,3%, were not included.
Backbone coordinates were held constant and sequence space
was searched by using a simple Metropolis Monte Carlo
procedure in which a move consists of exchanging one rotamer
for another at a randomly chosen position ('1 million sub-
stitutions per run of Monte Carlo) (10). Unlike the more
widely used dead-end elimination-based methods (11, 12),
Monte Carlo does not guarantee a globally optimal solution.
Convergence was addressed by starting multiple runs for a
given structure with different random sequences; in almost all
cases the sequences obtained were nearly identical in the core
and had similar energies. The lowest-energy sequence from 5
different runs of Monte Carlo was used for comparisons with
the native sequence. The advantage of the Monte Carlo
procedure is that it can be very fast: a typical sequencey
rotamer search for an 80-residue protein takes '5 min on an
Intel 450-MHz processor.

The free energy function was a linear combination of the
following terms: (i) the attractive portion of a standard 12–6
Lennard–Jones potential with van der Waals radii and well
depths from the CHARMM19 parameter set (13) except that the
van der Waals radii were multiplied by 0.95; (ii) a repulsive term
that connects with the 12–6 potential at E 5 0 and then ramps
linearly up to a value of 10.0 kcalymol when the two atoms are
0 Å apart (this is less repulsive than a 12–6 potential and
compensates to some extent for the use of a fixed backbone and
rotamer set); (iii) backbone-dependent internal free energies of
the rotamers estimated from PDB statistics [ln P(rotuf, c) (ref.
9)]; (iv) the solvation energy computed using the Lazaridis–
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Karplus implicit solvation model (14); (v) an approximation to
electrostatic interactions in proteins based on PDB statistics [ln
P(pair) in ref. 15]; (vi) the side-chain–main-chain hydrogen bond
term of Gordon et al. (16); and (vii) reference values for each
amino acid that are summed to approximate the free energy of
the denatured state. The weights on these terms and the 20
reference energies were determined by maximizing the product
of exp(2E(aaobs))y(( exp(2E(aai))) over a training set of 30
proteins by using a conjugate-gradient-based optimization
method, where E(aaobs) is the energy of the native amino acid at
a position, and the partition function in the denominator is over
all 20 amino acids at each position. In this process only one
residue was changed at a time and all other residues were kept
in their native conformation. Subsequently the parameters were
refined slightly based on the results of complete redesign cal-
culations on the training set proteins. The weights and reference
values as well as a more complete description of the energy
function are given in supplementary material at www.pnas.org.
All results reported in this paper were on an independent protein
test set not used in the determination of the parameters in the
model.

For simulations with SH3 domains, sequences were generated
for 11 SH3 domains (1abo, 1ad5, 1bb9, 1cka, 1csk, 1fmk, 1lck,
1pht, 1sem, 1shf, 1shg, and 1ycs). Eleven core residues were
varied: 4, 6, 10, 18, 20, 26, 28, 39, 41, 50, and 55 (residue number
in 1fmk-82). Covariance between pairs of positions in the
designed sequences was computed with the measure of covari-
ance used by Larson and coworkers (S. F. Larson, A. A.
Di Nardo, and A. R. Davidson, personal communication):

f 5
a11za22 2 a12za21

Î~a11 1 a12!~a21 1 a22!~a11 1 a21!~a12 1 a22!
,

where a11 is the number of times both amino acids are at the
residues of interest, a22, neither amino acid is present, a12, only
amino acid 1 is present, and a21, only amino acid 2 is present.

Results
To determine the extent to which native sequences are optimal
for their structures, low free energy sequences were computed
for a test set of 108 proteins with less than 30% sequence identity
with each other and crystal structures with resolutions better
than 3.0 Å. Remarkably, 51% of the core residues in the designed
sequences were identical to the naturally occurring residue, and
27% of all of the designed residues were identical to the native
amino acid (Table 1 and Figs. 1 and 2). It must be emphasized
that the design procedure has no prior knowledge of the native
sequence; the native-like sequences emerge because they have

Table 1. Results from redesigning 108 small proteins

Residue

Core residues (.20 Cb atoms within 10 Å) All residues

No.
correct

No.
native

No.
designed

No. correcty
No. native

No. correcty
No. designed

No.
correct

No.
native

No.
designed

No. correcty
No. native

No. correcty
No. designed

Ala 78 114 137 0.68 0.56 226 645 779 0.35 0.29
Asp 0 9 2 0.00 0.00 84 465 538 0.18 0.16
Glu 0 11 1 0.00 0.00 121 607 902 0.20 0.13
Phe 43 76 103 0.57 0.42 103 286 361 0.36 0.29
Gly 35 48 39 0.73 0.90 389 555 560 0.70 0.69
His 0 11 5 0.00 0.00 3 174 34 0.02 0.10
Ile 63 112 128 0.56 0.49 135 482 360 0.28 0.37
Lys 3 20 9 0.15 0.33 109 642 788 0.17 0.14
Leu 92 131 174 0.70 0.53 263 675 667 0.39 0.39
Met 3 21 6 0.14 0.50 7 167 34 0.04 0.20
Asn 4 19 5 0.21 0.80 63 395 277 0.16 0.23
Pro 12 14 26 0.86 0.46 208 359 455 0.58 0.46
Gln 1 15 5 0.07 0.20 20 392 114 0.05 0.17
Arg 1 15 5 0.07 0.20 33 471 320 0.07 0.10
Ser 2 24 7 0.08 0.29 80 502 439 0.16 0.18
Thr 4 21 10 0.19 0.40 110 457 563 0.24 0.19
Val 83 139 153 0.60 0.55 187 568 466 0.33 0.40
Trp 8 19 16 0.42 0.50 26 94 114 0.28 0.23
Tyr 10 51 39 0.20 0.26 65 282 447 0.23 0.15
Total 444 870 870 0.51 0.51 2219 8218 8218 0.27 0.27

No. correct is the number of residue positions that have the same amino acid in the designed and native sequence. No. native and no. designed are the number
of times an amino acid appears in the native and designed sequences, respectively. Cysteines were not varied in this study and were kept in their native
conformation during design.

Fig. 1. Sequence identity between designed and native sequences for core
residues as a function of crystal structure resolution. The average sequence
identity to native for sequences generated for a set of 88 NMR structures is
shown as a square.
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the lowest free energy according to the Lennard–Jones and
solvation terms, which dominate the potential function used in
the design process. The similarity is particularly remarkable
because the procedure is expected to fail in cases where function
has been optimized at the expense of protein stability (for
example in protein active sites).

The fraction of core residues correctly predicted for each
protein is displayed in Fig. 1 as a function of the resolution of the
crystal structure. For most proteins, at least a third of the core
residues were identical to those in the native sequence, and for
many of the proteins, the fraction was much higher. The lack of
dependence on crystallographic resolution suggests that the
design process is not simply recapitulating the structure refine-
ment process. To investigate this point further we redesigned
four proteins with high-resolution crystal structures (2igd, 1rgg,
1rb9, and 1iro) that were refined without the use of noncovalent
energy terms (17). The results are similar to those seen with the
larger test set: 35% of all residues and 46% of the core residues
were replaced with the native amino acid. When NMR structures
are used as a template, native amino acids are recovered less
frequently. In sequences designed for 88 NMR structures of
small proteins (60–100 residues), 25% of the core residues were
identical to the naturally occurring amino acid and 16% of all of
the residues were the native amino acid. The first structure in the
PDB file was used in each case.

In multiple sequence alignments of naturally occurring se-
quences, some positions are more strongly conserved than others
because of structural constraints, particularly in the core. Con-
siderable variation in residue conservation was also observed in
the designed sequences: when several sequences were generated
for one protein, some positions had little preference for any one
amino acid, whereas other positions almost always replaced the
same amino acid. Interestingly, there was a correlation between
the degree of conservation of a residue in the design process and
the level of identity to the native sequence. At core sites that
were highly conserved in the design procedure (low sequence
entropy) the native amino acid was selected more than 90% of
the time, whereas at core sites with high sequence entropy the
native amino acid was selected less than 20% of the time (Fig.
3). Furthermore, sites conserved in the natural evolutionary
process were often conserved in the design procedure: the
sequence entropy in the multiple sequence alignments was
correlated with the sequence entropy in the designed sequences
(Fig. 3).

What features of proteins are the energy function recognizing
that makes the native amino acid easily identified for some core
positions? Given that the design program relies primarily on
sterics and packing to choose good sequences for the core
residues, there are probably more packing constraints at the low
entropy sites. Indeed, the residues in the low entropy sites
make on average 20% more contacts (atoms within 6 Å) than the
residues in the high entropy sites. Of the hydrophobic amino

acids, tyrosine and methionine were the least conserved in the
core (Table 1). Methionine is unfavorable in part because the
attractive portion of the Lennard–Jones potential is weak for
sulfur atoms in the CHARMM19 parameter set. Tyrosine is
unfavorable in the core because the energy function penalizes
the burial of hydroxyl groups. Glycine was frequently recovered
at positions with positive f angles.

One limitation of the automated design procedure is that the
backbone is held fixed throughout the simulation and therefore
some sequences, which require only small movements in the
backbone to be good, may be excluded. To test whether the
native sequence is still preferred when small backbone motions
are allowed, we used NMR structures as a source of alternative
backbone structures and designed sequences for nine proteins
for which there are crystal and NMR structures available (Fig.
4). In most cases the lowest-energy sequences were obtained for

Fig. 2. Sequence alignments between designed (DES) and wild-type (WT) sequences for four proteins. A black background indicates identical amino acids and
a gray background indicates similar amino acids. The following PDB files were used: Hpr (1poh), CI2 (1ypc), CspB (1csp), and Fyn (1avz).

Fig. 3. Sequence conservation in designed sequences correlates with se-
quence identity to the native sequence and sequence conservation in protein
families. When the design program shows a strong preference for a particular
amino acid at a sequence position, it more often prefers the native amino acid,
and the residue is likely to have low sequence variability in naturally occurring
sequences. Each position in each redesigned protein was assigned to a bin (x
axis) based on the sequence entropy ((frequency(aai)zln(frequency(aai))
summed over all 20 amino acids, aai) at the position in a large set of sequences
generated by the Monte Carlo search procedure (the numbers of residues in
bins 1–7 are, respectively, 86, 91, 91, 126, 107, 79, and 94; higher sequence
entropy is to the right). The left y axis indicates the percentage of residue
positions that had the native amino acid in the designed sequences. The right
y axis indicates the average sequence variability observed in naturally occur-
ring sequences as derived from multiple sequence alignments (MSAs). The
MSAs were taken from HSSP files (21). Results are shown for core residues.
Only residue positions that had at least 10 sequences in the MSA were used (60
proteins total).
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the crystal structure, and as found above they were native-like.
It appears that as the backbone varies from the generally more
accurate crystal structure, nonnative sequences do become more
preferred but their energies are not as good as the native
sequence–structure pair. In the cases where the energies for the
NMR structures were comparable to the energy of the crystal
structure, the sequences were native-like.

The results described thus far demonstrate that the optimi-
zation procedure can to some extent recover the sequence of a
protein from its structure. To determine whether the variation
in sequence in a large protein family could be recapitulated by
the design procedure, we chose the SH3 domain, which includes
over 400 naturally occurring proteins. One thousand sequences
were generated for 11 different SH3 crystal structures with the
identities of 11 core residues varied. The final 11,000 sequences
were then used to generate an amino acid profile at each
sequence position. These profiles were compared with profiles
derived from a MSA of 233 SH3 domains (S. M. Larson and A. R.
Davidson, personal communication). There is a good match
between the profiles (Fig. 5). Thus, it appears that evolution has
sampled most of the sequence space compatible with the SH3
structural core, and has to some extent reached equilibrium.

It has been proposed that covariance in MSAs can be used for
predicting contacting residues for use in structure prediction.
Different studies have reached different conclusions on this
issue; the major complication is distinguishing the covariances
due to physical constraints from those due to lineage effects.
Larsen et al. (S. F. Larson, A. A. Di Nardo, and A. R. Davidson,

personal communication) recently found significant covariances
in the SH3 family by using a method that reduced such lineage
effects. We find that these covariances are to some extent
reproduced in the designed sequences. Pairwise covariances
were determined by calculating f coefficients (see Methods) for
each possible amino acidyresidue pair. A positive covariance
(positive f coefficient) indicates that a particular pair of amino
acids is often seen at the residue positions of interest, whereas
a negative covariance (negative f coefficient) indicates that the
pair is rarely seen at the residue positions of interest. Almost all
pairs of residues found to be positively correlated in the naturally
occurring sequences were also positively correlated in the de-
signed sequences, and likewise for the negative covariances (Fig.
6). These results suggest that the forces modeled by the design
procedure, primarily Lennard–Jones packing, are responsible at
least in part for the amino acid covariances in the SH3 domain
family.

Discussion
More than half of the core residues in the lowest free energy
sequences generated by our design procedure are identical to the
amino acids at the corresponding positions in the native protein
sequences. As noted in the Introduction, one possible source of
such similarity is a ‘‘memory’’ of the native sequence inscribed
in the native backbone coordinates by the potential functions
used in refining the structures that can be ‘‘read’’ by using similar
potential functions in the design process. We find, however, that
the level of sequence identity between native and designed

Fig. 4. Sequence design for alternative backbone conformations. Sequences were designed for 9 proteins for which there is a NMR and crystal structure
available. The free energy of a sequence (in kcalymol) is plotted against sequence identity (over all residues) to the native sequence. The results for the crystal
structures are shown as open squares (for Cl2 and fyn, two independently determined crystal structures were used). The following PDB files were used: CI2 (1ypc,
2ci2, 3ci2), ubiquitin (1d3z, 1ubq), CspB (1csp, 1nmf), fyn (1a0n, 1avz, 1efn), Hpr (1hdn, 1poh), protein L (2ptl, (J. O’Neill and K. Zhang, personal communication)),
tendamistat (1brn, 2ait), interleukin (1icw, 1il8), and barstar (1a19, 1abt).
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sequences is independent of the extent to which noncovalent
energy terms were used in the refinement of the structures, and
in particular, that such sequence identity is observed even for
structures refined without use of any such terms. The simplest
interpretation of these results is that the lowest free energy
sequences for a given structure resemble the native sequence,
and that the energy function we use represents protein energetics

well enough to identify sequences that are genuinely low in free
energy. For clarity, we note that ‘‘native sequences are close to
optimal for their structures’’ does not mean that the free energies
of native sequences are optimal [protein stability can be signif-
icantly enhanced with just a few mutations (18, 19)], but that the
lowest free energy sequences for a structure are likely to be
similar to the native sequence.

Also, it is important to emphasize that the ‘‘close to optimal’’
result applies to specific protein structures, not to protein
folds. There are numerous examples of pairs of naturally
occurring proteins with little sequence similarity but similar
folds. In addition, combinatorial mutagenesis experiments
have shown that the core sequence of a protein can be highly
varied, albeit with some loss of stability, without destroying the
protein fold (1, 2). However, our finding that the optimal
sequences for NMR-determined backbone conformations gen-
erally have higher free energies than the more native-like
sequences found for crystal structures (Fig. 4) suggests that
nonnative low free energy sequence–structure pairs are rela-
tively rare.

True de novo protein design, that is of a novel backbone, relies
on the assumption that a sequence that will fold into the target
structure actually exists. Since there appear to be so few good
sequences for a unique structure, the probability that there is any
good sequence for any single novel backbone structure may be
very small. Therefore, it is probably necessary to allow the
backbone to shift during the design of novel protein structures
(8). Our results with the NMR structural ensembles are encour-
aging because they suggest that a good potential function can
select out ‘‘designable’’ backbone structures from an ensemble of
structures.

The similarity between designed and naturally occurring
sequences suggests that stability effects are the primary con-

Fig. 5. Amino acid profiles for six core residues in SH3 domains. The empty bars are derived from an SH3 domain MSA (S. M. Larson and A. R. Davidson, personal
communication) and the shaded bars, from 11,000 computed sequences generated by using the backbones from 11 separate SH3 domain structures.

Fig. 6. Sequence covariances derived from an SH3 domain MSA compared
with covariances derived from computer-generated sequences. Each point
corresponds to one pair of covarying residues. f values greater than 0 indicate
a positive covariance (see Methods), whereas values less than 1 indicate a
negative covariance. The covariances in the MSA were identified by Larson et
al. (S. F. Larson, A. A. Di Nardo, and A. R. Davidson, personal communication).
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straint in the evolution of core residues. A similar conclusion
has been reached in an experimental study of the SH3 domain
family: it was found that the stability changes produced by
mutations in the core could be predicted from the amino acid
frequencies and covariances observed in the SH3 domain
family (ref. 20; A. R. Davidson, personal communication).
Finally, the ability of the design procedure to reproduce the
site-specific amino acid residue frequencies and covariances in
a large protein family on the basis of structural information

alone suggests that it could contribute to methods for remote
homologue detection (5).
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