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Protein–DNA interactions are crucial for many biological processes.
Attempts to model these interactions have generally taken the form of
amino acid–base recognition codes or purely sequence-based profile
methods, which depend on the availability of extensive sequence and
structural information for specific structural families, neglect side-chain
conformational variability, and lack generality beyond the structural family
used to train the model. Here, we take advantage of recent advances in
rotamer-based protein design and the large number of structurally
characterized protein–DNA complexes to develop and parameterize a
simple physical model for protein–DNA interactions. The model shows
considerable promise for redesigning amino acids at protein–DNA
interfaces, as design calculations recover the amino acid residue identities
and conformations at these interfaces with accuracies comparable to
sequence recovery in globular proteins. The model shows promise also for
predicting DNA-binding specificity for fixed protein sequences: native
DNA sequences are selected correctly from pools of competing DNA
substrates; however, incorporation of backbone movement will likely be
required to improve performance in homology modeling applications.
Interestingly, optimization of zinc finger protein amino acid sequences
for high-affinity binding to specific DNA sequences results in proteins
with little or no predicted specificity, suggesting that naturally occurring
DNA-binding proteins are optimized for specificity rather than affinity.
When combined with algorithms that optimize specificity directly, the
simple computational model developed here should be useful for the
engineering of proteins with novel DNA-binding specificities.
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Introduction

Sequence-specific interactions between proteins
and DNA are critical for the maintenance and
expression of genomic information. The ability to
modulate the function of existing interfaces and to
engineer novel interfaces would be enormously
useful for a number of biological and medical
applications. Likewise, the ability to predict
transcription factor binding sites accurately would
have great utility for understanding transcriptional
regulatory networks.

An accurate and computationally efficient model
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of protein–DNA interactions would greatly expand
our capability to engineer interfaces. At present, the
most dramatic successes in protein–DNA interface
engineering have been achieved with phage display
of zinc finger proteins.1–4 Zinc finger proteins are
ideal for phage display: the domains are modular
and amenable to catenation and rearrangement,
and DNA recognition is mediated by a handful of
residues, well within the library size limits of
phage display.5 However, many systems of interest
involve large, elaborately interconnected protein–
DNA interfaces whose complexity cannot be
thoroughly explored by phage display.6 This high
complexity would not be a problem for a compu-
tational protein design approach that could search
sequence spaces much larger than those accessible
to genetically encoded libraries.
d.
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An accurate model of protein–DNA interfaces
would also benefit transcription factor binding site
prediction. Current methods for predicting binding
sites in non-coding regions of genomes use a
position-specific scoring matrix representation of
the binding preferences of a protein.7 The elements
of this matrix are often determined by time-
consuming in vitro binding measurements; a
rapid method for generating this information
computationally would greatly accelerate the
prediction process.

A common approach to modeling protein–DNA
interfaces for both prediction and design has been
to develop a recognition code between amino
acids and bases.8–10 This attractive simplification
possesses several drawbacks.11,12 First, the most
successful of such models are specific for a single
structural family. Development of such models is
not possible for all families due to insufficient data.
Second, the models assume a single binding mode for
each family, but in reality backbone and side-chain
conformational rearrangements undermine this
assumption. Finally, although mononucleotide recog-
nition codes can be extended to include internucleo-
tide dependencies that are not captured in these
models,13,14 there is often insufficient data to specify
the increased number of parameters required.15

Recent advances in protein design methodology
suggest an alternative method for analyzing
protein–DNA interfaces. The combination of simple
physical models of macromolecular energetics and
rapid algorithms for sampling side-chain confor-
mations could provide a powerful, quantitative
description of protein–DNA interfaces in their
entirety. Similar models are already successful in
describing the determinants of stability in globular
proteins and affinity in protein–protein inter-
actions.16,17 Such simple physical models are
capable of making predictions that extend beyond
their input data, yielding novel intermolecular
interactions.18,19 Here, we develop such a model
for protein–DNA interactions using a simple
physically-based energy function, fixed DNA and
protein backbone conformations, and a rotamer-
based description of protein side-chain confor-
mation. The success of the model in recovering
native amino acid sequences at interfaces suggests
that it may be applied to the design of novel
protein–DNA interactions. The model is successful
in recapitulating protein–DNA binding preferences
in known complexes. Prediction of binding prefer-
ences in structurally homologous complexes is
limited by sensitivity to protein and DNA backbone
orientation; further work incorporating backbone
sampling or docking techniques will be required
before the model is suitable for the prediction of
binding preferences on a genomic scale.
Results

We begin this section with a brief overview of
our computational model of protein–nucleic acid
interactions, and then describe the performance of
the model in two tests based on crystal structures of
protein–DNA complexes. In the first test, the DNA
is held fixed in structure and composition while the
identity and/or the conformation of the amino
acids at the interface are optimized in searches over
either all rotamers of all amino acids or over all
rotamers of the naturally occurring amino acid. We
investigate the extent to which both the experimen-
tally observed side-chain conformations and the
native amino acid identities are recovered (i.e. have
lower energy than the alternative conformations or
identities). In the second test, the identity of the
amino acids at the interface is held fixed and the
sequence of the DNA is varied. We investigate
the extent to which the DNA sequences predicted to
bind with highest affinity correspond to known
DNA binding specificities. We then illustrate the
complications that can arise when homology
models rather than native crystal structures are
used for specificity calculations, which indicate
clear avenues for future work to improve the model.
Finally, we investigate in the context of the model
the long-standing issue of whether transcription
factors are optimized for specificity or affinity.

Overview of computational model

The model is described in detail in Materials
and Methods; here we give only a brief overview.
An all-atom description of both the DNA and
protein is used. The backbone of the protein and
DNA are held fixed, the amino acid side-chains
are allowed to sample all conformations in the
Dunbrack backbone-dependent rotamer library,20

and the bases are allowed to vary in identity but not
in conformation. The energy is computed for all
possible rotamers for fixed DNA sequence (test I) or
for all possible DNA sequences for fixed amino acid
composition (test II). The rapidly computable
energy function is similar to that used in previous
prediction and design work on proteins and
protein–protein interactions. The dominant terms
are an orientation-dependent hydrogen bonding
term, an implicit solvation model, and a Lennard–
Jones potential; hence the lowest energy complexes
identified tend to be rich in side-chain–base hydro-
gen bonds, have few buried polar atoms that do not
make hydrogen bonds, and to be relatively well
packed. The overall amino acid composition is
controlled through reference energies for each
amino acid, which incorporate effects not included
in the model such as long-range electrostatics
(which favors positively charged residues at
protein–DNA interfaces).

Test I: recovery of native protein sequences and
conformations for the test set

For each amino acid at the protein–DNA interface
in a large test set of DNA-binding proteins,
the energy of each rotamer for all 20 amino acids
was determined and the amino acid with the



Table 1. Side-chain conformation recovery for test set

Amino acid c1 (%) c2 (%) c3 (%) c4 (%)

ALA
CYS 90.0
ASP 85.7 50.0
GLU 70.2 55.3 31.9
PHE 100.0 89.7
GLY
HIS 80.8 61.5
ILE 88.9 79.6
LYS 74.6 53.2 41.3 28.6
LEU 87.5 69.6
MET 70.6 70.6 47.1
ASN 82.7 75.0
PRO 66.7
GLN 76.2 59.5 35.7
ARG 75.6 59.5 33.6 20.6
SER 63.6
THR 87.9
VAL 78.3
TRP 100.0 88.2
TYR 84.6 76.9

Total 79.2 64.8 36.9 24.5

Protein total 83.4 69.7 40.5 26.7

The definition of a correct c angle is cumulative. Thus, for c3 to
be assessed as correct, both c1 and c2 must also be correct.

Figure 1. Amino acid recovery at protein–DNA inter-
faces. The columns represent the native amino acids from
the test set and the rows represent the amino acids
selected by our model. Single letter amino acid codes
identify each row and column. Boxes are shaded by
grayscale ranging from 0% recovery (white) to the
maximum observed recovery of 76% for glycine (black).
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lowest-energy rotamer was selected and compared
to the naturally occurring amino acid. As indicated
in Figure 1 (and see Table 5 in the Supplementary
Data), the lowest-energy amino acid (Figure 1,
vertical axis) was very often the naturally occurring
amino acid (Figure 1, horizontal axis). For example,
the vertical stripe in Figure 1 above the R indicates
the distribution of lowest-energy amino acids for
sites that have arginine in the native complexes; it
is evident that the most commonly predicted
amino acids at such sites are arginine and the
chemically similar lysine. The overall native
sequence recovery rate of 42.3% is comparable to
rates seen for similar experiments conducted on
single-domain proteins (52% for buried positions,
26% for all positions).16

The native amino acid was the most frequently
identified substitution for all amino acids except
cysteine, methionine and glutamine. Cysteine was
recovered most frequently as aspartate or serine.
This likely reflects the frequent role of cysteine in
coordinating zinc in protein-DNA complexes; as
metals are not included in our calculations, these
cysteine residues were replaced with amino acids
that can hydrogen-bond to other liganding resi-
dues. Methionine and glutamine were recovered as
lysine, probably because of the favorable reference
energies for lysine, which stems from the high
abundance of this amino acid at protein-DNA
interfaces due to the overall negative charge of
DNA. It is notable that besides the frequent choices
of lysine or arginine, a large portion of the
“incorrect” predictions consists of conservative
substitutions (e.g. tyrosine for phenylalanine).

Although the energy function parameterization
procedure was optimized for the recovery of native
amino acid sequences, the resultant force-field also
reproduces native side-chain conformations with
great fidelity. The extent of recovery of the native
side-chain c angles for each amino acid in the test
set is shown in Table 1. The recovery percentages
are comparable with those obtained from repacking
a set of over 300 high-resolution, non-redundant
monomeric protein structures (a subset of the data
set from Lovell et al.21) with a similar energy
function optimized to recover the native sequences
of proteins.

Water-mediated hydrogen bonds are a significant
contributor to sequence-specific recognition at
many interfaces. Water molecules were not, how-
ever, included in the calculations on the test set or in
the generation of parameterization weights from
the training set. The end goal of these experiments
is the design of novel protein–DNA interfaces and
for these purposes results in the absence of water
are more relevant, since it is unlikely that water
molecules will occupy the same positions in
different interfaces.
Sequence recovery for E-DreI endonuclease

An important application for protein–DNA inter-
face design will be to design novel highly specific
endonucleases. To illustrate the recovery of native
sequences in more detail, we describe the results
with the E-DreI endonuclease–DNA interface,
which is the largest unique (i.e. non-palindromic)
and specific DNA recognition site in our dataset.
E-DreI is a computationally designed chimera of the
homing endonucleases I-DmoI and I-CreI.18 During
the original E-DreI design procedure, amino
acids at the protein–protein interface between
the I-DmoI and I-CreI subunits were altered, but
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the protein–DNA interfaces were unaltered and not
included in the computational design process. As a
result, E-DreI specifically recognizes a 22 base-pair
DNA sequence that is a combination of the native
I-DmoI and I-CreI recognition sites.

Amino acids at DNA interfaces can interact with
DNA directly through hydrogen bonds and van der
Waals contacts, indirectly through water-mediated
hydrogen bonds, or through a combination of
both.22 In sequence recovery experiments with
E-DreI, all of the amino acid residues (6/6;
Table 2) with only direct native contacts to the
DNA were recovered (Figure 2(A)). There is a drop
in fidelity for amino acids that have a combination
of direct and water-mediated contacts (8/11) and
poorer recovery for amino acids with only water-
mediated contacts (3/7). Several of the amino acids
that interact with the DNA through water-mediated
contacts are replaced by larger charged or polar
amino acids. For example, the aspartic acid residue
at position 172 is replaced by a glutamic acid
residue. The conformation of the glutamic acid
side-chain positions it such that the charged moiety
resides in the position occupied by a water molecule
in the native conformation (Figure 2(B)). This
allows the side-chain to replace the water-mediated
contact with a direct hydrogen-bonding contact. The
substitution of direct amino acid-base contacts for
water-mediated contacts in redesign calculations will
likely be a recurrent feature for our physical model.
This has the potential to yield proteins with higher
affinities or greater specificities for their cognate DNA
sequences.
Table 2. Sequence recovery for E-DreI endonuclease

Residue
Contact type

(Dir/H2O/Comb) Substitution

Y25 Dir NAT
Y29 Dir NAT
R37 Dir NAT
T76 Dir NAT
Y130 Dir NAT
R167 Dir NAT

G31 H2O NAT
Q70 H2O L
E79 H2O NAT
S137 H2O Q
T139 H2O R
Y163 H2O NAT
D172 H2O E

R33 Comb NAT
E35 Comb NAT
D75 Comb R
R77 Comb NAT
R81 Comb NAT
Q123 Comb NAT
K125 Comb NAT
N127 Comb NAT
Q135 Comb NAT
Q141 Comb K
R165 Comb Y

Dir—direct contact, H2O—water-mediated contact, Comb—
combination of direct and water-mediated contacts, NAT-native
amino acid.

Figure 2. Examples of sequence redesign for E-DreI
endonuclease. (A) Recovery of amino acids participating
in direct contacts. Three representative amino acids from
E-DreI that make direct contacts to DNA and were
correctly recovered by the model are shown: (from left to
right) Tyr29, Arg37, and Tyr25. For the DNA all atoms are
shown. Predicted conformations for the side-chains are
shown in green, superimposed on the side-chain confor-
mations of the crystal structure 1MOW.18 (B) Redesign of
a water-mediated contact. Asp172 forms a water-
mediated contact with DNA in the crystal structure.
Green dashes indicate hydrogen bonds from the native
structure; the red sphere represents the native water. The
designed replacement is shown in green; red dashes
indicate the designed hydrogen bond that replaces the
original DNA–water interaction.
Test II: recovery of DNA binding specificity
EcoRI endonuclease

We evaluated the ability of our model to recover
native base sequences in protein–DNA interfaces.
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This test is complementary to the previous example,
in which recovery of native amino acid sequences
was the objective. We tested the ability of our model
to identify sequence preferences for the EcoRI
restriction endonuclease system. By necessity,
restriction enzymes display a high level of speci-
ficity for their recognition sequences under physio-
logical conditions.23 Models were generated for
variants of the EcoRI–DNA complex in which the
wild-type 6 bp recognition sequence was replaced
with all possible 6 bp palindromes (Figure 3(A))
(M. Horvath et al., unpublished results). The amino
acid side-chains in the interface were built with
ideal bond and angle geometries, with side-chain
conformations taken from a rotamer library. Thus,
the models did not include coordinates from
the crystal structure for amino acid side-chains,
eliminating a possible source of bias. The side-chain
conformations of amino acids in the protein–DNA
interface were optimized using a Monte Carlo
rotamer search, and the free energy of the resulting
complexes was evaluated. Each calculation was
repeated ten times because of the stochastic nature
of the rotamer search.

The complex with the native recognition
sequence was identified correctly as the lowest in
energy (Figure 3(B)). There is an energy gap of
2.6 kcal/mol between the lowest energy for the
complexes containing the native recognition
sequence and the lowest energy for any other
complex (1 calZ4.184 J). In no case did any of the
63 non-native complexes have a lower energy than
that of the native complex. The DNA sequences of
the lowest energy non-native complexes are similar
to the native sequence (GAATTC), with the three
lowest differing from the native at only one of the
three independent positions each (GAGCTC,
TAATTA, CAATTG). No sequence differing from
the native at all three positions is found within the
ten lowest energy non-native complexes.
Prediction of zinc finger DNA-binding specificity

We selected the zif268 zinc finger transcription
factor as a system for evaluating the model’s ability
to predict binding specificity for complexes whose
structures may only be inferred from homologues.
The zif268 transcription factor consists of three zinc
finger domains, each of which primarily recognizes
a 3 bp binding site (Figure 4(A)). This protein has
been subjected to combinatorial mutagenesis, and
the resultant libraries selected for altered binding
specificity by phage display.24–26 The interacting
partners in each case differ from those in the
structurally characterized native complex in
both their protein and DNA sequences.27 The ability
Figure 3. Computational assess-
ment of DNA-binding preferences
of EcoRI endonuclease. (A) A library
of EcoRI–DNA complexes. Atomic
coordinates for the cognate DNA
duplex were taken from the crystal
structure 1CKQ (M. Horvath et al.,
unpublished results). Models for
all possible 6 bp palindromic var-
iants of the recognition sequence
were built using standard bond
and angle geometries from
CHARMM2739 and torsion angles
retained from the crystal structure
(a total of 64 duplexes). Replace-
ment of the DNA in the crystal with
each of these alternate DNA bind-
ing sites gives rise to a library of
protein–DNA complexes. The free
energy of each complex in the
library described above was evalu-
ated after the conformations of the
amino acid side-chains in the inter-
face were determined using a
Monte Carlo-based rotamer search.
Each calculation was repeated ten
times to account for the stochastic
nature of the search. (B) Distribu-
tion of minimized energies. Each of
the 640 energies resulting from
the Monte Carlo conformational
searches is shown. Energies corre-
sponding to those obtained from
the ten complexes with the native
recognition sequence are shown in
yellow.



Figure 4. Conformation, specificity and sequence
redesign calculations for the zif268 transcription factor.
(A) Zif268 transcription factor. The three zinc finger
domains are shown in yellow, cyan, and magenta. The
recognition sequences for each are shown at left. (B)
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to identify binding sites for proteins using
structural information from homologues is import-
ant if models of protein–DNA interactions are to
contribute new information, rather than rationalize
what is already known.

We generated models for all possible 3 bp
binding site sequences for the first and second
zinc finger domains of zif268. The sequences for a
series of zinc finger mutants selected to bind to all
possible 5 0-GNN-3 0 binding sites24,25 were threaded
onto the protein backbones of both the first and
second zinc finger domains of zif268 (Table 3). The
side-chain conformations for these amino acids
were predicted using a Monte Carlo rotamer search
in complex with each of the recognition sequences,
and the energies evaluated.

As shown in Table 4, the experimental results
were reproduced reasonably well when finger I was
used as a template. The model performs well for
mutants that bind their recognition sequences with
high affinity and specificity (no experimentally
observed cross-reactivity). The model selects the
correct sequence among the top four (of 64) for each
mutant that exhibits no cross-reactivity and a KD

below 10 nM. The success of the model for each
mutant is likely to depend on how well the
combination of separate interactions in the interface
are modeled. For instance, the interaction between
the 5 0 G of the recognition site and the Arg at the C6
helical position is modeled well. Likewise, residues
at position C3 of the recognition helix are known to
interact with the middle base of the recognition
sequence. The four mutants whose targeted DNA
sequences are ranked lowest, and only these
mutants, have acidic residues at the C3 helical
position. It is possible that the interactions that
Alternate zinc finger binding modes. The recognition
sequences for zinc fingers 1 and 2 from zif268 were
structurally aligned, and the resulting superposition of
protein domains is shown. (C) Backbone dependence of
arginine-guanine interaction. The first and second zinc
finger domains of zif268 and their three base-pair
recognition sequences are shown aligned by their DNA
backbone atoms. Finger one is shown in yellow and finger
two in cyan. The backbone orientation of the 5 0 base-pair
of the recognition sequence of finger two is distorted
relative to that of the binding site for finger one. When a
guanine base is modeled in this position of the finger two
binding site (shown in cyan; the analogous interaction in
finger is shown in yellow) it moves too close to the protein
backbone to form favorable interactions with an arginine
residue at position C6 of the recognition helix without
clashing. To remove this unfavorable interaction, our
model removes the arginine side-chain from the interface,
allowing it to interact with the phosphate backbone
instead. (D) Side-chain conformation recovery for wild-
type zif268 with cognate DNA. Crystallographically
determined side-chain conformations for amino acids
involved in specific base-pair recognition are rendered in
magenta. The side-chain conformations selected by a
Monte Carlo rotamer-based search using our physical
model are rendered in green.



Table 3. Calculated binding preferences for zinc finger mutants from Segal et al.24

Target sequence
Amino acid
sequencea

Experimental
cross-reactivity

Experimental KD

(nM) Calculated rank/(energy gap)b

GGA SQRAHLER No 3 1 1.16
GGG SRSDKLVRc No 6 1 0.8
GGT STSGHLVRc Some 15 1 0.7
GAA SQSSNLVRc No 0.5 3 (0.79)
GAG SRSDNLVRc Some 1 3 (1.37)
GAT STSGNLVR No 3 3 (1.62)
GGC SDPGHLVRc No 40 4 (1.23)
GAC SDPGNLVRc No 3 4 (2.85)
GTT STSGSLVRc Yes 5 7 (1.97)
GTC SDPGALVR No 40 9 (1.97)
GCG SRSDDLVRc Yes 9 9 (2.59)
GTA SQSSSLVR No 25 11 (2.01)
GCA SQSGDLRR Yes 2 12 (1.51)
GCC SDCRDLAR No 80 15 (2.65)
GTG SRSDELVRc Yes 15 18 (3.65)
GCT STSGELVRc Some 65 26 (3.77)

a Amino acid sequence beginning with position K2 in the recognition helix.
b For correctly identified sequences (ranked first), this is the energy gap between the correct sequence and the closest non-specific

sequence. When the correct sequence is not identified as the lowest energy, the energy is shown in parentheses and denotes the
difference in energy between the correct sequence and the sequence incorrectly identified as lowest in energy.

c Amino acid sequences were modified from the phage-selected sequence (see Segal et al.24).
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these residues participate in are mediated by water
or are otherwise treated poorly by our model.

Challenges facing specificity prediction from
homology models

The experimental results were less well recapitu-
lated when finger 2 was used as a template.
Examination of the predicted structures revealed
that a common interaction motif between arginine
at position C6 of the recognition helix and guanine
at the 5 0 position of the 3 bp recognition sequence
could not be made in the context of the second zinc
finger. We investigated the structural differences
between the two zinc finger domains that deter-
mined whether the Arg–G interaction could be
formed. Differences in protein backbone confor-
mation were not the cause; the Ca atoms of the
DNA-contacting residues (helical positions K2 to
C6) of the two fingers can be superimposed with an
rmsd of 0.3 Å. We tested whether a difference in the
relative orientation between the protein and DNA
backbones could account for the discrepancy (see
Table 4. Calculated binding preferences for zif268 mutants

Zif268 variantb
Highest-affinity

sequence K
app
d (nM

Wild-type TGG 3.0G5
RGPD GCG 17G4
REDV GCG 11G4
LRHN TAT 6.3G1
KASN AAT 250G2

a Since the library of structures has 64 members, a rank order less th
given protein sequence represents a preference for the DNA sequenc

b The sequences of these proteins from positions K1 to C9 o
(RGPDLARHGR); REDV, (REDVLIRHGK); LRHN, (LRHNLETHMR

c From Supplemental Material for Bulyk et al.26
Figure 4(B)).5 However, even when finger 2 is forced
into the same orientation relative to the DNA as
finger 1, rotameric side-chain conformations of Arg
at position C6 still fail to make the expected inter-
actions with G at the 5 0 position of the recognition
sequence. Instead, the inability to form the G–Arg
interaction is due to a distortion in the DNA back-
bone at this position. The 5 0 position of the
recognition sequence is occupied by a T in the wild-
type sequence. This base is rotated outward from the
major groove towards the protein, and stacks with a
His at the helical position 3. Our DNA models retain
this outward rotation and, as a result, guanine bases
modeled at this site cannot be contacted by the Arg
side-chain at position C6 (Figure 4(C)).
Comparison with zinc finger binding specificity data
from Bulyk et al.26

In another experimental study, the second zinc
finger of zif268 was subjected to combinatorial
mutagenesis and selected for altered binding
specificity. The specificities of the resulting mutants
Ordinal ranka (out of 64)

)c Finger 2 Finger 1

.7 1 4

.0 28 3

.3 9 3

.6 2 13
8 61 49

an 32 (a rank of one denoting the most favorable interaction) for a
e over the library as a whole.

f the recognition helix are: wild-type, (RSDHLTTHIR); RGPD,
); KASN, (KASNLVSHIR).
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were measured in vitro by double-stranded DNA
microarray binding assays.26 We calculated the
specificities for the wild-type zif268 sequence and
for each of the mutants in the contexts of both the
first and second finger domains (Table 4). Not
surprisingly, the two mutants with a C6 helical
position residue of arginine and guanine at the 5 0

position of their recognition sequences (mutants
RGPD and REDV) were modeled well in the context
of the first, but not the second, zinc finger domain.
Similarly, the wild-type protein and one of the
mutants (LHRN) were modeled well in the context
of the second finger domain, and were modeled less
well in the first finger context. The preferred
sequence for the LHRN mutant (TAT) is similar to
the wild-type sequence (TGG). We note that the
side-chain conformations for the wild-type
sequence are in good agreement with the crystal
structure (Figure 4(D)). The fourth mutant (KASN)
was modeled poorly in the context of either back-
bone orientation, perhaps because this domain was
experimentally found to be both the least specific
and weakest binding mutant in the set, with an
affinity two orders of magnitude weaker than wild-
type (Table 4).26 Alternatively, the complex between
this mutant and its preferred sequence (AAT) may
be unlike those adopted by the native zif268 zinc
finger domains.

Optimization of affinity versus specificity

We redesigned five amino acid positions in the
second zinc finger domain of zif268 in complex with
each of the 64 alternative recognition sequences
used to assess specificity above. For each of these
binding sites, our model selected one of only five
distinct protein sequences. However, none of these
sequences was found to be specific: the largest
difference between the lowest and second-lowest
energy complexes for the redesigned domains was
0.35 kcal/mol. This is in contrast to the wild-type
protein sequence at this position, which is calculated
to have a 2.4 kcal/mol energy gap between the native
and the lowest-energy non-native DNA sequence.
Interestingly, the calculated binding affinities for all
but two of the 64 redesigned complexes are more
favorable than for the wild-type complex.
Discussion

Performance and composition of the physical
model

We have presented a simple, physically based
model that is capable of describing the determi-
nants of affinity and specificity in protein–DNA
interfaces. This model reproduces amino acid
sequences and conformations at protein–DNA
interfaces with high fidelity. Amino acids that are
not recovered by our model are generally replaced
by conservative substitutions, or by mutations that
simultaneously replace an amino acid and a bound
water molecule. For fixed protein sequences, our
free energy function is capable of discriminating
native DNA-binding sites from libraries of decoys.
The model also shows some ability to identify
preferred binding sites in the homology modeling
problem, in which an inferred structure is used as
the model for a putative binding interaction.

The energetic components that make up our
physical model for protein–DNA interactions are
essentially identical with those used to describe the
structures of proteins. Future improvements in our
model will focus on two differences between the
interactions that stabilize proteins and those that
dictate affinity and specificity in protein–DNA
interfaces: electrostatics and water-mediated inter-
actions. Because of the highly charged nature of the
DNA backbone, we tested the effect of including a
simple description of electrostatics in our model.28

Surprisingly, little improvement was gained, and
this term was ultimately excluded from the free
energy function. Preliminary results with a more
accurate electrostatics model are promising, and we
are pursuing further this avenue for improvement.
Instead, the effect of the electrostatic environment is
incorporated through the reference energies for the
amino acids, which represent the average free
energy of the amino acid at an interface and control
the overall amino acid composition. In fact, the
most significant differences in the weights deter-
mined for protein–DNA interfaces compared to
those obtained for protein structure and protein–
protein interfaces are for the reference energies.
(The ratio of the weights for the Lennard–Jones,
solvation, and hydrogen bonding energy terms is
1 : 0.8 : 1.5 for proteins and 1 : 0.6 : 1.8 for protein–
DNA interfaces.) Because the polyphosphate back-
bone of DNA is uniformly negatively charged, the
reference energies can account for the average
electrostatic environment at protein–DNA inter-
faces. Water-mediated contacts between amino acid
residues and DNA bases are not included in our
model. However, it is possible to include potential
water molecules in side-chain repacking calcu-
lations by expanding current rotamer libraries to
include hydrated side-chains.40 This approach is
under investigation.
Implications for the computational design of
protein–DNA interfaces

Protein–DNA interfaces are attractive and
challenging design targets. Small changes in
protein–DNA interactions can have profound bio-
logical effects, yet the large number of competing
binding sites in vivo implies that any successfully
designed protein must possess exquisite specificity
for its desired target DNA sequence. The capability
of our model to both recover native-like protein
sequences at DNA interfaces and to discriminate
preferred DNA-binding sites for a fixed protein
sequence suggests that it should be possible to
design novel protein–DNA interfaces and to assess
their binding specificity. The model is well suited
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for current design algorithms: all of the energy
terms are pairwise factorable and can be evaluated
rapidly. Because water-mediated interactions have
been neglected, we expect that interfaces designed
using our model will be dominated by direct
contacts. Nevertheless, our model holds distinct
advantages over recognition codes, which cannot
describe conformational rearrangements or detailed
atomic packing and are limited to a structural
family, and offers greater generality and library
complexity than phage display, which is limited by
the size of genetically encoded libraries. Additionally,
the output of these calculations explicitly includes
proposed structural models that can be evaluated
both visually and in terms of detailed analysis of the
energetic terms at the atomic level. This confers the
ability to process and inspect multiple proposed
designs for the same DNA interface.

The outlook for the computational design of
protein–DNA interfaces is particularly encouraging,
because experience shows that the computational
design of proteins and protein–protein interfaces is
possible even when prediction of the behavior of
analogous natural counterparts is not. Proteins with
novel topologies have been designed with great
accuracy, despite the continued recalcitrance of the
high-resolution structure prediction problem.
While protein–protein docking is likely to remain
a challenging field of research for some time, novel
protein–protein interfaces have been designed and
characterized.

The design problem is easier for at least two
reasons. First, unlike natural proteins, designed
proteins are selected to satisfy simple criteria such
as stability and affinity. Consequently, it is possible to
”over-design” these proteins, resulting in a successful
design even if only part of the predicted stability or
affinity is realized. Conversely, the stability of natural
proteins is often marginal, and this may limit the
ability of current models to identify minimum energy
conformations. Second, natural proteins and macro-
molecular complexes can contain unusual features,
such as the outwardly rolled thymine base in the
zinc finger example described above. Other
examples include bond lengths and angles that
deviate from ideal values, side-chains that adopt
uncommon (non-rotameric) conformations, and
amino acids that appear in unusual environments,
such as buried polar residues. All of these features
hinder the structural prediction of proteins and
protein assemblies. However, design algorithms
exclude these complications by construction, and
restrict themselves to regions of sequence and
conformational space where they perform best,
and in which success is most likely.
Specificity versus affinity in protein–DNA
interfaces

The most striking characteristic of protein–DNA
interactions is the exquisite specificity with which
proteins recognize their preferred binding sites
despite the bewildering number of alternate sites
presented in vivo. In agreement with experimental
evidence,24,29,30 we observe a trade-off between
affinity and specificity. Zinc finger proteins compu-
tationally designed for affinity are predicted to bind
to their targets more tightly than the wild-type
protein binds its target. However, the designed
sequences are also predicted to be significantly less
specific than the wild-type protein. This suggests
that the naturally occurring protein has been, to
some extent, optimized for specificity rather than
affinity. Experimentally, negative design against
non-specific sites is incorporated through selection
in the presence of competitor DNA (oligonucleo-
tides in vitro or genomic DNA in vivo). It is likely
that some form of negative design will be required
to design DNA-binding proteins with a high level of
sequence specificity.19,31

Prediction of protein–DNA interactions

The ability of our model to identify preferred
DNA-binding sites for a given DNA-binding
protein from a library of competitors suggests the
potential for in silico annotation of DNA-binding
proteins. Putative structures of transcription factors
can be generated by homology modeling and
screened rapidly against large libraries of potential
binding sites. This strategy bypasses the time-
consuming experimental steps generally required
to construct a position-specific scoring matrix for
scanning potential binding sites. Although the
model is most successful when native protein–
DNA structures are used, the zinc finger examples
demonstrate that the model has some predictive
power even when both the protein and DNA
sequences are varied in an interface. The model is
not sensitive to the replacement of crystallographi-
cally determined side-chain positions by rotameric
approximations: native side-chain conformations
were not included in any of the rotamer searches.
However, the model is sensitive to errors in the
relative orientation of the protein and DNA back-
bones. We speculate that the zif268 mutant proteins
for which our model performed poorly involve
alternative binding modes or sequence-specific
DNA backbone distortions. Further improvements
to our model will include the consideration of
multiple protein–DNA binding modes, through
either the use of multiple crystal structures of
alternative complexes, or by combining our model
with computational docking protocols. Finally, we
note that our model should be complementary to
existing profile-based methods for binding site
prediction, allowing for the combination of both
physically and statistically based methods within a
single prediction scheme.
Materials and Methods

Datasets

Crystal structures of protein–DNA complexes were
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selected from the Nucleic Acid Database.32 Structures
were screened by protein sequence homology to
avoid biasing the results towards commonly studied
structures. In cases of redundant complexes, the
highest-resolution structure was selected. In certain
instances, homologous proteins were retained when the
DNA sequence or bound conformation differed con-
siderably. Hydrogen atoms were added to the structures,
assuming standard bond lengths and angles. Hydroxyl
hydrogen positions were determined by optimization
of a rotamer-based description of the hydrogen bond
network.17
† www.bakerlab.org
The free energy function

During these calculations the free energies of all-atom
models for all sampled structures were evaluated using a
nine-term function that is described in detail in the
Supplementary Material. Briefly, these terms are: a
Lennard–Jones potential used to model attractive and
repulsive van der Waals atomic forces, an implicit
solvation term based on the model developed by
Lazaridis & Karplus,33 an orientation-dependent hydro-
gen bonding term derived from a statistical analysis of
high-resolution protein structures,34 a pair interaction
term that crudely models electrostatic interactions
between amino acid side-chains, a backbone torsional
term that accounts for differences in the local structure
propensities of the amino acids, and 20 reference energies
that control the overall amino acid composition. The free
energy function is essentially the same as that used
previously for protein design calculations,35 with the
exceptions of the values of the 20 reference energies, the
derived weights for each term and an augmentation of the
hydrogen bonding term. The protein atom types used for
the Lennard–Jones, solvation, and hydrogen bonding
terms are the same as those defined previously. The van
der Waals radii of all protein heavy-atoms were deter-
mined based on observed interatomic distances between
atom types in high-resolution structures. Atom types for
the DNA, with the exception of P, were assigned from the
set of existing protein atom types. Assignments for each
DNA atom were to the protein atom type with the most
similar chemical environment hybridization state (see
Supplementary Material). The van der Waals radius for
the P atom type was taken from CHARMM27, and the
solvation parameters were copied from the S atom type.
Deprotonated nitrogen atoms were included as hydrogen
bond acceptors with the same distance and angular
energy dependence as sp2 hybridized oxygen atoms.
Rather than defining an acceptor base atom (such as a
carbonyl C atom for a carbonyl O acceptor) for the ring
nitrogen atom, a virtual atom was used whose position
was the average of the two heavy-atoms bonded to the
ring nitrogen atom, and the minimum of the angular
component of the hydrogen bond potential was shifted to
1808. This angular term enforces linearity of the hydrogen
bond from the virtual base through the acceptor to the
shared hydrogen atom, and imposes a penalty for out-of-
plane hydrogen bonding geometries. The parameters for
the hydrogen bonding potential were derived from
protein structures and are consistent with the results of
quantum mechanical calculations on small molecule
models;36 a potential derived directly from a dataset of
protein–nucleic acid complexes showed similar levels of
recovery of native amino acid residues at protein–RNA
interfaces.37
Parameterizing the energy function on protein–DNA
interfaces

The weights for the various components of the free
energy function were optimized to recover native protein
sequences for positions at the interface with DNA.
Interface positions are defined as all those within 6.0 Å
of any DNA atom. Each energy component in the free
energy function was evaluated for all rotamers of all
amino acids, using a backbone-dependent library.20 All
other amino acids in the interface were held in their native
conformation. Avariable-metric optimization method was
used to determine weights for the energy components of
the free energy function that maximized the recovery of
native amino acid sequences.38 The dataset was divided
into five subsets of equal size. Families of related proteins,
as determined by sequence homology, were segregated to
single subsets. Each subset was evaluated using weights
determined from the other four. Though the weights were
nearly identical for each subset, this procedure facilitated
the independent testing of each one.

Protein–DNA interface redesign

Total protein–DNA interface redesign calculations
were performed using the same definition for the inter-
face given above. Sequence recovery of the naturally
occurring amino acids at the DNA interface for each
complex of the dataset using independently derived
parameter weights was used to assess the accuracy of the
force-field. In these calculations, side-chains at each
sequence position along the DNA interface were sub-
stituted one-by-one by all amino acids in all the rotamer
conformations in a backbone-dependent library.20

Native side-chain conformation recovery

The ability of the force-field to recover native side-chain
conformations for complexes from the dataset was also
assessed. In these experiments, all of the interface side-chains
for each complex were repacked simultaneously. Side-chain
dihedral angles were deemed to be correct if they were
within 408 of the crystallographically determined values.

Binding site prediction

The specificity of DNA-binding proteins was calculated
by evaluating the free energy function for the protein in
complex with native DNA binding site and with a library
of alternate DNA binding sites. Alternate DNA molecules
were constructed by keeping the conformations of
nucleotides that were the same as the native DNA fixed,
and building alternate bases onto the native phosphate
backbone using standard bonds and angle, and preser-
ving the c dihedral angle from the native DNA. The free
energy of each structure was evaluated after optimization
of side-chain conformations for all amino acid residues in
the interface using a Monte Carlo-based rotamer search.16

Availability

The computational module was implemented as a
protein–nucleic acid interaction module in the ROSETTA
software package, and will be available at no cost to
academic users† in a manner similar to previously
released modules.

http://www.bakerlab.org
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