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We describe a completely automated approach to identifying local sequence
motifs that transcend protein family boundaries. Cluster analysis is used to
identify recurring patterns of variation at single positions and in short
segments of contiguous positions in multiple sequence alignments for a
non-redundant set of protein families. Parallel experiments on simulated
data sets constructed with the overall residue frequencies of proteins but not
the inter-residue correlations show that naturally occurring protein
sequences are significantly more clustered than the corresponding random
sequences for window lengths ranging from one to 13 contiguous positions.
The patterns of variation at single positions are not in general surprising:
chemically similar amino acids tend to be grouped together. More
interesting patterns emerge as the window length increases. The patterns of
variation for longer window lengths are in part recognizable patterns of
hydrophobic and hydrophilic residues, and in part less obvious
combinations. A particularly interesting class of patterns features highly
conserved glycine residues. The patterns provide a means to abstract the
information contained in multiple sequence alignments and may be useful
for comparison of distantly related sequences or sequence families and for

protein structure prediction.
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Introduction

Arethererecurring local patterns in the amino acid
sequences that encode proteins? Global similarity
is often used to classify sequences into families;
are there local patterns that transcend family
boundaries?

Given that all viable protein sequences must be
such that the proteins they encode can fold and have
at least marginal stability, it is reasonable to expect
that not all 20N amino acid sequences of length N
are equally probable. There are far too few distinct
protein families to tabulate meaningful statistics
on the frequencies of occurrence of the different
peptides of length N for N greater than two (Gonnet
etal., 1994). An alternative approach is to use cluster
analysis to identify recurring sequence patterns. This
requires a suitable measure of similarity between
two sequences.

Global sequence comparisons almost always rely
on amino acid substitution matrices compiled by
averaging over large sets of related sequences. The
disadvantages of using a single substitution matrix
have been pointed out on numerous occasions
(Johnson et al., 1993; Risler et al., 1988). The major
problem is that at different positions in protein
structures, different sets of amino acid sequences are
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likely to substitute for one another. In other words,
there is no single and universally applicable set of
distances (or similarities) between the 20 amino
acids. Rather, similarity can be quite context-
dependent.

A more natural measure, which does not require
the assumption of a single substitution matrix, is
available for comparison of protein families if there
are a number of sequences in each family. For each
position in a set of multiply aligned sequences, one
can calculate the frequency of occurrence of each of
the amino acids. The resulting sequence of frequency
distributions is often called a profile (Gribskov et al.,
1990). To evaluate the distance between two aligned
profile segments, one can compare the frequency
distributions at corresponding positions.

Here we use such a distance measure in conjunc-
tion with cluster analysis to identify patterns that
occur frequently in multiple sequence alignments
for proteins of known structure. Because only one
multiple sequence alignment is included of each
family, the patterns are necessarily common to many
different protein families and are distinct from the
family-specific patterns compiled in the Prosite data-
base (Bairoch & Bucher, 1994). Because the patterns
are universal but still fairly detailed, they present a
possible route to overcoming some of the limitations
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of the global amino acid substitution matrices used
in sequence comparisons and the individual residue
secondary structure and solvent accessibility pro-
pensities used in local protein structure prediction.
The work described in this paper is a first step
towards correlating local sequence patterns with
local structural motifs.

Results

If there are a finite number of distinct chemical
environments in proteins, there should be a finite
number of patterns of variation in sets of multiply
aligned sequences. Here we use cluster analysis to
identify recurring patterns of variation at single pos-
itions and in short segments of contiguous positions
in multiple sequence alignments. A non-redundant
set of global multiple sequence alignments for pro-
teins of known structure was extracted from the
HSSP database (Sander & Schneider, 1991) as de-
scribed in Methods. After excluding positions in
which fewer than 20 sequences contributed to the
alignment, the data set contained approximately
20,000 individual columns from 154 protein families.

Patterns at single positions

The frequencies of occurrence of the 20 amino
acids at each position were calculated, and the
K-means algorithm was used to group similar fre-
quency distributions using the simple “city block”
metric (d1, see Methods).

The amino acid groupings obtained (Table 1) are
consistent with expectation. The mean of the fre-
quency distributions belonging to a given cluster
provides a convenient summary statistic. To save
space, the mean values of each of the 20 amino acids
in each cluster are not shown, instead only the amino
acids whose mean frequency of occurrence in a
cluster is greater than 0.1 (upper case) or between
0.07and 0.1 (lower case) are listed (Table 1, column 3).

The degree of conservation of these primary com-
ponents is reflected in the variability index
(column 4), which gives the number of amino acid
components whose mean frequency of occurrence is
greater than 0.05.

The patterns generally fall into either hydrophobic
(clusters 1, 2 and 3) or polar (clusters 4 through 8)
classes (Table 1, column 6). However, the different
clusters contain different combinations of hydro-
phobic and hydrophillic groups. For example,
cluster 1 contains primarily V, I and L while cluster 2
contains primarily I, L and M. Cluster 3 contains only
aromatic residues while cluster 6 contains only
negatively charged residues. Amino acid residues
with special structural properties are prominent in
clusters 9 (P) and 10 (G). Although the RMS deviation
of points within a cluster is not dramatically less than
that of points in the entire dataset (see Methods), the
products of the variances are considerably lower in
the former than in the latter (Table 1, column 6). As
outlined in Methods, the patterns were independent
of the choice of starting cluster centers implicit in
the K-means algorithm. Patterns similar to those in
Table 1 were obtained in a Dirichlet mixture decom-
position of multiple sequence alignments (Brown
et al., 1993).

The first ten patterns in Table 1 are the result of a
low resolution subdivision of sequence space (ten
classes were allowed). More subtle patterns are
revealed when the number of classes is increased
(see Methods). For example, in cluster 11, primarily
L, R and K, the common feature is the long aliphatic
side-chain of all three residues. Pattern 13 is
dominated by the beta branched residues V, l and T.
A cluster with conserved cysteine residues also
emerges when more classes are allowed. Thus,
although hydrophobicity appears to be the major
feature distinguishing the largest clusters, other
chemical properties are often important in the
smaller clusters.

How clustered are the frequency distributions in
sequence space? The K-means algorithm can always

Table 1. Recurrent patterns at individual positions

Relative

No. of Dominant Variability cluster

Cluster no. members substitutions index Hydrophobicity volume
1 2449 \AR 3 0.832 2.3e-4
2 1971 L,im 5 0.853 5.4e-4
3 1521 Y,F,w 4 0.818 1.6e-3
4 1166 N,H,d 4 0.151 7.4e-4
5 2263 R,K,q 4 0.163 5.8e-3
6 2396 D,E 4 0.148 2.5e-3
7 1401 TS 3 0.237 2.4e-4
8 1412 Sat 3 0.199 3.3e-4
9 2214 PA 3 0.538 1.2e-3
10 1349 G 2 0.166 4.3e-4
11 84 L,R,K 4 0.450 2.8e-3
12 150 G,N,k 4 0.101 2.4e-6
13 114 VI, T 4 0.687 1.1e-5

The amino acids which occur with frequencies greater than 0.1 are shown in upper case, those
which occur at frequencies between 0.07 and 0.1, in lower case (column 3). The number of amino
acids which occur at frequencies greater than 0.05 is given in column 4. The average summed
frequency of occurrence of the amino acids A, V, I, L, M, F, W and C is listed in column 5.
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Real data Simulated data
Pattern cluster dimensionality cluster dimensionality
conservation Mean Variance Mean Variance
Weighting
scheme
1 1.0 11.8 0.54 16.3 0.17
2 0.9 11.8 0.54 16.5 0.15
3 0.9 12.1 0.47 16.5 0.18
4 0.7 12.6 0.46 16.5 0.20
Distance
measure
5 0.8 11.8 0.45 175 0.06
6 0.9 11.8 0.51 16.7 0.08
7 0.7 111 0.84 14.9 0.25
8 1.0 11.3 0.39 135 0.02

©

Figure 1. Comparison of different weighting schemes and distance measures for both the real and random data sets.
Each symbol represents a single cluster; the x axis is the number of non-zero dimensions, the y axis, the average variance.
(a) Comparison between unweighted (triangles) and weighted (scheme 2, circles) data sets. (b) Comparison between the
city block metric (triangles) and distance measure d2 (circles). Open symbols, clusters generated from the real data set;
filled symbols, clusters generated from a simulated data set. The clusters for the real set are numbered as in Table 1. Note
that the weighting scheme changes the residue frequency distributions such that the within-cluster variance is higher for
both real and simulated data sets. (¢) Summary of statistics for the different weighting schemes and distance measures.
Column 1 describes the trial, column 2 lists the fraction of patterns that were found in the unweighted data set clustered
using the city block metric (trial 1), columns 3 and 4 list the mean and variance of the cluster dimensionality for the real
data set; columns 5 and 6, the same quantities for the simulated data set. The city block metric was used for the comparison
of weighting schemes (trials 1 to 4), and the unweighted data set was used for the comparison of distance measures (trials
5 to 8). The weighting scheme trails are: 1, no weights; 2, tree-based weights; 3, self consistent weights; 4, Voronoi weights
(see the text for more description). The distance measure trial 5 utilized d2 and trials 6 to 8 utilized d3 with the matrix
M the PAM(250) substitution matrix, the overall covariance matrix, and within cluster covariance matrices, respectively
(see Methods). For trial 8, covariance matrices were calculated for each of the clusters generated using the standard
procedure (trial 1) and used for a second round of clustering as described in Methods.

subdivide a set of points into convex subsets and
does not depend on the “clumpiness” of the data.
To investigate this question, random data sets were
generated using the individual residue frequency
distributions of the HSSP database but lacking the
inter-residue correlations (see Methods). The HSSP
data set and a simulated data set were subjected to
the same clustering procedure and the results are
compared in Figure 1.

As described in Methods, no single statistic
adequately captures the spread of points within a
cluster embedded in a high dimensional space. With
two statistics one can do much better. We have used

V, the within cluster variance per dimension, and D,
the dimension of the smallest subspace that contains
the cluster. Each cluster is represented as a point in
Figure 1.

The most striking aspect that distinguishes the
results of application of the K-means algorithm to the
real (Figure 1(a), open triangles) and simulated
(Figure 1(a), closed triangles) data sets is the smaller
number of dimensions in the former. There is
also significantly greater variation in the number
of dimensions per cluster in the real data set. The
clusters in the random set appear to have roughly
similar shapes and volumes, as expected in a rela-
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tively uniform distribution. In contrast, the sizes and
shapes of the clusters obtained for the real data set
vary considerably, presumably because different
sequence patterns in protein families are constrained
to different extents.

Comparison of weighting schemes and
distance measures

Frequency distributions from multiple sequence
alignments can be taken as estimators of the “‘true”
probability distributions for substitution of the
20 amino acids at a given position in a protein, but
there are two important caveats. First, there are a
limited number of sequences in each family, so that
observed frequencies may be inaccurate estimates
because of small sample size effects. We have dealt
with this problem by excluding poorly represented
families and positions from the analysis. Second, and
perhaps more serious, the different sequences in a
family are not independent observations. Rather,
they are highly correlated. Frequency distributions
derived from sets of evolutionarily related sequences
may be heavily biased. A particular amino acid may
be highly represented in a particular position simply
because it was present in acommon ancester, and not
because of any underlying structural constraint.

A number of different weighting schemes have
been proposed for compensation of the heavily
biased sampling in evolutionarily related sequence
sets (Vingron & Sibbald, 1993). We experimented
with (1) a weighting scheme similar to that described
by Altschul et al. (1989) and van Ooyen & Hogeweg
(1990) in which weights are derived from a tree
constructed from pairwise distances between the
aligned sequences; (2) the self-consistent weight-
ing scheme of Sander & Schneider (1991), and
(3) the Monte Carlo approach to estimating Voronoi
volumes described by Sibbald & Argos (1990).
Frequency distributions were recalculated for each
of the weighting schemes and subjected along with
corresponding simulated data sets to the K-means
clustering procedure.

Space limitations prohibit the display of scatter
plots for each of the weighting schemes. However,
the essence of these plots can be roughly captured by
the mean and variance of D, the cluster dimensional-
ity (Figure 1). The results obtained with frequency
distributions weighted using scheme (1) were very
similar to those obtained with the unweighted distri
butions (Figure 1, compare circles to triangles).

The average cluster dimensionality was very
similar for all the weighted data sets (Figure 1(c),
column 3), indicating that the interrelationships
among the frequency distributions are not substan-
tially changed by the different weighting schemes.
Furthermore, the resulting sequence patterns were
not greatly altered by any of the weighting schemes
(Figure 1(c), column 2). Since both the relative weight
on a particular sequence and the probability of
misalignment increase with sequence divergence,
attempts at correcting the biased sampling through
unequal sequence weighting may increase noise

from misalignment errors. Because of the lack of
dependence of the results on the weighting scheme,
unit weights were used for simplicity in the experi-
ments described in the following sections.

A similar approach was used to evaluate alter-
native distance measures. The Euclidean distance
metric gave results very similar to that of the city
block metric d1 (data not shown). Because differences
between amino acid frequencies of 0.8 and 0.6 are
likely to be less significant than differences between
frequencies of 0.2 and 0.0, we experimented with
the somewhat ad hoc distance measure d2 which
effectively down-weights differences of the former
type. Again, the clusters obtained with distance
measures d2 had similar overall properties to those
obtained with d1 (Figure 1(b)). We also experimented
with a PAM (250) matrix based distance measure and
with the use of the overall covariance matrix as
well as individual cluster covariance matrices to
adjust for the different frequencies of the different
amino acids and to relax the assumption of spherical
clusters implicit in the K-means algorithm (see
Methods for details).

As summarized in Figure 1(c), the different dis-
tance measures gave qualitatively similar results,
with the real data set consistently more clustered
than the random data set (Figure 1(c), columns 2 and
4). The simplicity of the city block metric and the
Euclidean metric makes them preferable over the
other distance measures. Because of complications
associated with the use of the Euclidean metric for
clustering frequency distributions (see Methods),
the city block metric was chosen for the studies
described in Tables 1 and 3. The lack of sensitivity to
the details of the weighting scheme and distance
measure argue that the groupings shown in Table 1
are inherent in the data and not simply imposed by
the clustering algorithm, a conclusion supported by
the degree to which the patterns agree with intuition.

Results of contiguous position classification

The clustering procedure can be readily general-
ized to treat segments of contiguous positions as
described in Methods. To investigate the types of
patterns occurring on different length scales, the
clustering procedure was repeated for segment
lengths ranging from 3 to 15 residues using a fixed
number (200) of clusters. Table 2 lists the average
cluster dimensionality per position for both the real
and simulated data sets. As the window length
increased, the variation in the average number of
dimensions increased (Table 2, column 4). In contrast,
the variation of the simulated data set was relatively
constant (Table 2, column 6). Thus, the clusters adopt
a wider range of shapes at larger window lengths.

Space limitations preclude the description of the
patterns for each segment length. Instead, the follow-
ing analysis is focused on the results for segment
length nine. A detailed description of all patterns for
window lengths two to 15 can be obtained from the
authors.
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Table 2. Results for clustering segments of contiguous positions into 200

classes
Real data Simulated data

Window Number of  Cluster dimensionality Cluster dimensionality
length vectors Mean Variance Mean Variance

3 21,146 12.07 0.57 14.79 0.16

5 20,812 1351 0.66 15.76 0.15

7 20,483 14.22 0.85 16.36 0.12

9 20,157 14.50 1.42 16.48 0.11
11 19,833 13.75 2.35 16.72 0.18
13 19,517 14.79 2.61 16.80 0.15
15 19,204 14.69 3.39 16.95 0.17

Note that as the window length increases, the total number of frequency vectors
decreases slightly as N — 1 positions are lost from each end of each sequence, where

N is the segment length.

Patterns for nine consecutive positions

The distribution of clusters obtained for segment
length nine is shown in Figure 2 for both the real
(opentriangles) and simulated (closed triangles) data
sets. As in Figure 1, the clusters in the real data set
are consistently lower in dimensionality than those
in the random data set. The former also have a greater
variety of dimensions and shapes.
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Figure 2. Scatter plots of the number of non-zero

dimensions (D) and average variance (V) for each cluster

obtained in the nine-consecutive position classification.
(a) Real data set; (b) simulated data set.

Several of the patterns for window length nine are
described in detail in Table 3A along with relevant
statistics. Space limitations preclude the description
of even a modest number of clusters in this detail;
instead we have adopted a more compact represen-
tation (Table 3B) to show a number of common
patterns found in three separate classifications using
different random starting cluster means. Because the
distance calculation assumes a one to one correspon-
dence between the positions of the segments being
compared, frame shifted patterns are frequently
observed in which for example positions 1 to (N - 1)
of pattern 1 are very similar to positions 2 to N of
pattern 2. To save space such frame shifted patterns
are shown only once. Clusters containing less than 25
members are omitted.

As expected, many substitution patterns at indi-
vidual positions are similar to those observed in
the single position clustering (compare the single
position substitution patterns in brackets of Table 3B
to Table 1). However, because the averaging is also
constrained by neighboring sequence patterns, there
appear to be more subtle patterns in the contiguous
sequence clusters (e.g. compare positions 1 and 3 in
cluster 40).

The patterns fall roughly into three broad cat-
egories which are illustrated by the examples in
Table 3A. The first and largest category consists of
patterns with pronounced amphipathicity. The first
cluster in Table 3A belongs to this category; a number
of additional patterns are shown in more condensed
form in Table 3B (section (g)). In some positions,
those in which the average hydrophobicity is either
very high or very low, but the variability index is
high, asimple H/P reduced code is clearly sufficient.
For example, most positions in cluster 3 in Table 3A
are strongly hydrophobic but eight amino acid
residues occur more than average. In contrast, the
relative hydrophobicity index in some positions is at
one extreme or the other, but only particular residues
are allowed. For example, position 4 in cluster 44
tolerates only aromatic residues, while position 1 in
the same cluster prefers V and I. In some cases,
side-chain size appears to be important, perhaps
because of packing effects. Patterns 19, 22 and 23
contain positions in which small (A), medium (L)
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Table 3. Recurring patterns for nine consecutive positions

A. Detailed statistics for several selected clusters

Relative

Cluster Variability cluster
number Size \Y D Prominent AA index Hydrophobicity volume
1 134 094 153 VIL 5 0.73 5.3E-5
TSd 6 0.19 2.1E-5

paRkDE 8 0.26 4.4E-2

AskDE 6 0.20 2.4E-3

QDE 3 0.15 8.4E-2

AVIL 6 0.72 6.2E-2

AkdE 8 0.30 1.4E-2

AgrkE 8 0.30 3.4E-1

aVviL 6 0.68 4.9E-2

2 210 095 144 aKDE 6 0.21 2.0E-2
AKDE 8 0.28 5.2E-2

aVviIL 5 0.77 5.1E-2

ArKE 8 0.32 1.2E-2

AKDE 9 0.22 3.1E-2

AL 9 0.55 8.0E-2

VILf 6 0.83 5.4E-2

agRKE 7 0.24 6.3E-2

ArkKde 9 0.25 3.2E-2

3 148 039 117 avILFt 8 0.70 3.8E-12
AILFw 8 0.74 4.1E-10

GAILFts 8 0.64 2.7E-13

GAVILF 9 0.73 1.1E-10

GAVILFts 8 0.66 2.4E-10

GAVILFts 8 0.70 2.9E-13

gAVILF 8 0.76 2.0E-10

avILF 6 0.79 1.1E-10

gAILF 9 0.68 2.2E-11

4 133 1.02 156 GAvts 7 0.41 1.7E-3
GAs 9 0.40 4.2E-4

GAvs 7 0.44 2.1E-1

GAvs 7 0.41 1.4E-1

GAvs 7 0.41 5.3E-1

GAls 7 0.41 4.9E-1

GAls 7 0.41 2.6E-1

GpAs 8 0.39 3.1E-1

GAvls 8 0.40 4.2E-1

5 107 0.67 16.11 TS 4 0.25 3.5E-7
avTS 8 0.41 2.1E-8

gaTSD 7 0.25 3.2E-6

gpatSnD 8 0.23 1.9E-8

gtsd 10 0.33 5.1E-5

paTsSnq 8 0.30 8.6E-5

aTsn 7 0.30 5.5E-5

PaTSn 7 0.25 1.3E-4

gptSnd 7 0.24 5.3E-4

6 74 0.67 16.11 Gpavlk 8 0.39 8.4E-5
VIf 9 0.58 1.6E-3

ilTr 9 0.45 1.1E-2

P 2 0.20 2.0E-4

ViLe 6 0.66 2.4E-3

ailyFe 8 0.67 3.0E-3

aVvitSn 7 0.45 6.1E-3

G 1 0.06 9.4E-6

GalfSk 7 0.39 9.2E-4

7 67 0.88 15.33 AKDE 8 0.30 1.1E-4
AlLfk 7 0.55 2.2E-2

AL 5 0.59 2.1E-2

ARKe 7 0.27 7.1E-3

gaKE 8 0.29 5.1E-3

aLyf 8 0.56 2.7E-2

G 1 0.04 7.7E-4

aVviL 6 0.62 1.0E-2

tskDe 7 0.28 1.6E-2
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Table 3—continued
B. Condensed representation of selected patterns

Size \ D
(a) Conserved glycine
1. [GAV][G]. .[G]. . .[gaV] 146 0.87 15.2
2. .[G][G].. .t.n 100 0.86 14.8
3. [Yf].x. .[G].[LsD]. 69 0.72 13.8
4. n. .n[G].[sDe][IYF]n 37 0.91 154
5. ...[VIL]. .[G][gAS]. 228 0.85 15.7
6. ...[PIVIL]®.[G]. 74 0.85 14.3
7. [AVL][ArK][z[ALY][G].r[VIL] 161 0.89 14.6
8. [ARK].[AVI][AL]=r.[G][AVI] 167 0.95 15.0
(b) Conserved proline
9. [VIL][P]. .. mm. . 147 0.76 15.2
10. nd.[VIL][P]. ... 101 0.72 14.3
11. . ¢. .[Ats][P]. . [aVI] 152 0.81 16.1
12. [PLF].[GAV]¢[P]x. .. 54 0.75 12.1
(c) Conserved polar residues
13. [VIL]. .[N]. .. . 61 0.81 14.0
14. . [D].. .[iln][TSh]x 54 0.76 14.4
15. . .[VIL[[D]. .nnn 138 0.91 15.7
16. .[AVt]. [D]. . .® 149 0.84 154
17. [T]n. .[Avt]. .. 90 0.76 14.9
18. PP[gDe][LYF][VLF]XX[D]X 76 0.81 13.8
(d) Conserved non-polar residues
19. [iLF].n[A]$2nn.7 136 0.89 14.6
20. . .m.[iLm]. .[A][ViL] 126 0.73 14.3
21. .[AtS][A]$.[ALY][AVF][LMQ]r 69 0.76 14.6
22. [AvL]nr[L].w.[VIL]. 228 0.92 15.9
23. nr[F]nr.nm. 93 0.84 14.4
(e) Conserved arginine/lysine
24. .. [RK][LFw]. . .[IF]
25. [ASD].[AVT]=.[RK].[VIL]. 74 0.81 12.7
26. [ThR].[RK][LFK][VIL][VIL][AVI][AY]. 63 0.81 12.2
27. .m[RK][gPA]r[Hde][AVI].[AVI] 35 0.79 13.1
(f) Threonine and serine
28. .[aiT][PTS]rm.m.[iLm] 59 0.70 14.1
29. [TSd]nn[QDE]¢.n[AVL]. 145 0.91 14.6
30. n[TSQ].[aTS].[GLN].¢[VIw] 26 0.62 13.0
31. [iTS][TS]nnr[aTS][ATS]r 65 0.76 14.0
32. .[gAS]=[ATS]$[iL][gAT]. . 95 0.76 15.2
33. [vwT].[tSq]x. .[VIL][Re]r 54 0.93 13.8
(g) Alternating hydrophobic-polar
34. [VIL][TSd]nr[QDE][AVIL]nrd 134 0.94 15.3
35. [aKD]r[aVI]nr.[VIL]tr 210 0.95 14.4
36. nd.[vIL][aVT][VIL][PAS].[VIL] 69 0.65 12.2
37. .[ViL]xn[viL].n.[VIL]. 63 0.78 15.0
38. [GND].a[VIL].[VIL]. .x 99 0.87 15.2
39. .mrnn[VIL] . [VIL]. 122 0.84 15.0
40. [VIT]n[VIL][Vil].nnnr 111 0.86 14.4
41, . [VIt].[aVI][VIT].[Pa]= 70 0.81 14.3
(h) Miscellaneous
42. $[GASs].¢. .. .[gAS] 29 0.76 14.2
43, [PVL][VIL][VIiL][gAI[AVY].[PNH]. . 58 0.70 12.2
44, VI [YFW]. .[WTR]x. 43 0.77 145
45, n¢.[GYS][NHR][PYF][iLF].[9AR] 33 0.89 11.2
46. ¢o.0ddd[avl]d 148 0.39 11.7

Positions with variability indices less than six are described by amino acids in
brackets (upper and lower cases are as in Table 1). The remaining positions are
represented by ¢ (average hydrophobicity greater than 0.65), & (average hydrophobicity
less than 0.35) or . (average hydrophobicity between 0.35 and 0.65).

and large (F) hydrophobic side-chains are conserved. highly conserved residues (Table 3B, sections (a) to
The hydrophobicity patterns neighboring these con- (e)). Interestingly, only a subset of the amino acids are
served positions are in many cases quite distinctive. absolutely conserved in any of the patterns. Clusters

The second category consists of patterns with with conserved glycine residues are particularly
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common (20% of all clusters). Because of the con-
formational flexibility of glycine residues, these
patterns may be advantageous in local structures
with unusual backbone torsion angles. Several
clusters have more than one conserved glycine. For
example, pattern 2 (Table 3A) contains two consecu-
tive conserved glycine residues, and pattern 1 has a
GXXG motif. In pattern 6, there is a proline residue
four positions prior to a conserved glycine, with
preferences for hydrophobic residues in the two
positions following the proline. In pattern 3 the
aromatic residues Y and F are favored five residues
prior to a conserved glycine. Other clusters
containing conserved glycine residues and highly
constrained neighboring substitution or hydropho-
bicity patterns are listed in Table 3B section (a).

Proline residues also have unique structural char-
acteristics. Again, there are a number of patterns
with conserved proline residues (Table 3B section (b))
and these have additional positions with distinctive
substitution and hydrophobicity profiles.

Conserved charged amino acids may be involved
in metal chelation, salt bridges, or catalysis. Interest-
ingly, patterns with conserved charged residues
often have strong preferences at additional positions.
For example, patterns 14 and 18 contain conserved
aspartic acid residues with strongly hydrophobic
substitution patterns at different relative positions.
In pattern 13, a position rich in V, I and L occurs three
residues prior to a conserved asparagine.

The third category consists of patterns which have
similar substitution patterns at all positions. For
example, in Table 3A pattern 3 has preference for I,
L and F, pattern 4 is glycine-rich and pattern 5 is
dominated by T and S. Fairly strong structural
constraints such as the requirement for flexibility
may give rise to these repetitive patterns.

It is instructive to compare the patterns described
in Table 3 to the patterns in the Prosite database.
There are a number of key differences. First, patterns
listed in Table 3 are common to multiple protein
families: the proteins around which the different
multiple sequence alignments in the starting dataset
are based have less than 25% sequence identity.
Families with particularly divergent sequences are
represented several times (there are four globin
chains and three immunoglobulin chains in the set),
but since most of the clusters have of the order of 50
members, a particular pattern would have to occurin
more than ten different places within a single protein
for a single family to contain the majority of instances
of the pattern. In contrast, Prosite patterns most often
characterize single protein families. Second, the
patterns in Table 3 contain no gaps (perhaps the major
shortcoming of the current approach), while Prosite
patterns can extend for substantially longer stretches.
Third, the patterns are obtained in quite a different
way. The patterns in Table 3 are generated completely
automatically without any information other than
the amino acid sequence, while the patterns of Pro-
site depend on the prior classification of sequences
into functional or structural groups.

Primarily because of the first factor, there is not a

large overlap between the patterns contained in the
two sets. This reflects a more fundamental differ-
ence: the conserved patterns in Prosite reflect either
functional constraints or quite specific structural
constraints, while the patterns in Table 3 probably
arise from more general structural constraints or
properties common to many different classes of
proteins.

Variation patterns and substitution matrices

It is interesting to compare the association of
amino acids in clusters with conventional substi-
tution matrices which estimate the cost of substi-
tuting one residue type for another. One of the
most powerful current substitution matrices is
the BLOSUM®62 matrix which was generated from
the Blocks database of multiple sequence alignments
(Henikoff & Henikoff, 1992). The relationship be-
tween the BLOSUM substitution matrix and the
clusters of Table 1 is simple: the value of a particular
cross term in the substitution matrix is a function of
the (weighted) average probability that two residues
will be in the same cluster. It should be pointed
out that our analysis relies on the alignments
contained within the HSSP database, which were
generated using a conventional substitution matrix
(McLachlan, 1971).

There are instructive differences in the perform-
ance of the PAM(250) (Gonnet et al., 1992) based dis-
tance measure d3 (see Methods) for single positions
versus strings of contiguous positions. As shown in
Figure 1(c), use of the PAM matrix in clustering of
single positions gives results quite similar to those
of the simple distance measure (1). However, for
segment length nine, many of the patterns which
contain highly conserved residues were not present
when the PAM matrix was used and there were many
fewer patterns overall (data not shown). The averag-
ing involved in the use of a substitution matrix,
although not detrimental for the patterns in Table 1,
which in any event are averages over large numbers
of different local contexts, results in considerable loss
of sensitivity for comparisons between segments of
contiguous positions.

It is clear from Table 3 that substitution patterns
are position-dependent. There have been numerous
proposals for grouping the 20 amino acids into
smaller numbers of sets in order to make the analysis
of sequence to structure mapping more manageable.
One approach groups amino acids according to their
similarity based on standard substitution matrices.
For example, the sub-groupings (1) I, L, M, V; (2) F, Y;
B)H, K R; (4 A, PS, T, and (5 D, E, N, Q were
derived from analysis of the Dayhoff substitution
matrix (Risler et al., 1988). Mixed codes based on
chemical properties of the amino acids have also
been proposed (French & Robson, 1983); the sug-
gested groupingswere (1) L, M, I, V, F; (2 R, K, E, D;
(3) Q, N, T, S. The wide variety of groupings shown
in Table 3 suggests that any reduced code will have
limited generality.
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Discussion

We have described a completely automated
approach to identifying recurring sequence motifs in
protein families. The patterns identified here (see
Tables 1 and 3) probably include most of the local
motifs which transcend protein family boundaries
for proteins of known structure. Because of the
numerous factors which enter into the determination
of protein structures, the data set is probably
somewhat biased and there may well be additional
patterns in the large number of protein families for
which structures are not available.

The clustering procedure used here, although
simple, appears to be quite adequate for modeling
the data: the local covariances of residue occurrences
found in multiple sequence alignments. First, the
independence of the results from the choice of
starting cluster centers required for the K-means
algorithm attests to the numerical stability of
the procedure. Second, the results are surprisingly
robust to changes in the distance metric and se-
quence weighting schemes (Table 1 and Figure 2).
Third, most of the patterns obtained for individual
positions (Table 1) and many of the patterns obtained
for segments of contiguous positions (Table 3) are
consistent with expectation (the division between
hydrophobic and polar patterns in Table 1 is perhaps
the simplest example).

Our results permit limited but significant general-
izations about the distribution of protein amino acid
sequences in sequence space. The robustness of the
results suggests that the majority of the patterns are
reasonably well separated from one another. Fur-
thermore, the distribution of sequences in protein
families appears to be considerably more “‘clumpy”
than random distributions. The clusters obtained for
the real protein sequence data are consistently lower
in dimensionality than those identified in appli-
cations of the same clustering procedure to random
datasets (Figures 1 and 2, Tables 1 to 3).

The classification of positions into different clus-
ters provides a simple yet potentially powerful
means to abstract the information contained in
multiple sequence alignments into a higher level
representation. A multiple sequence alignment can
be replaced by a sequence of cluster numbers with
relatively little loss of information. The resulting
higher level sequences can be subjected to much
the same types of analysis as normal amino acid
sequences in efforts to correlate sequence with
structure (Rost & Sander, 1993).

Our results may have useful applications for
sequence comparisons, in particular for the identifi-
cation of distant homologs for newly determined
sequences. It is well established that searches with
profiles constructed from sets of aligned sequences
are considerably more sensitive to distant homologs
than searches with single sequences. The reason for
this is simple: a sequence profile contains at each
position family-specific information about the likeli-
hood of different amino acids to substitute at that
position, while a search with a single sequence

typically uses the same global substitution matrix at
each position. As mentioned in the Introduction,
the use of a single substitution matrix may average
out weak but important similarities, whereas our
clusters are in fact strings of distinct substitution
matrices. One can imagine using the clusters as
‘“‘generalization rules” whereby the substitution
matrices generated from the closest cluster or
clusters to each segment of a query sequence are
used for scoring sequence alignments.

A similar strategy may facilitate extrapolating
from a small number of aligned sequences. The idea
is that given a small sample of the variation possible
at a given position, the closest clusters can be identi-
fied to predict the variation likely to be observed in
new members of the same family. Generalization in
this fashion may permit the power of profile-based
searching to be employed with only a few examples
from the sequence family (or perhaps from only one
example).

One way to implement the strategy described in
the previous paragraph would be to use the variation
patterns of Table 3 to generate a rough profile or sets
of profiles for new sequences which have no close
relatives: for each segment of nine residues in the
sequence, select the closest pattern (or a weighted
average of nearby patterns) and build a profile
by splicing together the variation patterns for the
different segments. Next, search the database with
this inferred profile. This procedure potentially cir-
cumvents the limitations associated with using
the same substitution matrix at each position of a
sequence. The method may also be useful for gener-
alizing from a small number of aligned sequences,
but once there are more than five to ten, the substi-
tution patterns are probably better inferred directly
from the aligned sequence set.

There are also potential applications to protein
structure prediction. There is asignificant correlation
between the local structures adopted by members of
a given cluster, although the extent of correlation
varies from cluster to cluster. For example, more than
80% of the occurrences of the first two patterns in
Table 3A in known protein structures are in a-helices.
Intriguingly, the conserved charged residues in
patterns 13, 15 and 16 in Table 3B are buried in more
than 70% of the occurrences of the patterns. Pattern
7 in Table 3A is very similar to the Schellman helix
C-terminal capping motif (Auroraet al., 1994) and as
expected occurs frequently in helix caps. A more
extensive analysis of the structural correlates of the
sequence patterns will be presented elsewhere. The
tracing of the structural correlates of sequence
patterns is essentially the inverse of the more
standard (and very powerful) procedure of tabulat-
ing the frequencies of occurrence of the 20 amino
acids in different structural environments (Bowie
et al., 1991; Chou et al., 1978).

Finally, we should note that the results described
here are highly dependent on the quality of the start-
ing multiple sequence alignments. As the amount
of sequence data increases and multiple sequence
alignment algorithms are improved, approaches
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similar to the one described here should become
increasingly powerful.

Methods

The data

Multiple sequence alignments for proteins of known
structure were taken from a non-redundant subset (PDB
select 25; Rost & Sander, 1993) of the HSSP database
(Sander & Schneider, 1991). No two multiple sequence
alignments in this subset have parent sequences with
greater than 25% identity. Because of the wide degree of
sequence variation in families such as the globins and the
immunoglobulins, the PDB select 25 list does include more
than one chain per family in several cases (there are four
globin chains and three immunoglobulin chains, for
example). To reduce the problems associated with small
sample size, families with fewer than 20 members were
excluded from the analysis. Insertions common to less than
20 members of larger families were also excluded (the
HSSP database consists of global sequence alignments).
The final data set included 154 protein families with an
average of 98 sequences per family.

Distance measure

Cluster analysis requires a metric on the space to be
clustered. An advantage of using multiple sequence
alignments is that there is a natural choice of metrics: the
difference in the frequency distributions. A particularly
simple choice is the “city block’ metric:

dl(i,j)=k§|F(i,k)-F(J,k)\ )

where d1(i, j) is the distance between frequency distri-
butions i and j and F(i, k) is the frequency of occurrence of
the kth amino acid at position i, =2 , F(i, k) = 1. A distance
measure for comparing single positions can be readily
generalized to treat strings of contiguous positions. The
distance between one segment of a multiple sequence
alignment and a second segment of the same length is
conveniently defined to be the sum of the distances
between each of the corresponding positions:

1

du(i,j)= 2 d(i+n,j+n) @
n=0

where N is the length of the window, i and j are the

starting positions of the first and second segments, and

d(i +n,j+n) is for example distance measure d1 above.

Cluster analysis

The data set consists of roughly 20,000 frequency distri-
butions. Most clustering algorithms become extremely
time consuming with data sets of over 1000 members. The
K-means algorithm is one of the few that can be used with
extremely large data sets. In brief, a set of K initial cluster
centers are chosen at random and each datum point is
assigned to the closest center. New cluster centers are then
determined by taking the mean of all of the data points in
each cluster, and each datum point is re-assigned to the
closest center in another pass through the data set (Everitt,
1993). This simple iterative scheme of recalculating cluster
means and re-assigning data points to clusters is repeated
until no data points are moved from cluster to cluster.

For technical reasons, the city block metric is somewhat
preferable to the Euclidean metric for clustering frequency
distributions using the K-means algorithm. Viewed as
vectors in a 20N dimensional space, the frequency distri-
butions vary widely in absolute magnitude (for window
length one, a position in which only one amino acid
occurs is represented by a vector of length one, while a
position in which all 20 amino acids occur with equal
probabilities is represented by a wvector with length
[20 x (1/20)?]¥? = 0.22). The Euclidean distance between a
position in which ten of the amino acids occur with equal
frequencies and a position in which the other ten amino
acids occur with equal frequencies is 0.45, while the dis-
tance between two positions in which different residues
are absolutely conserved is 1.4. The city block distance
between the two sets of positions is the same (1.0) in both
cases, a more satisfactory result since no residues are in
common in either pair. To avoid the problems associated
with the use of the Euclidean metric with variable
magnitude frequency vectors, the frequency vectors can be
normalized to unit magnitude. However, the updating
procedure basic to the K-means algorithm also changes the
absolute magnitude of the cluster centers. The latter can be
kept fixed, but this requires a somewhat awkward
renormalization step after each re-assignment of vectors to
clusters in the K-means procedure.

Error measures

How is the extent of clustering best evaluated? An
explicit example illustrates the difficulties with evaluating
different clustering strategies in high dimensional spaces,
and in particular with data of the type involved here.
Consider a position which can tolerate either of two amino
acids, for example valine and isoleucine. With a small and
possibly biased sample, the frequency of occurrences of
the two residues may range from 0.0 to 1.0; the constraint
being that the variation is contained within a two-
dimensional subspace of the entire 20-dimensional space
(only valine and isoleucine are allowed). The maximum
distance between two points in this subspace is the same
as the maximum distance between two points in the entire
20-dimensional space (two in both cases). The mean
distance of the members of a cluster from the cluster mean
is clearly a poor measure of the dimensionality of the
cluster.

Two statistics which have proved useful for capturing the
distribution of points within a given cluster are D, the
number of dimensions for which the cluster mean exceeds
0.02 (chosen empirically), and V, the average variance in
these dimensions. D clearly indicates the dimensionality of
the subspace in which the cluster lies, and V, the average
spread within this subspace.

To assess the extent of clustering of the sequence data,
parallel experiments were carried out on simulated data
sets. To construct these sets, the frequency distributions for
each of the 20 amino acids were evaluated and then used
to generate randomized versions of the HSSP database.
The statistics of the simulated data sets are essentially
those of the HSSP database with all covariances between
substitutions at particular positions or between nearby
positions set to zero. For each weighting scheme, a separate
simulated dataset was generated based on the amino acid
frequency distributions of the corresponding weighted
dataset. We note that the more standard procedure of
randomization by shuffling does not apply here since we
are not seeking family-specific patterns.

A single composite statistic, the product of the variances
of the individual residue frequencies, is also given in
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several of the Tables to facilitate comparison between
different positions within the same cluster. This crude
volume measure is normalized by division by the
corresponding quantity for the whole data set:

20

[ IR GLK) = <R K

Volume (1) = -
2

0
1
lls,

Me

IF(, k) = <F(, k)|

1

where F,(j, k) is the frequency of the kth amino acid in the
jthdistribution in cluster I, <F\(j, k)) is the center of the Ith
cluster, and {F(j, k)> is the center of the entire data set. M,
is the number of vectors (or distributions) in cluster I, and
S, the number in the whole dataset. To reduce the effects
of small sample size artifacts, 0.001 is added to the terms
in the product in the numerator (again, the value of 0.001
was determined empirically).

Numerical stability, alternative distance measures
and the K-means algorithm

A disadvantage of the K-means algorithm is that both
the number of clusters and the starting cluster centers must
be specified in advance. In practice, use of more than the
natural number of groupings results in the subdivision of
several of the larger clusters. This is easily recognized, and
each pattern is shown only once in Tables 1 to 3. The
numerical stability of the algorithm and the dependence of
the results on the starting cluster centers were assessed
by carrying out multiple independent calculations using
different sets of starting centers. Only the recurrent
clusters are reported in the Tables.

A potential disadvantage of distance measure d1
(equation (1)) is that a difference in frequency of 0.1 is
treated similarly regardless of whether the difference is
between 0.7 and 0.6 or between 0.1 and 0.0. Because of
lineage effects, the former is likely to be less informative
than the latter. A simple exponential scaling was used to
emphasize differences of the latter type:

daz(i, j) = k;\exp[—F(i, k)] - exp[=F(j, K)]I ®

The K-means algorithm implicitly assumes the clusters
to be spherical. If several variables are highly correlated
or have significantly different variances, clusters may
resemble prolate ellipsoids more closely than spheres.
Non-spherical clusters can be accommodated by calculat-
ing the within-cluster covariance matrix and using the
generalized Mahalonobus distance given by equation (4)
when assigning data points to clusters (Everitt, 1993):

d3(i, j) = [IFi = K[ IM[|F - Fil] (4)

where Fi =F(i, k) and M is the inverse of a covariance
matrix.

If the number of dimensions is of the same order as the
number of data points in individual clusters, the matrix
inversion required is not possible. In this case the inverse
of the covariance matrix can be approximated by inverting
the diagonal elements (the variances) and setting off-
diagonal elements to zero. The modified K-means method
in this case leads to minimization of the effective volume
of the clusters rather than the average within-cluster
distances.

Distance measure d3, with M equal to an amino acid
substitution matrix such as a PAM matrix, weights differ-
ences according to the likelihood of substitution of one

residue type for another (Dayhoff et al., 1972). This is a
simple generalization of the similarity measure used in
comparing single sequences that are distantly related. This
measure, essentially a return to the single substitution
matrix approach mentioned in the Introduction, is clearly
only useful in the limit of small numbers of sequences per
family.
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