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ABSTRACT Robetta is a fully automated pro-
tein structure prediction server that uses the Ro-
setta fragment-insertion method. It combines tem-
plate-based and de novo structure prediction
methods in an attempt to produce high quality
models that cover every residue of a submitted
sequence. The first step in the procedure is the
automatic detection of the locations of domains and
selection of the appropriate modeling protocol for
each domain. For domains matched to a homolog
with an experimentally characterized structure by
PSI-BLAST or Pcons2, Robetta uses a new align-
ment method, called K*Sync, to align the query
sequence onto the parent structure. It then models
the variable regions by allowing them to explore
conformational space with fragments in fashion
similar to the de novo protocol, but in the context of
the template. When no structural homolog is avail-
able, domains are modeled with the Rosetta de novo
protocol, which allows the full length of the domain
to explore conformational space via fragment-
insertion, producing a large decoy ensemble from
which the final models are selected. The Robetta
server produced quite reasonable predictions for
targets in the recent CASP-5 and CAFASP-3 experi-
ments, some of which were at the level of the best
human predictions. Proteins 2003;53:524–533.
© 2003 Wiley-Liss, Inc.
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INTRODUCTION
The best method for predicting the structure of a protein

depends on whether it has sequence homology to a protein
of known structure. If there is such a similarity, relatively
accurate models can be built using the known structure as
a template. In the absence of such similarity, models can
be built using de novo prediction methods, which do not
rely on a template structure. In many cases, hybrid
template-based/de novo methods may be most appropriate:
portions of a given target may be modeled based on a

template, while it may only be possible to model long
variable loops or extra domains or extensions not con-
tained in the template using de novo methods.

Full automation of protein structure prediction is a
desirable goal as it opens the door to genome-level protein
structure modeling and, equally importantly, provides a
stringent test of the principles underlying prediction meth-
ods unadulterated by the powerful influence of human
intuition. The fully automated Robetta structure predic-
tion server attempts to provide the best possible model for
the entire length of the protein chain by combining tem-
plate-based and de novo protocols.

PROCESS

Robetta uses the Rosetta fragment-insertion tech-
nique1–3 to build models of protein domains in both
template-based and de novo modes. Modeling is performed
at the domain level based on the assumption that domains
are autonomously folding units. Since protein chains are
often comprised of more than one domain, it is essential
that any server which attempts to model the full length of
a query in domain-sized pieces determine the location of
putative domains, assign each of those domains to the
appropriate template-based or de novo protocol, and ide-
ally to restore chain connectivity between the domains by
assembling the domain models into a single multi-domain
prediction.

An overview of the Robetta process is shown in Figure 1
(for details of the process, see Methods section below). The
initial step, called “Ginzu” (see Figure 2), involves screen-
ing the query sequence for regions that possess a homolog
with an experimentally characterized structure with
BLAST, PSI-BLAST,4 and Pcons25 [and described in this
volume], followed by cutting the sequence into putative
domains based on matches to known families and struc-
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tures, multiple sequence information, and predicted second-
ary structure information. Any detected parents and the
regions of the query with which they are associated are
stored and assigned to the template-based modeling proto-
col. Remaining long unassigned regions are then cut up
into sizes amenable to modeling by the Rosetta de novo
protocol.

After domain parsing, each putative domain then fol-
lows its assigned protocol track. For the domains to be
modeled de novo, an automated version of the CASP-4
Rosetta protocol3 is used to generate large numbers of
alternate “decoy” conformations, and subsequently to filter
the decoy ensemble to remove non protein-like conforma-
tions and to cluster the remaining structures to identify
broad low free energy minima. The final step in the de novo
domain modeling protocol consists of selection of four final
models from the most populated decoy clusters and one
model that is the lowest energy decoy remaining that was
not in the top clusters.

The template-based modeling protocol first requires an
alignment to the parent. Rather than use the PSI-BLAST
or Pcons2 alignment, Robetta uses our “K*Sync” align-
ment program (D.C., manuscript in preparation), which
takes into account evolutionary sequence information for
both the query and the parent, secondary structure infor-

mation, and information on regions that are likely to be
structurally obligate to the fold (for a further description,
see Methods section). From this alignment a template is
generated, and variable regions are then modeled with a
version of the Rosetta de novo method that allows the
conformations of variable regions to be sampled in the
context of a fixed template.6 The lowest energy models are
selected as the Robetta predictions for the target.

If a target possesses more than one domain, the separate
domain models are then combined into one full-length
model. This is currently accomplished by fragment- inser-
tion in the putative linker region in order to provide chain
connectivity and attempt domain association (unlike CAF-
ASP-3 when domain coordinates were simply spaced by
100 Å). The last step consists of repacking the side-chains
using a backbone-dependent rotamer library7 with a Monte
Carlo conformational search procedure.8

RESULTS AND DISCUSSION

The protocol used by Robetta for each target is shown in
Table I. The targets are separated into columns based on
the classification of the assessors, and the method used by
Robetta to model the domain is indicated next to the
target id: (“*”: de novo, “bl”: parent detected by BLAST,
“�”: parent detected by PSI-BLAST, “pc”: parent detected
by Pcons2). As can be seen, Robetta processed the targets
in a fashion roughly following the classification of the
targets by the assessors, particularly in the extreme
categories “Comparative Modeling” and “New Fold”. The
exception to this was for some of the more challenging Fold
Recognition targets, for which a parent was not confidently
detected, and were therefore modeled by Robetta’s de novo
protocol rather than utilizing a low-confidence parent.
Overall, the models were often quite reasonable predic-
tions, occasionally on par with the best models produced by
human groups.

We leave more thorough discussion of Robetta model
quality with respect to the field as a whole to the assessors.
Instead, to ascertain possibilities for improving our auto-
mated modeling protocol, we compare the quality of homol-
ogy models produced by Robetta to those produced by the
human group (a comparative analysis of human vs. auto-
matic de novo modeling is in the Baker human group paper
in this issue), and to the model produced by the method
used to detect the parent structure. BLAST, PSI-BLAST or
Pcons2 (for the BLAST category of targets, we compare
with PSI-BLAST produced models, as such alignments
tend to be longer and therefore of better quality than the
corresponding BLAST alignments). We refer to the latter
class of models as the “Base” model. Comparison with
respect to Base models tells us whether the various stager
of Robetta are increasing the quality of the model, either
by realigning the query sequence to the parent structure
with K*Sync, or by modeling the loops with Rosetta. At the
other end of the spectrum, we consider the approximate
upper bound to template-only modeling provided by a
structure-structure alignment from the LGA servera of the
target native structure with the parent structure. We refer
to the optimal LGA alignment derived model as “LGAopt”.

Fig. 1. Robetta process overview. The query sequence is scanned for
homologs with experimentally determined structures, domain boundaries
are determined, and each domain is modeled separately using either the
de novo or template-based protocols, assembled into a full-chain model,
and side-chains are repacked to produce a full-chain all-atom complete
model.
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We examine several stages of homology modeling by
Robetta. The model produced by the straightforward map-
ping of the query sequence onto the parent backbone
coordinates based on the default K*Sync alignment we
refer to as “RBTdef”. The template is then trimmed back
into the “stem” regions to allow more flexibility in subse-
quent loop modeling. We refer to the complete model
(which was submitted as Robetta’s CASP/CAFASP predic-
tion), with coordinates for all query residues either from
the template or from loop modeling, as “RBTcmpl”. We also
consider the model, called “rebuilt” or “RBTreb”, that has
coordinates from the complete model, but only includes
residues that are defined in the original default template-
only model (i.e. new residues added by the loop modeling
are left out, leaving only the fixed template and perturbed
stem coordinates which have been rebuilt).

There are two types of human-intervention homology
models considered as well: human “relaxed” (“HUMrlx”)
and human “not-relaxed” (“HUMnrlx”). Relaxing allowed
conformational sampling along the entire length of the
chain of completed models, including template regions, in
an effort to make the models more protein-like (e.g.
alleviate clashes that resulted from placing the target
sequence on a backbone defined by a homologous se-
quence). None of the Robetta models were relaxed.

What Went Right

Encouragingly, Robetta performed quite well for many
targets. For the targets with the closest structural ho-

mologs (the BLAST-level targets in the Comparative Mod-
eling category), the automated method was more consis-
tent than our human group in producing first models that
were in close agreement with the experimental structure,
with even the side-chains quite well rendered (Roland
Dunbrack, personal communication and “FORCASP” web-
site posting). Table II, Supplementary Table I, and Figure
3a compare Robetta models to models generated directly
from the alignment provided by PSI-BLAST or Pcons2. As
can be seen, the default K*Sync alignments are usually as
good or better than the alignment provided by the base
method (average GDT_TS9 scores of default K*Sync vs.
Base models is BLAST: 74.3 vs. 71.4, PSI-BLAST: 49.0 vs.
47.6, Pcons2: 43.0 vs. 39.0), justifying our decision to
generate our own alignment rather than depend on the
PSI-BLAST or Pcons2 alignment. The alignment quality
obtained for close relatives is on par with that achieved by
the base methods, with most of the improvement in
alignment quality coming from the more distantly related
query-parent pairs, both in terms of detection difficulty
and sequence identity (see Figure 3a).

A potential concern in the Robetta method is the trim-
ming back of the alignments in the stem regions to allow
for modeling of the loops since the residues that have been
removed from the alignment might be better rendered by
leaving them untouched as template residues. However
this does not appear to be a significant problem, with the
quality of the Robetta “rebuilt” models comparable to the
Robetta “default” models (average GDT_TS scores of Ro-

Fig. 2. Ginzu domain parsing illustration: The query sequence is scanned in order to find parent structures
and regions of increased domain confidence. Homologous structure searches are performed first, and
methods are applied in order of reliability. Remaining uncovered stretches that are long enough to fit a domain
are passed forward to the next round. Cuts are applied so that putative query domains without homologous
structures are limited in size to lengths accessible to the Rosetta de novo protocol.
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betta “rebuilt” vs. Robetta “default” models is BLAST: 73.6
vs. 74.3, PSI-BLAST: 48.1 vs. 49.0, Pcons2: 42.4 vs. 43.0).
Finally, the Robetta “complete” models, which were submit-
ted as the server’s CASP/CAFASP predictions, manage to
capture residues not provided by the alignment (average
number of C� atoms � 4 Å of Robetta “rebuilt” vs. Robetta
“complete” models is BLAST: 137.9 vs. 141.2, PSI-BLAST:

119.3 vs. 123.3, Pcons2: 69.9 vs. 72.6; see Supplementary
Table I), and are often quite good models.

Analysis of the server’s performance with respect to our
human group’s models is complicated by several factors.
The automated protocol was considerably more conserva-
tive than the human assisted protocol in terms of straying
from the template structure and this is likely (unfortu-

TABLE I. Robetta Modeling Protocol and Parent Detection Source

CM-BL CM-PSI CM/FR FR(H) FR(A) FR/NF NF

bl T137 � T133 pc T130 pc T134_1 * T135 * T146_1 * T129_1
bl T140 � T141 pc T132 pc T134_2 pc T147 * T146_2 * T129_2
bl T142 � T149_1 pc T136_1 pc T138 * T148_1 * T146_3 * T139
bl T143 � T152 * T136_2 * T156 * T148_2 * T146_4 * T149_2
bl T150 � T165 pc T159_1 pc T157 * T162_1 * T170 * T161
bl T151 � T169 pc T159_2 * T174_1 * T162_2 * T172_2 * T162_3
bl T153 � T171 pc T168_1 * T174_2 pc T187_2 * T173 * T181_1
bl T154_1 � T172_1 pc T168_2 pc T193_1 * T191_1 � T186_3 * T181_2
bl T154_2 � T175 � T193_2 * T187_1
bl T155 � T176
bl T160 bl T184_2
bl T163 bl T185_1
bl T167 bl T185_3
bl T177 � T186_1
bl T178 � T186_2
bl T179 � T189
bl T182 � T192A
bl T183 � T192B
bl T184_1 � T195
bl T185_2
bl T188
bl T190
bl T191_2

bl - blast; � - psi-blast; pc - pcons2; * - de novo
The protocol used for the CASP 5 domains, and the assessors’ categorization of the targets. De novo protocol
modeled targets are indicated with a “*”. All others were modeled following the Rosetta template-based
protocol. Targets labeled with “bl” were based on parents detected by BLAST, those labeled with “�” were
based on parents detected by PSI-BLAST, and those labeled with “pc” were based on parents detected by
Pcons2. The categories are as follows: CM-BL: Comparative modeling with BLAST detectable parent;
CM-PSI: Comparative Modeling with PSI-BLAST detectable parent; CM/FR: transition category between
Comparative Modeling and Fold Recognition (e.g., transitive PSI-BLAST detectable); FR(H): Fold Recogni-
tion Homologous; FR(A): Fold Recognition Analogous; FR/NF: the transition category between Fold
Recognition and New Fold; and NF: New Fold. The discrepancy between the assessors’ categorization and our
modeling method for T186_3 results from Robetta’s incorrect treatment of this region of the query as part of
domain 2, which was detected by PSI-BLAST. Other discrepancies between BLAST and PSI-BLAST
categorization likely result from the slightly different results obtained with different PSI-BLAST parameters
and sequence databases.

TABLE II. Summary Statistics of Homology Modeled Targets

PARENT
SOURCE

N
—

LGAopt
IDENT

TARGET
LEN

BASE
LEN

RBTdef
LEN

RBTtrim
LEN

HUMtrim
LEN

LGAopt
LEN

BASE
GDT_TS

RBTdef
GDT_TS

RBTreb
GDT_TS

RBTcmpl
GDT_TS

HUMnrlx
GDT_TS

LGAopt
GDT_TS

blast 26 31.5 164.6 152.4 154.7 136.9 126.9 147.1 71.4 74.3 73.6 75.3 75.0 76.4
psibl 14 17.9 205.9 177.4 175.2 143.3 120.1 149.6 47.6 49.0 48.1 50.6 52.2 55.3
pcons2 13 14.2 147.6 125.7 121.9 99.6 82.3 96.1 39.0 43.0 42.4 44.4 44.7 50.7

Average values within each difficulty category (for a target-specific analysis of the data used to generate the summary statistics, see
Supplementary Table I). “PARENT SOURCE” is the parent detection method. “N” is the number of targets in the category that were used for the
analysis. “LGAopt IDENT” is the sequence identity of the target-parent pair, as determined by the LGA structure-structure alignment. “TARGET
LEN” is number of residues in the targets, and in all complete models. “BASE LEN” is the number of residues in the Base model. “RBTdef LEN” is
the number of residues in the model built directly from the default K*Sync alignment. “RBTtrim LEN” is the number of residues in the trimmed
K*Sync alignment (after stem removal). “HUMtrim LEN”, like RBTtrim, is the number of residues in the human group model that were used as
fixed template in the complete models. “LGAopt LEN” is the number of residues in the LGA structure-structure alignment. “BASE GDT_TS”,
“RBTdef GDT_TS”, “RBTreb GDT_TS”, “RBTcmpl GDT_TS”, “HUMnrlx GDT_TS”, and “LGAopt GDT_TS” are the GDT_TS scores achieved by
the corresponding models.
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nately!) to be the explanation for its superior performance
with respect to our human predictions for the easier
targets. Considerably larger regions of the query structure
were modeled using de novo methods in the human
assisted protocol and hence less of the template was
utilized (average trimmed alignment length for Robetta
vs. Human models is BLAST: 136.9 vs. 126.9, PSI-BLAST:
143.3 vs. 120.1, Pcons2: 99.6 vs. 82.3; see Table II and
Supplementary Table I). For many targets, our human
group also allowed conformational sampling in the tem-
plate regions in hopes of pushing the model towards the
true structure, which sometimes caused the model to move
farther away rather than closer to the truth. The fact that
our human group’s more adventurous attempts to improve
on the parent template usually either made no difference
or made things worse highlights how far comparative
modeling methods still have to go.

While we cannot compare relaxed human models to the
Robetta models, other than to state that they are usually
worse, we can make a reasonable comparison of the
Robetta models with the un-relaxed human model (which,
like the Robetta model, did not move the template regions).
Such a comparison (Table II and Figure 3b) indicates that
human intervention appears to have the greatest opportu-
nity for enhancement of the model for the more challeng-
ing targets, in terms of detection difficulty and sequence
identity (average GDT_TS scores of Robetta “complete” vs.
Human “not-relaxed” models is BLAST: 75.3 vs. 75.0,

PSI-BLAST: 50.6 vs. 52.2, Pcons2: 44.4 vs. 44.7; see Table
II and Figure 3b). Even so, the server was among the
better methods (including humans!) in the Fold Recogni-
tion category, both highlighting the quality of the parent
detections from Pcons2 and suggesting that the strategy of
building a template-based prediction from a confident
Pcons2 detection or alternatively a de novo model is indeed
a sensible approach. Additionally, even though human
modeling of Fold Recognition targets led to an improved
model in many cases, the automated method did occasion-
ally manage to produce a prediction where the model was
equivalent or superior to our human un-relaxed model
prediction (e.g. T134_1 and T134_2, see Figure 4a). In this
latter example, the automated alignment for domain 2 was
not susceptible to second-guessing that our human inter-
vention alignment fell prey to in a failed effort to improve
the model quality.

Targets which were predicted by the automated de novo
protocol were on the whole not close to the native struc-
ture, but not particularly worse than many other human
groups, and often possessed good features. One reasonable
prediction in this set was for T148 (see Figure 4b), for
which both Robetta model 1 and model 3 correctly ren-
dered the portion of the topology comprised of the helices
and beta-hairpin for both domain 1 and domain 2. Addition-
ally, these models indicated the two-domain nature of the
target (it was not parsed into separate domains by Ginzu
as it was sufficiently short for the Rosetta de novo method

Fig. 3. Robetta and human homology models compared with base method models. (a) Difference in
GDT_TS score achieved by Robetta model with respect to base method model. Within the detection category,
targets are sorted by sequence identity with higher identity on the right. (b) Difference in GDT_TS score
achieved by complete Robetta and Human models with respect to Base method model. (Plots made from data
in Supplementary Table I).
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to attempt) and the location of the linker. Interestingly,
Rosetta simulations separate the chain into distinct do-
mains that correspond roughly to the actual domain
boundaries about 1/3 of the time even when the conforma-
tions of the individual domains are not correctly predicted
(D.E.K., unpublished results).

What Went Wrong

Some lapses in model quality were attributable to
implementation errors (bugs) that have since been
resolved. The de novo models for T129 had the carbonyl
oxygens misplaced. The alignment for T133 was excep-
tionally short due to a failure in the trimming logic. The
homology model for T140 suffered from a collection of
errors, which led to an exploded prediction. Among
non-bug-related issues, there still remains considerable
room for improvement in alignment quality for the
homology-modeled targets. The default K*Sync align-
ments, while more complete in utilizing available parent
coordinates for the template, were often much less
accurate than our human predictions for targets with
more distant parents. For example, the successful mod-
eling of T186 domain 3 by our human group was never a

Fig. 5. De novo modeling protocol revisions: rerun versus CAFASP-3
models GDT. Global Distance Test plots for select de novo modeled
targets show the net improvement after updates to the de novo protocol.
Models produced during CAFASP-3 are in blue (model 1) and cyan
(models 2-5), models produced by the Robetta rerun are in red (model 1)
and orange (models 2-5). The x-axis is the percentage of residues that
can be superimposed on the correct structure within the distance cutoff (in
Å) specified on the y-axis.

Fig. 4. Robetta model highlights. (a) The correct structure and our model of T134 domain 1 and 2 (delta-adaptin appendage domain from human), built
following our template-based protocol from the parent 1qts (Ap-2 Clathrin Adaptor subunit from mouse). The different shades of blue indicate regions that were
modeled as template, whereas red, yellow, and white indicate regions that were modeled as loops with our modified de novo protocol that takes into account the
context of the template. The entire model was fit to the correct structure using the LGA server with a 4 Å cutoff. Dark blue and red, residues within 4 Å, light blue
and yellow, residues less than 8 Å, and ice blue and white, residues greater than 8 Å from the corresponding atoms in the correct structure. The domain
boundary is denoted by “*”. (b) The correct structure and our de novo model for T148 domain 1 and 2 (HI1034 from Haemophilus influenzae). Residues are
colored according to their role as secondary structure elements in the correct structure. The domain linker is denoted by “*”.
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possibility for Robetta, which failed to obtain an align-
ment of sufficient quality for this target’s TIM-Barrel
domain 2, and therefore didn’t model domain 3 as a long
loop with the correct template context (many of these
residues in fact were treated incorrectly as template by
Robetta). The default K*Sync alignment method em-
ployed during CAFASP-3, while fairly decent on aver-
age, often does not give the best possible alignment for a
given parent (as compared to the “optimal” structure-
structure alignments and of more immediate concern
even compared to the superior human group alignments
in Figure 3b), and therefore improving alignment qual-
ity remains a continuing area of research.

In the cae of the de novo modeled targets, an obsolete
version of the Rosetta code was accidentally used, and
additionally, the clustering routine used to select the final
models did not properly exclude redundant predictions. In
an effort to ascertain the expected performance of the
current version of the server for targets that were modeled
with the de novo protocol, we have rerun certain targets.
The revised GDT results9 for those targets are shown in
figure 5. While the sample size is small, it does appear that
the revised energy function and clustering protocol yields
at least comparable results, and in several cases (T129,
T135, T148_2, and T170) makes a significant improve-
ment. Still, we can expect for the near term that even with
the improvements the server will at best approach the rate
of human success for de novo targets, producing models
that resemble the native structure only some of the time.

What We Learned
Excitingly, the quite good performance of Robetta and

other servers in CASP-5 [see assessors’ reports in this
issue] suggests that automated structure prediction is
approaching the accuracy of human experts, continuing a
trend that was first noted in CASP-4.10,11 However, there
remains room for improvement of server methods as there
was sometimes a gap in quality between the best human
predictions and those from servers for some of the more
difficult targets.

The Robetta server can potentially be improved by
incorporating other methods that capture features of the
approaches used by humans. For example, for the more
difficult homology modeling targets, the human predic-
tions were often better than the Robetta prediction be-
cause the alignments were superior. The human align-
ments were selected using the Rosetta centroid-based and
full-atom energy functions from large ensembles of alter-
nate alignments created by systematically varying the
weights on the different terms in the K*Sync alignment
scoring function. This process has been included in the
current version of the Robetta server. Additionally, the
modeling for some of the New Fold category targets by our
human group took better advantage of multiple sequence
alignment information (e.g. T135 and T173), and it may be
possible to generalize and automate some of what was
done for these targets.

While the server will continue to undergo improvement
as we better understand and attempt to automate what we
as humans do to make good predictions, the initial system,

tested by CASP-5 and CAFASP-3, performed beyond our
expectations. Straightforward Comparative Modeling tar-
gets were well modeled with the template-based protocol,
and more challenging Fold Recognition targets were often
modeled quite reasonably by the template-based or de novo
protocol. New Fold category predictions in some cases
shared regions in common with the native structure,
possessing revealing features that may guide further
modeling.

METHODS
Domain Assignment and Parent Identification

The first part of the modeling process consists of determi-
nation of the locations of putative domains in the query
sequence, assignment of domains to the appropriate proto-
col, and identification of any likely homologs with experi-
mentally characterized structures. These steps are not
decoupled, since the ability to assign a region of the target
to a known protein structure greatly increases the likeli-
hood that it is at least one protein domain. The approach
we have implemented, called “Ginzu” (see Figure 2 for an
illustration), consists of scanning the target sequence with
successively less confident methods to assign regions that
are likely to be domains. Once those regions are identified,
cut points in the putative linkers are determined, if
possible a single parent PDB chain is associated with each
putative domain, and for each putative domain the homol-
ogy modeling or de novo protocol is then initiated.

The initial scan attempts to identify the closest relatives
with experimental structures to regions of the query
sequence. A straightforward BLAST search4 against the
PDB sequence database12 detects such relatives. All PDB
ids that are detected at this stage are stored. A PSI-BLAST
search4 is then used to detect more distant relatives of the
query, as well as provide more complete coverage since
such alignments tend to be longer. Non-overlapping re-
gions that possess the best combination of detection confi-
dence and length of coverage are assigned as domains. The
associated PDB id and region of the chain matched is
retained but not the details of the alignment itself.

Currently, consensus fold recognition methods produce
the most reliable fold assignments [see CAFASP-3 and
LiveBench-6 results in this issue]. Since the express
purpose of our method is to attempt to produce the
best-possible model by utilizing the best-possible method-
ologies, we therefore decided to use Pcons25 [and described
in this issue] for identification of putative parent PDB ids
for any remaining regions of the query that have not
already been associated with a parent PDB. Again, as with
the PSI-BLAST detected parents, non-overlapping detec-
tions are assigned to the query as regions to be modeled as
independent domains, and PDB ids and regions are re-
corded but the alignment discarded.

Any remaining long regions of the query that do not
have structural homologs identified are considered suit-
able for de novo modeling, but may require further division
into putative domains (For an illustration of how this is
accomplished, see Figure 2). After all regions of the query
that are likely a contiguous domain are assigned from a
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PSI-BLAST or Pcons2 search, or potentially from a Pfam13

search with HMMER14 (Pfam search not used in CAFASP-
3), any long remaining regions must be further divided
into lengths accessible to the Rosetta de novo protocol (not
much more than about 200 residues). Additionally, poten-
tially excessive “linker” regions between regions of domain
confidence must be cut to permit modeling with the
domain they are most likely to be structurally associated
with. Cut points are selected via a heuristic that considers
strongly predicted loop regions by PSIPRED,15 clusters of
sequences in the PSI-BLAST MSA, the least occupied
positions in the MSA, and distance from the nearest region
of increased domain confidence. A fourth term that boosts
the likelihood of a domain boundary in regions of the MSA
where the sequences frequently begin or end was added
after the CASP experiment.

At this stage, the query has been parsed into putative
domains, and parent PDB ids have been associated when-
ever possible. These domains are passed to either the
template-based or de novo modeling protocol for structure
prediction.

Template-Based Modeling Protocol

The alignment method used by Robetta during CASP-5
and CAFASP-3, called “K*Sync”, simultaneously uses
residue profile-profile comparison, secondary structure
prediction, and information about elements that are obli-
gate to the fold in a dynamic programming approach16 to
produce a single “default” alignment. Pair terms include a
PSI-BLAST generated residue substitution profile-profile
comparison by inner-product, producing a distribution
which is adjusted to possess a mean below zero and a
standard deviation of 1.0 in the same fashion as FFAS.17

Parent residue profiles are adjusted to include counts from
the FSSP multiple structural alignment18 to allow for
more distant residue sampling. Secondary structure is
added into the pair scores by giving a bonus to matches of
PSIPRED predicted query regular secondary structure
with DSSP19 assigned parent regular secondary structure,
and penalizing mismatches, weighted by the confidence of
the prediction. A novel pair term is then included to
attempt to match positions that are obligate to the fold.

Positions that are usually occupied in a multiple align-
ment are assumed to be obligate to the fold, whereas
infrequently aligned positions are likely insertions (or at
least conformationally variable) with respect to the core
elements. The obligateness of a position in the parent
sequence is based on the occupancy of the position in the
FSSP multiple structural alignment, and in the query is
based on the PSI-BLAST multiple sequence alignment. A
bonus is given to matches of obligate positions with each
other and a penalty to matches of obligate positions with
insertions, with weighting based on the degree of occu-
pancy of the obligate position. Finally, the pair distribu-
tion is again adjusted to restore the mean and standard
deviation.

Gap penalties are accomplished with position specific
gap initiation and gap extension penalties for each of the
query and parent. Each position starts with a base value

that is appropriate to a sequence-only alignment (again,
similar to FFAS), to which are added structurally deter-
mined penalties. The values are adjusted to penalize
failure to align obligate positions (by increasing the gap
extension penalty at such positions) and for inserting a gap
between two obligate positions (by increasing the gap
initiation penalty at such positions). An additional gap
initiation penalty is added to parent positions possessing
regular secondary structure. The final distributions of
values are not adjusted.

Dynamic programming is then performed to produce a
single default alignment (either local-local or local-global
in scope, depending on whether the homologous parent
region falls within a known domain), which is used to
generate a template into the aligned positions. Borders of
unaligned regions (“stems”) are trimmed back by one or
two residues (or as many as necessary to make the loop at
least five residues long) to allow more flexibility in the
subsequent loop modeling steps.

Loop regions are then modeled in the context of the fixed
template using Rosetta fragment assembly. For short and
medium loops (� 17 residues), �300 initial conformations
are selected from a database of known structures using
similarity of sequence, secondary structure, and stem
geometry. The conformations of medium loops (12-16
residues) are then optimized for loop closure and energy
using fragment-insertionand random angle perturbations.
A gap closure term in the potential in combination with
conjugate gradient minimization is used to ensure continu-
ity of the peptide backbone. Optimization of variable
regions is accomplished by use of the standard Rosetta
potential with a centroid representation of the side-chains.
All variable regions are optimized simultaneously starting
from a random selection of initial conformations to ensure
loop conformations compatible with the stems, the rest of
the template, and the other loops. Generally, �1000
independent optimizations are carried out. The set of loops
that produces the lowest energy model is added to the
template, and longer loop regions (�� 17 residues) are
modeled in the context of this revised template. Initial
conformations are built up using three and nine residue
fragments, as in the full de novo protocol, but in the
context of the template, followed by closure optimization.
About 100 independent simulations are carried out, with a
backbone-dependent side-chain rotamer library and a
full-atom energy function used to select the lowest energy
conformation.8

De Novo Protocol

Robetta employs a de novo protocol quite similar to that
described previously.3,20 For the purposes of a server, time
and space limitations do not permit the generation of an
enormous decoy ensemble. During CAFASP-3, Robetta
generated 4000 decoys for the query itself and 2000 for
each of up to two sequence homologs (since raised to 10000
for the query and 5000 for each of the sequence homologs).
Up to 1000 lowest energy query decoys and 500 decoys for
each sequence homolog that pass contact-order and strand
topology filters are then clustered, with the top four cluster
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centers returned as the four top-ranked models. The model
possessing the lowest side-chain centroid based energy
that is not a member of the clusters represented by the
first four models is selected as the fifth model.

Assembly and Side-Chain Repacking

If the query is modeled as more than one domain, the
models for individual domains are assembled into a contigu-
ous model. This was not done during CAFASP-3 (multi-
domain models were merely placed within the same file
spaced by 100 Å), but currently is attempted by the
Robetta server by fragment- insertion in the putative
linker region(s) to orient the domains in a compact struc-
ture. The domain assembler remains under development,
and therefore this stage may not do much more than
cosmetic enhancement of the model. Finally, side-chains
are repacked using a Monte Carlo algorithm8 with a
backbone-dependent side-chain rotamer library.7

Versions and Parameters

BLAST and PSI-BLAST parent detections were done
using PSI-BLASTv 2.2.2,4,21 starting from BLOSUM6222

against the pdb_seqres.txt12 and using the non-redundant
sequence database from the NCBI (nr). The iterative
detection was done via automatic restart from a check-
point file against the pdb_seqres.txt after 5 rounds of
profile building against the nr, with an e-value for inclu-
sion of .001 or closer.

Pcons2 uses the following servers as input: PDB-
BLAST,23 mGenTHREADER,24 FUGUE,25 Sam-T99,26,27

3D-PSSM,28 BIOINBGU,29 and FFAS.17 During CAF-
ASP-3, detections were used if they were longer than 30
residues and had Pcons2 consensus confidence of 1.5 or
higher.

Ginzu uses PSIPREDv2.0114 and 5 rounds against the
nr with PSI-BLASTv2.2.2 starting from BLOSUM62, e-
value for inclusion and reporting .001 or closer.

K*Sync uses PSI-BLASTv2.2.2 with BLOSUM62 for 2
rounds e-value��1E-06 against the nr followed by one
round e-value��.001, secondary structure from
PSIPREDv2.01, and structural alignment of the parent
with structural homologs from the FSSP server15 (Z ��
7.0).

LGA structure-structure alignments and GDT analysis
done with LGA server9 located at http://predictioncenter.llnl.
gov/local/lga-form.cgi. Comparison of models to native struc-
ture done with sequence-dependent fit at 4 Å (using the
options: “-3 -sda -o1 -d_4.0 -lw_7”). Structure-structure align-
ment of target native structure to parent structure done with
sequence-independent fit at 4 Å (using the options: “-4 -sia
-o1 -d_4.0”).
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