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Local sequence=-structure correlations in proteins
Christopher Bystroff*, Kim T SimonsT, Karen F Han* and David Baker$

Considerable progress has been made in understanding the
relationship between local amino acid sequence and local
protein structure. Recent highlights include numerous studies
of the structures adopted by short peptides, new approaches
to correlating sequence patterns with structure patterns, and
folding simulations using simple potentials.
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Abbreviations
3D three-dimensional
TFE 2,2,2-trifluoroethanol

Introduction

It is well established that the three-dimensional (3D)
structures of proteins are determined by their amino
acid sequences, yet the prediction of structure from
sequence remains an unsolved problem. The importance
of interactions between residues distant in the linear
sequence is one of the features of proteins that makes the
problem difficult. These interactions play a critical role in
stabilizing proteins: unique well-defined structure in water
is rare in peptides of less than ~30 amino acids [1%,2%,3** 4].

Despite the importance of nonlocal interactions in deter-
mining protein structures, the relationship between local
sequence and local structure remains an important and
active area of research. Understanding such interactions is
important for predicting protein secondary structure, often
a first step in 3D structure modeling and prediction. The
relationship is also important for understanding the process
of folding. It is clear that a folding polypeptide chain
cannot exhaustively search conformational space; instead,
local sequence preferences are likely to limit the number
of configurations available to each portion of a polypeptide
chain and so are likely to decrease greatly the effective size
of the space that must be searched.

In this review, we focus on recent advances in pre-
dicting structural properties from local amino acid se-
quence and for probing the relationship between lo-
cal sequence and structure. Some attention is also
paid to the types of interactions responsible for the
observed sequence-structure relationships. Because ex-

cellent reviews of secondary-structure prediction and
protein sequence-structure relationships have only re-
cently appeared [5°%,6°], the classical secondary-structure
prediction problem is not covered in detail, and the
discussion is, for the most part, limited to papers that have
appeared during the past year.

Recurrent structural patterns

In recent years, considerable work has been directed
at better defining local structural motifs and analyzing
their sequence preferences. In general, structural motifs
have been identified by inspection of the ever-increasing
database of protein crystal structures. Thornton and
collaborators [7*] have carried out much important work
in characterizing local structural motifs; a program (PRO-
MOTIF) that identifies a large variety of such motifs in
a protein structure file is now available. Once defined,
the frequencies of occurrence of the amino acids in each
position in the motif can be calculated from the protein
structure database. These frequencies can then be used to
predict the occurrence of the motifs in new sequences. For
example, the sequence preferences of the various types
of B turns have recently been re-evaluated using a larger
structural database [8].

Much work during the past year has focused on the
structural characterization of peptide models of previ-
ously identified motifs. Some of the strongest local
sequence-structure correlations are observed at the amino
and carboxyl termini of ¢ helices. The Schellman motif [9]
is frequently observed at the carboxyl termini of o helices,
and contains a conserved glycine residue immediately
following the last residue in the helix. Peptide studies
have shown that this motif is not significantly populated
in aqueous solution [10*]. In contrast, studies of pep-
tides with an amino-terminal helix capping motif, the
‘hydrophobic staple’ [11°] or ‘extended capping box’ [12],
which contains two conserved hydrogen bonds involving a
serine and a glutamate residue, have identified significant
native-like structure [11%,13}. Thus, local interactions are
sufficient to stabilize the latter helix cap motif but not
the former. Nonetheless, both helix caps can be predicted
from sequence with a fairly high degree of confidence.

Studies of peptides corresponding to B-hairpin regions
of proteins have shown ordered structure in some cases
[14,15%,16°] but not in others [1%,17*]. Peptides with
sequences designed based on observed turn propensities
adopt B-hairpin structures [18], but in at least one case
the strands are held together by interactions between
hydrophobic side chains rather than by backbone hydro-
gen bonds [19**]. Several studies have utilized 2,2,2-tri-
fluoroethanol (TFE) as a structure-enhancing solvent, but
this may artificially induce helix formation [2%,20%], and the
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significance of such results is unclear, given the importance
of solvent in local structure formation [21]. In all of the
above peptide studies, it should be noted [22°*] that
given the loss in conformational entropy, the observation of
even low levels of occupancy of a particular conformation
requires that the conformation be low in energy relative to
the other possible conformations. Thus, local interactions
may contribute substantially to protein stability even if
structure is not observed in isolated peptides.

When calculating the sequence preferences of structural
motifs, it 1s commonly assumed that the residue prefer-
ences at each position in a motif are independent. This
approximation may be rather poor, but the consideration
of covariances between residue preferences at pairs of
positions generally requires more data than is available
from the structure database [23]. Within the past year,
several important advances in this area have taken place.
An elegant mutation study of a pair interaction between
spatially adjacent B-sheet residues in protein G showed
significant preference for complementary charge pairs and
particular pairs of hydrophobic residues over that expected
from the analysis of single substitutions [24*®]. These
covariances mirror the statistical trends observed in the
protein database. Pair correlations in P strands have been
used to predict B-strand pairings with remarkable success
[25%2,26]. Pair correlations also form the basis of a new
algorithm for predicting coiled coils in proteins, which
appears to do significantly better than previous approaches
which utilized only single residue preferences [27°,28].

Because of the importance of residue hydrophobicity in
protein folding, a natural way to reduce the complexity
of sequence-structure mapping is to convert amino acid
sequences into a two-letter code: H (hydrophobic) or P
(polar). Studies of peptides with periodic hydrophobicity
patterns show that amphipathicity can outweigh the
intrinsic preferences of the different amino acids for the
different secondary-structure types. HP patterns are thus
sufficient conditions for the formation of helix and sheet in
short peptides, although they are not necessary conditions
[29°]. Analysis of the structural database has shown a
strong correlation between pentapeptide HP patterns and
o helices, but less correlation for B sheets [30°].

Recurrent sequence patterns

The underlying approach in the studies mentioned thus
far is to study the sequence correlates of predefined
structural properties using the database of sequences
whose structures are known, and then to use the results
to predict the structural characteristics of new sequences
(Fig. 1a). The converse approach is to search for sequence
patterns first, and to then study their structural correlates
(Fig. 1b). Because the important structural properties need
not be specified in advance, new structural motifs can
potentially be identified. A potential advantage of this
approach is that one-dimensional amino acid sequences

may be more amenable to pattern-recognition approaches
than 3D protein structures.
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Two approaches to studying local sequence-structure refationships.
(a) Determination of the sequence correlates of predefined local
structures. (b) Determination of structural correlates of sequence
patterns. The circles indicate groups of protein segments with similar
sequences.

If proteins contain a finite number of different local struc-
tural motifs, multiple sequence alignments should also
exhibit a finite number of patterns of sequence variation.
Starting with this assumption, recurring sequence patterns
that transcend protein family boundaries were identified in
the HSSP database of multiple sequence alignments for
proteins of known structure using cluster analysis [31°].
The recurrent sequence patterns are in part recognizable
patterns of hydrophobic and hydrophilic residues, and
in part less obvious combinations [31°]. Because protein
structural information was not used in the identification
of the patterns, any correlations between pattern and local
structure reflect structural information in local sequence.
The correlation between sequence and structure increases
as the pattern length increases from three to eight residues,
and then slowly decreases for longer pattern lengths
(Fig. 2). The decrease may reflect the average number of
residues required to span a protein; the patterns are based
on ungapped alignments and thus do not cover variable
length curns and loops. The limited size of the protein
database also becomes an increasingly important problem
for longer segment lengths.
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Sequence-structure correlations for different segment lengths.
Segments of proteins of known structure were partitioned into 200
groups based on sequence similarity [31°]. (@) The relative entropy,
S, is plotted as a function of the segment length in amino acids (L)
used in the partitioning. By this measure, a segment length of 10
contains the greatest amount of local sequence-dependent structural
information. (b) The similarity in secondary structure within a group
of segments is reflected in the relative entropy. Py is the fraction of
segments in group k that have secondary-structure type / at position j,
and P is the fraction of secondary structure type / in the database
overall. Each position in each segment has a secondary structure
assignment: H (o helix), S (B sheet) or T (other).

Patterns for which one and two local structures predom-
inate account for 45% and 28% of the protein database,
respectively [32%]. The first set of patterns probably
includes virtually all of the short sequence patterns in pro-
teins that consistently occur in a particular local structure.
Many of the patterns discussed in the preceding section, as
well as several new sequence-structure relationships, have
been reidentified by this automated approach.

A disadvantage of the simple clustering procedure used
in these studies is the lack of an underlying statistical
model. An important recent development in this area is
the use of a Dirichlet mixture model to describe the major
types of amino acid distributions found in columns of
multiple sequence alignments for proteins belonging to
the same family [33°*]. Because of their different contexts
in protein 3D structures, some positions accept primarily
hydrophobic residues, others accept small residues, etc.
Each component of the mixture model describes one such
distribution, but rather than being fixed at the outset,
the parameters describing each distribution are estimated
from a training set of multiple sequence alignments
using a maximum likelihood approach. The Dirichlet
mixtures essentially cluster amino acid distributions into

prototypical classes of distributions. Because it provides a
recipe for generalizing from a small amount of data, the
mixture model is extremely useful in predicting the amino
acid variation likely to be observed at a particular position
in a protein given only a small number of starting aligned
sequences.

Origin of sequence-structure correlations

Why do some local sequences have a high tendency to
occur in particular types of local structure? A variety of
factors to account for the observed secondary-structure
propensities of the amino acids have been proposed.
These include side-chain entropy, buried surface area
and steric factors. It has been proposed recently that
electrostatic interactions between backbone atoms are
largely responsible for the observed preferences, and a
model in which the different amino acids differentially
screen these electrostatic interactions performs quite well
in accounting for the observed preferences [34°].

Interesting developments within the past year include
approaches to predicting the configuration of peptides and
short proteins starting from simple physical principles. In
addition to the obvious usefulness of a program for predict-
ing tertiary structures, such approaches have the potential
to illuminate the basis for observed sequence-structure
correlations if they can reproducibly generate native
structures. One such approach utilized a simple treatment
of hydrophobic interactions, hydrogen bonding, and steric
overlap together with a hierarchical assembly procedure:
at the start of a simulation, only local interactions are
considered, and any persisting structure is fixed in the later
stages of the simulation when longer-range interactions are
considered [35*°]. Surprising features of the results are the
striking accuracy of the secondary-structure predictions,
and the fixing of isolated [ strands early in simulations
despite the relatively weak local interactions. A related
potential function which emphasizes hydrogen bonds
between buried hydrogen-bond donors and acceptors was
used in conjunction with a novel extensive searching
procedure to fold small proteins and peptides with a
reasonable degree of success [36°°].

A somewhat different potential function, which empha-
sizes main-chain electrostatic effects, has been used in
conjunction with torsional space Monte Carlo to fold
fragments of proteins thought to be folding initiation
sites. In all but one of the examples, the lowest energy
configuration was very similar to the structure found
experimentally in the context of the entire protein
structure [22*¢]. Dissection of the potential function
suggested that main-chain hydrogen bonding, main-chain
electrostatics and the burial of hydrophobic groups all
contribute to the stabilization of the native-like structures.
A blind test using the same potential function, but with
the genetic algorithm rather than Monte Carlo, resulted in
a roughly correct prediction for one of the three peptides
studied [37°].
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Conclusions

Continued progress with such simulation efforts should
provide insight into the energetic origins of sequence—
structure relationships. Conversely, continued progress
in understanding local sequence—structure correlations
should contribute to the prediction of protein tertiary
structure: the size of the conformational space that
must be searched can potentially be greatly reduced
by confining short segments to likely local structures.
The power of statistical approaches will grow as the
size of the protein structure database increases, making
possible the elucidation of more subtle sequence—structure
relationships.
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