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We use the Rosetta de novo structure prediction method to produce three-
dimensional structure models for all Pfam-A sequence families with
average length under 150 residues and no link to any protein of known
structure. To estimate the reliability of the predictions, the method was
calibrated on 131 proteins of known structure. For approximately 60% of
the proteins one of the top five models was correctly predicted for 50 or
more residues, and for approximately 35%, the correct SCOP superfamily
was identified in a structure-based search of the Protein Data Bank using
one of the models. This performance is consistent with results from the
fourth critical assessment of structure prediction (CASP4). Correct and
incorrect predictions could be partially distinguished using a confidence
function based on a combination of simulation convergence, protein
length and the similarity of a given structure prediction to known protein
structures. While the limited accuracy and reliability of the method pre-
cludes definitive conclusions, the Pfam models provide the only tertiary
structure information available for the 12% of publicly available
sequences represented by these large protein families.
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Introduction

As the number of gene sequences in databases,
public and private, increase dramatically, so do
the number of genes of unknown function. Of the
protein sequences currently available approxi-
mately one-quarter have known function and
approximately one-quarter have a link, via
sequence homology, to a known structure.1,2

Additionally, many proteins of known function
contain domains of putative or unknown
function.3 – 5 The number of sequences with
unknown structure is unlikely to plateau soon,
since 40–66% of genes in newly sequenced gen-
omes do not have significant sequence homology
to proteins of known structure.6 Because struc-
ture–structure relationships are conserved across
greater evolutionary distances than are sequence–

sequence relationships,7,8 protein three-dimen-
sional structures can in some cases reveal distant
relationships not apparent from sequence infor-
mation alone.9,10

De novo structure prediction can potentially pro-
vide a large number of structure models with con-
siderably less investment of time, money and
human effort than experimental approaches, albeit
producing models of far lower reliability and
accuracy. The recent CASP3 and CASP4 structure
prediction experiments11,12 show that Rosetta is
probably the best current method for de novo
protein structure prediction.13 – 15 Rosetta is based
on a picture of protein folding in which local
sequence segments rapidly alternate between
different possible local structures, and folding
occurs when the conformations and relative orien-
tations of these local segments combine to form
low energy global structures.16 – 19 The distribution
of conformations sampled by an isolated chain seg-
ment is approximated by the distribution of con-
formations adopted by that sequence segment and
related sequence segments in the protein structure
database. Non-local interactions are optimized by
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Table 1. Rosetta performance on test set

1 2 3 4 5 6 7 8 9 10 11
Best model match to

PDB Cluster center match to native
Cluster center match to

PDB

PDB id Length cThresh Z (best) SCOP (best) Best rms in 5 Len-maxsub rms-maxsub Name Z SCOP

1a1z 82 2.96 11.96 5 9.02 63 3.69 1a0p0 8.74 1
1a32 65 2.08 9.83 4 6.39 63 4.39 1aep0 9.98 1
1a3k 110 8.39 7.80 4 13.84 45 3.20 1ygs0 5.23 1
1a68 87 5.45 8.74 5 8.92 53 5.07 1dqeA 5.47 2
1a6m 139 6.68 18.70 4 11.41 107 5.52 1cqxA 9.46 4
1a6s 83 3.91 12.01 5 10.75 84 5.05 1csh0 11.43 1
1aa2 97 5.88 9.37 4 9.58 79 5.20 1b0b0 8.39 1
1aba 87 7.38 7.40 5 11.93 49 5.15 1abv0 7.36 0
1aca 81 3.21 10.61 5 11.91 53 4.95 1bmtA 10.20 1
1acf 123 7.26 10.95 5 6.37 110 5.28 2prf0 11.89 5
1acp 73 2.80 7.53 5 5.08 69 4.77 1af80 10.81 4
1adr 76 2.47 10.49 5 7.11 67 2.83 1lmb3 9.87 4
1ag2 97 7.39 9.76 3.5 12.13 52 5.29 1b5eA 8.19 1
1agi 125 8.09 3.87 0 12.79 53 5.38 1ftpA 6.14 0
1ah9 70 3.47 9.99 5 11.59 42 4.91 1bj70 7.98 1
1ail 67 4.26 9.07 5 6.39 58 4.93 1qkmA 9.87 2
1aj3 95 2.86 9.83 3.5 12.73 45 2.90 1aep0 10.45 1
1am3 57 2.29 8.52 3.5 2.57 52 5.01 1d1dA 8.69 3
1aoy 78 2.72 11.41 5 6.27 63 3.71 1hstA 8.42 3
1ap0 45 2.29 5.46 0 9.74 39 5.04 1eciA 5.12 0
1apf 45 3.35 4.17 0 9.56 37 5.87 4ull0 5.42 0
1bb8 71 4.54 8.03 5 9.10 48 4.63 1g6aA 8.90 3
1bdo 75 5.72 8.56 5 9.58 60 3.23 1mdc0 8.22 1
1beg 96 7.40 8.67 5 10.88 58 5.39 1azsA 9.30 1
1bfg 126 8.28 5.77 1 12.78 42 3.90 1ospO 6.85 1
1bgk 27 2.30 2.84 0 2.31 27 2.65 – – –
1bor 41 2.57 4.67 0 8.07 39 5.64 2ifeA 5.88 0
1buo 121 7.09 9.32 5 11.86 6 5.23 1ehkA 7.01 2
1bw6 56 2.47 8.36 5 4.24 52 3.31 1bw6A 8.30 5
1c5a 62 2.43 8.47 4 5.55 10 4.54 1d8bA 9.51 1
1cc5 72 4.58 10.29 5 6.96 67 5.43 1blxA 7.61 1
1cm4 127 6.25 11.64 3.5 13.74 5 5.20 1ocp0 7.95 1
1cmr 26 2.42 2.61 0 4.29 26 3.58 – – –
1coo 81 2.35 11.72 5 8.03 78 3.78 1coo0 9.87 5
1cpq 118 5.68 12.41 4 7.40 91 5.12 1jafA 12.42 4
1csp 64 3.13 9.67 4 10.75 36 2.70 1df3A 7.01 1
1ctf 63 1.57 10.14 5 7.41 59 3.01 1lxa0 6.84 0
1cxc 124 8.31 5.76 3.5 11.89 54 5.63 1bqv0 6.17 1
1ddf 72 2.44 7.20 0 14.20 57 5.27 1bl0A 7.94 1
1dec 35 2.92 4.53 4 7.91 30 5.13 3sdhA 4.47 0
1dhn 121 6.43 8.16 4 10.71 75 5.52 1dx0A 7.14 2
1dvc 98 5.72 8.38 5 8.55 77 4.31 1eq6A 8.26 1
1eca 136 6.55 18.39 5 9.53 121 3.99 1mba0 13.70 4
1erd 29 3.07 3.28 1 6.29 29 3.94 – – –
1fbr 93 8.02 9.51 5 12.77 43 4.99 1dp0A-1 6.01 2
1fwp 64 4.70 7.78 0 10.59 38 5.21 1f5qB 8.31 2
1gab 47 1.80 6.80 1 2.61 47 2.43 1cuk0 6.74 1
1gb1 54 1.89 7.79 5 4.18 54 4.02 2igg0 7.80 5
1gpt 44 3.72 6.08 4 8.99 35 3.59 1b4bA 6.19 0
1gvp 82 7.44 4.99 0 10.00 44 5.83 1dixA 6.26 2
1hfc 137 7.69 4.63 0 14.37 30 3.90 1dt9A 6.22 1
1hnr 47 2.45 6.56 5 5.45 44 3.56 2igg0 6.98 0
1hp8 68 3.22 8.74 5 4.61 66 4.04 1b91A 9.18 1
1hqi 85 4.87 6.51 4 9.72 60 4.72 1ckv0 6.84 4
1hsn 62 2.39 8.03 5 4.96 55 2.91 1cf7B 8.63 1
1hyp 67 3.05 9.09 5 7.19 56 5.32 1elrA 7.81 1
1iyv 73 7.61 10.34 4 11.92 73 4.64 1ac6A 8.24 1
1jvr 74 4.27 9.09 5 6.43 59 4.51 1a0p0 11.37 1
1kde 65 4.16 7.01 3.5 7.47 56 4.57 1fchA 7.78 2
1kjs 74 2.91 9.76 5 3.26 73 4.02 1kjs0 10.96 5
1ksr 92 4.26 9.93 5 12.24 50 4.95 1bwyA 9.13 1
1kte 96 4.52 14.76 4 3.68 99 3.75 1jhb0 14.07 4
1lea 72 2.40 10.92 5 2.53 72 2.88 1lea0 10.86 5
1leb 63 2.11 9.51 5 2.45 63 3.35 1lea0 9.67 5
1lfb 69 4.86 6.94 2 3.87 65 3.64 1cfr0 8.07 0
1lis 111 5.51 11.84 5 13.33 87 3.89 2lisA 11.06 5
1lz1 109 7.84 5.31 0 12.07 56 5.62 1a28A 5.25 0
1mai 119 8.02 7.98 5 10.01 43 3.90 2orc0 6.72 0

(continued)
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Table 1 Continued

1 2 3 4 5 6 7 8 9 10 11
Best model match to

PDB Cluster center match to native
Cluster center match to

PDB

PDB id Length cThresh Z (best) SCOP (best) Best rms in 5 Len-maxsub rms-maxsub Name Z SCOP

1msi 60 4.61 4.04 3.5 6.19 48 4.86 1gh8A 6.86 2
1mzm 71 2.63 10.76 5 3.55 71 3.53 1afh0 10.92 5
1ner 74 2.38 10.45 4 8.13 47 4.62 1adr0 9.18 4
1ngr 80 3.02 11.45 5 10.76 77 4.18 1guxB 10.39 1
1nkl 70 2.22 10.61 5 7.43 50 3.30 1ffkO 7.69 2
1nre 66 2.32 9.98 5 8.27 47 5.01 2occE 9.14 1
1nxb 53 4.11 5.78 4 7.35 41 4.73 1rgeA 6.19 0
1orc 56 2.19 7.68 5 8.60 41 3.50 2orc0 7.62 5
1otg 125 7.51 10.72 5 12.59 5 3.97 1et0A 8.53 2
1pdo 129 6.35 11.80 5 5.93 117 4.26 1pdo0 12.21 5
1pft 34 2.38 4.47 0 6.56 34 4.84 1d0qA 4.93 3
1pgx 57 2.13 8.52 5 3.78 56 3.92 1i50K 8.69 4
1poc 125 8.15 5.67 1 15.18 55 5.00 1ghc0 6.78 1
1pou 68 2.22 10.61 5 11.71 56 4.21 1alo0-0 8.75 1
1ppa 113 8.22 5.92 0 17.37 17 3.78 1kvoA 7.20 4
1pse 61 4.31 5.14 0 11.19 21 3.80 1fy7A 6.05 2
1ptq 43 2.36 4.60 0 9.38 29 5.96 1f6vA 6.01 2
1qyp 42 2.53 5.88 5 4.89 42 4.64 3proC 5.82 0
1res 35 1.03 4.53 1 1.58 35 1.97 1a5j0 4.73 3
1rip 74 5.05 5.59 1 12.86 63 5.78 1cd1A 6.50 1
1ris 92 4.02 12.09 3.5 5.01 84 4.47 2hhmA 10.73 0
1sap 60 2.45 6.75 5 9.45 50 5.56 1rblM 6.71 0
1stu 68 2.33 9.57 4 5.05 67 3.70 1qu6A 10.45 4
1svq 90 5.38 11.74 5 5.24 75 4.72 1svq0 9.58 5
1tif 59 2.51 8.10 5 4.96 58 4.18 1tif0 8.13 5
1tih 33 2.44 4.93 3.5 7.06 36 5.81 1f53A 4.06 2
1tit 85 4.76 12.85 5 5.51 72 2.97 1fhgA 10.41 4
1tnt 65 3.64 9.83 3.5 6.09 65 3.58 1g4dA 8.48 4
1tpm 41 2.28 4.70 0 7.34 31 5.11 1fjgC 5.88 2
1tsg 94 6.79 4.76 0 9.81 55 5.22 2hddA 6.26 0
1tul 97 7.22 5.74 5 9.77 55 5.13 1f0yA 7.65 2
1uba 44 2.39 6.19 3.5 5.66 41 3.13 1bed0 6.44 1
1utg 62 2.29 7.59 4 9.99 48 4.94 1afh0 8.85 1
1uxd 43 2.20 6.07 3.5 3.32 39 4.78 1uxc0 6.25 5
1vcc 65 3.73 10.24 5 7.66 72 3.91 1vcc0 6.63 5
1vif 48 3.71 5.40 0 7.96 35 4.31 2ait0 6.35 1
1vls 126 5.16 15.24 5 11.00 108 5.50 1c17M 12.09 0
1vqh 86 7.47 5.32 0 11.13 45 5.29 1qhlA 5.97 0
1vtx 36 2.45 3.95 4 6.39 27 5.22 1neq0 4.93 0
1who 88 5.42 7.95 1 9.97 54 4.77 1dzkA 8.99 3
2acy 92 7.03 10.04 1 6.51 65 3.25 1qm9A 9.42 4
2af8 86 3.34 12.65 5 5.67 79 4.77 1af80 10.17 5
2bby 69 3.11 9.88 3.5 5.64 65 3.71 1fy7A 9.13 3
2end 137 8.33 6.04 0 15.35 43 3.90 1xvaA 9.80 0
2erl 35 2.41 4.53 1 8.67 27 4.74 1a6jA 4.73 0
2ezh 65 2.22 9.83 5 4.13 57 3.71 1cfr0 9.12 0
2ezk 93 3.85 10.38 5 12.26 77 3.64 1quuA 11.61 1
2ezl 99 4.68 12.84 5 6.85 79 4.49 2ezk0 10.65 5
2fow 66 2.72 7.78 5 5.41 57 3.25 1aci0 8.43 5
2gdm 137 6.13 15.30 3.5 12.09 109 4.44 1mba0 15.70 4
2hp8 56 2.48 7.45 5 3.82 55 4.13 1hp80 7.17 5
2ife 91 3.63 13.42 4 4.53 83 4.56 1tig0 13.42 4
2ktx 34 2.56 4.33 0 7.38 28 4.34 1dv0A 4.53 0
2lfb 100 6.32 9.82 0 10.96 70 3.91 2ng10 8.13 1
2orc 64 2.72 5.59 5 4.82 57 5.47 1et0A 6.58 2
2pdd 43 2.55 6.07 1 3.66 43 3.36 1alvA 6.25 1
2ptl 60 2.07 9.02 5 2.70 60 3.07 2ptl0 9.18 5
2sn3 46 2.42 5.69 4 8.78 34 3.59 1ge9A 6.39 2
2u1a 76 3.04 11.17 5 6.30 60 2.91 1cvjA 8.68 4
2vgh 34 2.39 3.27 0 7.75 22 5.45 3pviA 4.53 0
3ait 60 3.98 4.60 0 11.78 51 5.67 1gcuA 7.64 2
3lzt 129 8.32 5.72 0 13.12 68 5.45 1bqbA 7.51 0
4fgf 110 8.25 4.80 5 12.28 43 3.60 1at3A 5.19 1

Column 2 is the median length of the three sequences folded. Column 3 is the average distance of all members of the largest cluster
to the center of the largest cluster. Smaller clustering thresholds indicate that the program converged while thresholds greater than
approximately 7.5 Å indicate lower expected model quality. Columns 4 and 5 show the results of using the Rosetta model with the
lowest RMSD value to the experimental structure (out of the entire decoy set) to compare to the PDB with Mammoth. Column 4 is
the Z-score of the highest Z-score match between the PDB and this best model, while column 5 is the SCOP assessment of the
similarity of this matched protein and the correct structure: 0 indicates no match, 1 indicates a class match, 2 indicates a fold match,
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a Monte Carlo search through the set of confor-
mations that can be built from the ensemble of
local structure fragments for each sequence seg-
ment. The procedure thus results in structures that
have low free energy local and non-local
interactions.

While high-resolution experimental structures
are required for detailed functional and mechanis-
tic insight into protein action, lower resolution de
novo structure predictions can in some cases pro-
vide functional insights.20 Methods for obtaining
functional information from protein structures or
predicted protein structures fall into two
categories. The first class of methods uses libraries
of motifs consisting of a small number of residues
with specified spatial arrangements to search for
specific types of functional sites21 –24 and can be
readily combined with weak sequence pattern
matches.25,26 The second class of methods searches
for larger, sequence-independent, matches of a
given protein structure to previously determined
protein structures. These methods exploit the
observation that two structures having a common
fold often share at least some aspect of their
function.9,10,27 A number of previously described
algorithms are available for carrying out the
required structure–structure comparsions
(Mammoth,28 Dali,29,30 CE31).

Large protein families for which no member has
a known three-dimensional structure are particu-
larly attractive candidates for de novo structure pre-
diction because a single model can provide
insights into the structure and function of a large
number of sequences. In particular, the Pfam-A
database3 contains 2800 sequence families that rep-
resent 65–70% of the proteins in SWISSPROT and

TrEMBL. The Pfam database has the additional
advantage that sequences have been parsed, when
possible, based on sequence homology patterns
into single domains families.

Here we use Rosetta to generate models for
Pfam-A domains of less than 150 amino acid
residues in length without links to known struc-
tures. We then use a sequence-independent
structure–structure comparison to the PDB32 to
identify proteins with similar structures that may
have related functions. In order to assess the
accuracy of the predictions and the reliability of
the fold links obtained by structure matches to the
PDB, structure–structure comparisons between
Rosetta predictions and the PDB were made for a
large training set of proteins of known structure.
The models generated for Pfam families provide
many interesting preliminary insights into the vast
expanse of molecular evolution yet to be
uncovered by structural genomics efforts.

Results and Discussion

Performance on test set

To provide a benchmark for deriving confidence
measures for Pfam predictions made with Rosetta,
we generated Rosetta models for a test set consist-
ing of 131 proteins. Of these 131 proteins 101 were
the test set used by Simons33 and an additional 30
proteins in the size range of 110–150 residues
were added to bring the size distribution of the
test set into accordance with the size distribution
of the 510 Pfam families for which predictions
were generated. The fraction of b,a and a/b

3 indicates a superfamily match, 3.5 indicates that one of the two proteins were not in SCOP at the time this study was carried out and
that a Mammoth comparison of the two proteins gives a Z-score of 5.0 or greater, 4 indicates a family match, and 5 indicates that the
match was to the same protein. Column 6 is the best RMSD value to the experimental structure over the entire protein length for the
top five ranked models. Columns 7 and 8 show the number of superimposable residues and RMSD value of the MaxSub alignment
of the best model in the top five ranked models to the correct structure. Columns 9–11 are the name, Z-score and SCOP match
designation of the highest Z-score match to the PDB without removing the correct structure or sequence-similar proteins from the
PDB prior to searching.

Figure 1. Overall performance of
Rosetta on test set. (a) Ability of
Rosetta models to identify the cor-
rect fold from the entire PDB for
the test set. 1st indicates that the
highest Z-score match of the top
five models to the PDB identified
the correct structure or a protein in
the same superfamily as the correct
structure (the first ranked fold
identification was correct). 1:5 indi-
cates that one of the top five models

had a highest Z-score match that was correct, best model indicates that the best model in the entire decoy set (prior to
model selection) for a given protein identified a protein in the correct SCOP superfamily as first rank. (b) Same as (a)
except with pairs of proteins with significant sequence similarity removed in order to simulate the performance
expected for Pfam-A families with no sequence-detectable links to known structures. not possible indicates that the
removal of all sequence similar proteins from our non-redundant set of experimental structures removed all possible
correct folds matches from the set according to SCOP.
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proteins in the test set was similar to the pro-
portions seen in the SCOP and CATH protein
structure databases.34,35

Throughout this study we focus our attention on
the top five ranked models for each protein (see
Materials and Methods for the ranking
procedure).13,19 There are several useful metrics for
describing the quality of these five models. One is
to describe in absolute terms how structurally
similar each model is to the experimentally deter-
mined structure. Columns 7 and 8 of Table 1 show
the length and RMSD value of the best MaxSub36

alignment between the correct structure and any
of the top five ranked models for the test set
(MaxSub36 is designed to find the longest super-
position of a model onto a correct structure). For
80 of the 131 proteins, 50 or more residues were
superimposable on the experimental structure to
within 6.0 Å RMSD (or, for proteins less than 50
residues in length, had a global RMSD value of
less than 3.0 Å). This level of success is consistent
with the performance of Rosetta in CASP4 and
with previously published tests of the
method.13,14,16

A second measure of success is the degree to
which the structure-based searches of the PDB
using the top ranked models can identify the cor-
rect fold family. To evaluate performance in this
way we used a measure of success based on the
SCOP fold classification database.34 A prediction
was considered successful if its closest structural
match to the PDB using the Mammoth28 program
(see Materials and Methods) was in the correct
SCOP superfamily (Figure 1(a) and Table 1). For
44 of the 131 proteins in the test set, the closest
structural match to any of the top five ranked
models belonged to the same SCOP superfamily
as the experimental structure. For an additional 13
proteins in the test set, at least one of the top five
models best matched a structure in the correct
SCOP superfamily. Thus, for 57 of the 131 proteins
the correct superfamily could be narrowed to five
or fewer possibilities (Figure 1(a)).

For an estimate of performance on sequences for
which no link to known structure is detectable by
sequence homology, structure–structure matches
that can be recognized solely by sequence simi-
larity using methods such as PSI-BLAST37 must be
removed. Figure 1(b) shows the performance of
the method when predictions were considered cor-
rect if the search of the PDB identified the correct
SCOP superfamily excluding structure pairs with
PSI-BLAST E-values of 0.001 or lower. For 26 of
the 131 proteins in the test set, the closest structure
match to the PDB was in the correct SCOP super-
family. For an additional 19 of the 131 proteins the
correct superfamily was identified by one or more
of the top five ranked models. For 33 of the pro-
teins in the test set, removing all sequence similar
proteins removes every member of the correct
SCOP superfamily, so that for these 33 cases, even
a perfect structure prediction would fail to identify
any correct fold matches. Thus, the correct fold
was identified to within five possibilities in 45 of
the 98 cases for which it was possible to identify
the correct superfamily after removing all
sequence-recognizable links.

While absolute model accuracy is generally
higher for smaller proteins (,50 residues), success
in using the models to identify SCOP classifi-
cations is generally higher for larger proteins. Of
the proteins in the test set under 50 residues in
length, few succeeded in identifying the correct
SCOP superfamily or a protein with a significant
Mammoth Z-score to the experimental structure,
even though many of the predictions for these
small proteins were correct to RMSD values of
less than 3.5 Å. This failure with small proteins
may reflect either the reduced information content
in a shorter structural match (which may be more
likely the result of convergent evolution or random
chance) or a breakdown of the statistics used in
structure–structure comparison for very small
proteins.

For most proteins in the test set, the top ranked
models were not the lowest in rmsd. Columns 4
and 5 of Table 1 show the results of using the

Figure 2. Relationship between best match Z-score and
model quality. The x-axis is the best Z-score found when
the top ten ranked models for each protein in the test set
were searched against the PDB using Mammoth. The
vertical axis shows the best Z-score of these top ten
models to the correct structure, and is thus one way of
expressing overall model quality for each protein. Pro-
teins for which no model had a significant Z-score to
any member of the PDB (including the correct structure)
are not included in this Figure (models with a minus
(2) designation in column 10 of Table 1). Points are
colored according to the degree to which the correct
SCOP superfamily was identified for that protein: red
indicates that the highest Z-score match between any of
the top ten models for a given protein and the PDB was
in the correct SCOP superfamily; orange indicates that
one of the top ten models had its highest ranking match
to the correct SCOP superfamily and blue indicates that
the correct SCOP superfamily was not identified by any
of the top ten models.
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model closest to the experimentally observed
structure (as judged by global RMSD) to search
against the PDB using the same procedure as used
for the top ranked models. Using the model closest
to the experimental structure, the correct super-
family according to SCOP is identified for 95 of
the 131 proteins (“best model” in Figure 1),
roughly double the success rate obtained when
cluster centers are used to search the PDB. This
result highlights the continued need for improved
methods to rank models: better discrimination
between correct and incorrect conformations could
double the number of correct structural relation-
ships identified.

The errors associated with Rosetta necessitate a
method for estimating the likelihood that a given
model is correct. Towards this end we have created
confidence statistics for judging Rosetta predic-

tions. The confidence functions used in this work
are based on simulation convergence (as measured
by clustering threshold; see Materials and
Methods), protein length, and (when applicable)
the structural similarity to the most similar struc-
ture in the PDB (Mammoth Z-score),28 as described
in Materials and Methods. The clustering threshold
was previously shown to correlate inversely with
model accuracy. Rosetta simulations that fail to
converge tend to result in incorrect structure pre-
dictions, while tightly converged Rosetta simu-
lations result more often in correct top ranked
models.13 A new result in this study is the obser-
vation that the degree to which top ranked models
for a given protein match structures in the PDB is
a strong indicator of the likelihood that one of the
top ranked models is correct (Figure 2). Confidence
functions were computed both for individual top

   
 

  

Figure 3. Prediction of model and annotation confidence The histograms reveal how well each of the three confi-
dence functions discriminate false positives from true positives (and negatives). To varying degrees, the confidence
functions concentrate the poor predictions on the left and the correct predictions on the right. Counts for successful
predictions are shown in gray, while counts for incorrect predictions are shown in white. The three definitions of
success are as follows: (a) The best Mammoth match identified for a given cluster center was in the correct SCOP
superfamily. (b) At least one of the top five cluster centers was matched by Mammoth to a protein in the correct
SCOP superfamily. (c) One of the top five models was superimposable on the correct structure for 50 residues or
more (according to MaxSub) or has a global RMSD value of 3.0 Å or less.
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ranked models (Figure 3(a)) and for the top five
ranked models as a group (Figure 3(b) and (c)).
The group confidence reports on the reliability of
predictions for a protein or protein family, while
the individual confidence metrics help to rank pre-
dictions within a high confidence group. Although
individual confidences are in principle more useful
than the group confidences assigned to the top five
ranked models, the latter are better determined by
our training set and are likely to be more accurate.

Pfam results

Predicted models were generated for 510 Pfam
families with average sequence lengths ranging
between 35 and 150 residues using the same
method as for the test set calculations described
above (see Materials and Methods).16 In the time
elapsed since these predictions were made, a struc-
ture has been determined for one or more
sequences in 12 of the families. Table 2 shows the
quality of our predictions for these 12 protein
domains. For six of these proteins, at least one of
the top five ranked models matched the experi-
mentally observed structure with a Mammoth
Z-score of 4.0 or greater, roughly correlating to a
correctly predicted region of greater than 50
residues. For five of the 12 solved families, one of
the matches of the top five models to the PDB was
in the same SCOP superfamily as the correct struc-
ture (Table 2, column 6). Our rate of success on
these 12 families (50% good model quality, 41%
correct fold links) is comparable to the success
rates obtained for the test set (61% good model
quality, ,34% correct fold links).

From analysis of these 12 protein families, as
well as the results seen with the training set, we
estimate that for 50–60% of the Pfam families for

which predictions were made, one of the top five
ranked models has significant structural similarity
to the correct structure of the Pfam domain. These
families represent 12% of publicly available protein
sequences, and for most of these families, the
Rosetta models generated here are the only three-
dimensional structural information available.

When the top ranked models for each family are
compared to the structures in a non-redundant
subset of the PDB, significant structural matches
are obtained for a large fraction of the families pre-
dicted, as expected from the results of the training
set. While the majority of the fold linkages pre-
dicted here have not been previously reported
using fold recognition methods, it is important to
note that the primary goal of this study is not to
improve upon or compete with established fold
recognition methods, but to provide structural
information for protein domain families for which
no other structural information is currently avail-
able by any other method. Fold recognition
methods cannot provide a prediction if a similar
known structure does not exist, whereas de novo
prediction methods can. Consequently, the most
interesting models in the Rosetta-generated data-
base are likely those for which structure matches
to known structures cannot be detected.

Similarly, the 510 Pfam families for which
models were generated include both extensively
studied proteins and proteins about which little is
known. The models are likely to be particularly
useful for uncharacterized protein families: they
may provide a framework for interpreting existing
data or yield clues about function. In the present
discussion, however, we focus on example Pfam
families of known function because functional
predictions based on fold matches can be directly
compared to published annotations. There is

Table 2. Results for Pfam families with structures solved after predictions were made

Pfam PDB Model/fold Confidence Best Z in 5 Best pdb match (top 5) Match to native Z

PF00015 1qu7-A (þ/þ) 0.85/0.77 5.65 1ffk-S(7.74) 7.39
PF00164 1fjf-L (2/þ ) 0.16/0.15 3.59 1ffk-A(5.52) 5.22
PF00253 1fjf-N (2/2) 0.15/0.251 1.52 na na
PF00533 1cdz-A (þ/2) 0.66/0.69 5.19 1bjx(5.56) 4.08
PF00570 1d8b-A (þ/þ) 0.85/0.85 10.09 1ith-A(7.21) 12.4
PF00672 1joy-A (2/2) 0.85/0.85 2.67 1e2a-A(7.60) 4.53
PF01393 1dz1-A (2/2) 0.75/0.75 3.91 1hyw-A(5.96) 2.39
PF01909 1fa0-A (þ/2) 0.15/0.15 5.44 na na
PF01984 1eij-A (þ/þ) 0.85/0.84 6.26 1eo0-A(7.71) 5.63
PF02013 1e8r-A (2/2) 0.15/0.15 1.84 na na
PF02151 1qoj-A (2/2) 0.15/0.15 3.69 na na
PF02186 1d8j-A (þ/þ) 0.85/0.69 5.43 1eeo-A(6.75) 5.89

Column 1 is the Pfam identification number. Column 2 is the PDB id for the family member recently solved. Column 3 provides a
binary indication of prediction quality:the first þ (2) indicates good (bad) model quality, and the second þ (2) indicates a correct
(incorrect) superfamily identification, according to the criteria given in Materials and Methods. The confidence that one of the top
five ranked models is a correct structure prediction and the confidence that one of the top five ranked models provides a correct
SCOP superfamily identification are reported, respectively, in column 4. Note that the confidence function erred in three cases
(shown in bold), producing two false positives and one false negative. Column 5 is the best Z-score to the correct structure among
the top five ranked models. For columns 6 and 7, the closest Mammoth matches in the PDB for each of the top five ranked models
were each compared using Mammoth to the correct structure, and the match with the highest Z-score was selected. Column 6 gives
the match name and Z-score to the closest cluster center. Column 7 shows the Z-score between the match shown in column 6 and
the correct structure (column 2); a high value in this column denotes that Mammoth search with one of the top five ranked models
identified a protein with significant structural similarity to the correct structure.
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clearly much more information in the database of
models than can be extracted here. In particular,
for the Pfam families that cannot be linked to
known structures by any method, one of the
Rosetta predictions is expected to have significant
structural similarity to the true structure for about
half of the families. While potentially quite valu-
able, the models must be used with caution, as
there is a significant probability that any given
model is incorrect.

Individual predictions

Several representative predictions yielding inter-
esting fold links are shown in Table 3. None of
these fold links were detected by PSI-BLAST at the

time this paper was prepared. In many of the
cases described here, putative or previously exist-
ing annotations bolster the confidence assigned to
a prediction by our automatic function. For each
prediction we report the individual and group con-
fidences provided by our automatic functions but
do not attempt to quantify the degree to which
functional similarities improve each prediction’s
likelihood of being correct (see Table 3).

For comparison to a previously described fold
recognition method, we have used GenThreader†1

with profile and secondary structure for each of
the Pfam families represented in Table 3. For two
of the examples in Table 3, GenThreader produced

Table 3. Pfam prediction examples

pfam_id Pdb Chain zscore
Single
conf. Length

1 in 5
conf. GenThreader SCOP superfamily

PF00601 1AJ3 0 12.23 0.31 105 .0.85 na Spectrin repeat
PF00677 1EP3 B 9.23 0.39 85 .0.85 1i8dA1(0.63) Ferredoxin reductase-like, FAD-binding

(N-terminal) domain
PF00855 1B08 A 7.1 0.36 74 0.49 na C-type lectin-like
PF00936 1F0Y A 7.17 0.23 87 .0.85 na NAD(P)-binding Rossmann-fold domains
PF00938 1ALL A 10.5 0.71 92 .0.85 na Globin-like
PF01047 1DPU A 7.37 0.7 108 0.65 1b9mA1(0.61) “Winged helix” DNA-binding domain
PF01059 1DI1 A 10.64 0.22 104 .0.85 na Terpenoid synthases
PF01104 1SLT A 8.34 0.57 82 .0.85 na Concanavalin A-like lectins/glucanases
PF01124 3MDD A 11.17 0.33 89 .0.85 na Acyl-CoA dehydrogenase (flavoprotein),

C-terminal domain
PF01155 1C1D A 8.55 0.14 117 0.81 na Aminoacid dehydrogenase-like, N-terminal

domain
PF01277 1VRE A 9.83 0.18 99 .0.85 na Globin-like
PF01307 1HMC A 7.91 0.11 99 0.77 na 4-helical cytokines
PF01392 1HP8 0 8.12 0.13 116 0.38 na p8-MTCP1
PF01399 1BM9 A 9.68 0.67 75 .0.85 na “Winged helix” DNA-binding domain
PF01445 2BID A 7.79 0.21 56 0.82 na Bcl-2 inhibitors of programmed cell death
PF01519 1HW1 A 9.34 0.17 116 0.64 na “Winged helix” DNA-binding domain
PF01542 2NG1 0 7.82 0.17 75 0.85 na Domain of the SRP/SRP receptor G-proteins
PF01675 1TAF B 8.06 0.67 80 0.62 na Histone-fold
PF01713 1EKE A 8.8 0.38 75 .0.85 na Ribonuclease H-like
PF01809 1NKL 0 7.32 0.56 68 0.69 na Saposin
PF01883 2TSR A 10.39 0.48 96 .0.85 na Thymidylate synthase/dCMP hydroxy-

methylase
PF01903 1C2Y A 11.9 0.3 113 .0.85 1hrkA0(0.611) Lumazine synthase
PF01918 1DCT A 9.66 0.29 82 .0.85 na S-adenosyl-L-methionine-dependent methyl-

transferases
PF01938 1SRO 0 8.8 0.62 58 0.84 na Nucleic acid-binding proteins
PF01938 1SRO 0 6.8 0.48 58 0.84 na Nucleic acid-binding proteins
PF01985 1TIG 0 10.71 0.76 70 .0.85 na Translation initiation factor IF3
PF02020 1DVK A 8.8 0.57 79 .0.85 na Functional domain of the splicing factor

Prp18
PF02109 1DI1 A 10.3 0.23 112 .0.85 na Terpenoid synthases
PF02346 1DF4 A 8.69 0.76 89 .0.85 na Virus ectodomain
PF02379 1BYK A 9.54 0.35 104 .0.85 na Periplasmic binding protein
PF02379 2DHQ A 12 0.63 104 .0.85 na 3-Dehydroquinate dehydratase
PF02440 1B56 0 9.67 0.15 75 .0.85 na Lipocalins
PF02517 2CB5 A 9.06 0.14 89 .0.85 na Cysteine proteinases
PF02519 1AQB 0 8.06 0.44 79 0.72 na Lipocalins
PF02619 1BIA 0 8.26 0.34 95 0.57 na Class II aaRS and biotin synthetases

Fold matches are shown for several of the Pfam families predicted. Columns 2 and 3 show the PDB id and chain of the protein
match. Columns 4 and 5 show the Z-score of the match and the resultant confidence for the fold link shown. Column 7 shows the con-
fidence that one of the top five models generated for this Pfam family identifies the correct SCOP superfamily. The SCOP superfamily
for the PDB matched is given in column 9. Column 8 shows the GenThreader results (http://bioinf.cs.ucl.ac.uk/psiform.html: profile
and secondary structure input were used) on the Pfam families shown. “na” indicates that GenThreader’s top match was low
confidence (low or guess as designated in the server output). For the remaining three hits of “medium” confidence, the PDB
identifier of GenThreader’s top hit and the confidence value for that hit are shown.

† http://bioinf.cs.ucl.ac.uk/psiform.html
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a top match to the same fold (PF01047 and
PF00677). In one case, GenThreader produced a
top match that was in a different SCOP super-
family than the fold predicted by Rosetta
(PF01903). In all other cases GenThreader found
no significant matches to the PDB, designating
them low confidence or “guess”. These results
show that Rosetta derived fold linkages are at
least partially orthogonal to template- based fold
recognition techniques in most instances. How to
best quantify the statistical significance of conflicts
and/or agreements between Rosetta predictions
and fold recognition methods is an important area
of future research.

PF01938 to 1sro

The TRAM domain, PF01938, is a small domain
of unknown function, suspected to be a nucleic
acid binding protein. We find a strong match to
1sro,38 a nucleic acid binding domain belonging to

a SCOP superfamily containing many diverse
RNA, DNA and ssDNA binding proteins, thus
supporting the previously existing putative
annotation (Figure 4(a)).

PF01809 to 1nkl

This domain of approximately 70 residues is
found in short hypothetical proteins in many
different bacteria and has no known function. One
member of this family is SWISSPROT:Q44066,
putatively annotated to have hemolytic activity
(unpublished results). A mammoth search with
the models generated for PF01809 identifies NK-
lysin (1nkl)39 (69% group confidence, 56% individ-
ual confidence), a hemolytic protein expressed in
natural killer T-cells, supporting this putative
annotation (Figure 5). In addition to the fold
match, the proteins in family PF01809, have a
large net positive charge; the protein predicted in
Figure 7 has a net charge of þ7 while NK-lysin
and Bactereocin-AS-48 have net charges of þ5 and
þ8, respectively. This net charge is critical to the
mechanism proposed for these lytic proteins,40

termed molecular electroporation, and is consistent
with the fold prediction and the putative function
annotation.

PF02379 to 1e2b

This Pfam family consists of the fructose-specific
IIB subunit of the bacterial phosphoenolpyruvate:
sugar phosphotransferase system (PTS). Structure
similarity searches using the top ranked models
for this Pfam family identify several different
superfamilies that share a three-layer structure of
two helices, a four-stranded beta sheet, and two

Figure 4. Pfam prediction examples. (a) The predicted
model for PF01938 is shown beside the closest match to
this model in the PDB, 1sro. (b) The model with the
strongest match to the PDB for PF02379 is shown next
to 2dhq. (c) The highest confidence model for PF01104
and 1slt-A (animal S-lectin), described in Table 3 and
the text.

Figure 5. PF01809. The prediction for PF01809 is
shown superimposed on 1nkl, the strongest match to
the PDB for this model. The three conserved cystine
residues found in PF01809 are indicated as yellow
spheres on the predicted model for PF01809.
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helices. The strongest structure match to the PDB,
2dhq, is shown in Figure 4(b).41 One of the proteins
matched is 1e2b,42 the IIB component of the phos-
phoenolpyruvate-dependent phosphotransferase
system of Escherichia coli cellobiose transporter.
Despite the obvious similarity in the functional
descriptions of PF02379 and 1e2b, the relationship
was not detected by PSI-BLAST or the current
GenThreader server1 at the time this paper was
prepared.

PF00677 to 1ep3-B

This family consists of several proteins involved
in Lumazine binding. The top ranked model for
this family structurally matches 1ep3-B,43 dihydro-
orotate dehydrogenase B, with a Z-score of 9.23, a
group confidence of .85%, and an individual con-
fidence of 39%. Dihydroorotate dehydrogenase
binds FAD as a cofactor. Chemical similarities
between FAD and lumazine and the sequence con-
servation pattern for the family support the predic-
tion (Figure 6). GenThreader identifies a match to a
protein in the same superfamily that was solved
after our Rosetta and Mammoth calculations were
carried out.

PF01713 to 1ekeA

PF01713 contains the small mutS related protein
(Smr) and mutS2 (sometimes referred to as
mutSB). These proteins, PF01713, have no detect-
able global sequence similarity to mutS as detected
by PSI-BLAST, GenThreader and 3D-PSSM,2 but
they are functionally similar. We find a structure
match between a top ranked model and 1ekeA,44 a
member of the ribonuclease-H SCOP superfamily.
This SCOP superfamily contains several proteins

that have functions related to mismatch repair and
has strong structural similarity to the second
domain of mutS (1ewq).45

Most of the above links are between protein
domains of roughly equal size. Many of the pre-
dicted models for Pfam domains matched parts of
known structures/domains, but because the pro-
teins that contain Pfam domains usually have
additional N or C-terminal domains, or regions
that could complete the structural unit, partial
structural matches can still be functionally signifi-
cant. Two such examples are described below.

PF01059 to 1di1-A

This family is the NADH-ubiquinone oxido-
reductase chain 4 Nterminus. Models generated
for this family match 1di1-A, squalene synthase.46

The chemical similarity between the isoprenoid
tail of ubiquinone and squalene, as well as the fact
that both proteins use either NADH or NADPH as
a co-enzyme, suggest a distant evolutionary link
(Figure 7). Another Pfam family, PF02326, contain-
ing plant proteins of unknown function, also
showed a strong link (Z-score ¼ 12.43, .85%
group confidence, 22% individual confidence) to
1di1-A, suggesting a possible function involving
terpenoid /isoprenoid binding for PF02326.

PF01104 to 1slt-A

This family contains Bunyavirus non-structural
protein NS-s sequences from several members of
the family Bunyaviridae. Our second model for this
family matches animal S-lectin (1slt-A),47 with a
Z-score of 8.3, suggesting that the domain may
interact with extracellular glycoproteins and be
important for host-viroid interactions (Figure 4).

Figure 6. PF00677. The predicted
model for PF00677 is shown next to
1ep3 chain B, the closest Mammoth
match in the PDB. Proteins in
PF00677 bind lumazine while 1ep3-
B binds FAD, which is chemically
similar to lumazine; this similarity
in function supports our fold identi-
fication. Additionally, most of the
strongly conserved residues for this
Pfam family (indicated by grey
spheres), cluster in a region of the
fold where residues responsible for
FAD binding are located in 1ep3-B.
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The length of the PF01104 domain is considerably
shorter than that of 1slt (80 versus 133 residues),
and only part of the beta sandwich is included in
the structural alignment. Additionally, there are
high Z-score matches to other families, so this con-
nection must be viewed with some caution.

Conclusions

The models generated in this paper provide low-
resolution structural information for some of the
largest known protein families. The two most
pressing areas for current work are to improve the
quality and reliability of the models and to develop
better methods for extracting useful functional
information from the models. The latter problem
is obviously shared with all large-scale structural
genomics projects, but is somewhat complicated
in the case of structure predictions by the fact that
the models may be inaccurate or even entirely
incorrect. It is likely that use of weak sequence–
sequence similarities in conjunction with the
structure–structure similarities examined here
will help to reliably identify distant evolutionary
relationships. Active site recognition methods,
such as those of Wallace & Fetrow,21,22,24 may also
be useful in interpreting structure predictions. We
anticipate considerable complimentarity between
the Rosetta-based approach used here and fold
recognition methods1,2 as they utilize sequence
information in quite different ways. A significant
advantage to the method described here over fold
recognition methods is that de novo prediction pro-

duces models even when no recognizably similar
folds exist in the PDB. Low-resolution structural
models can be used to interpret experimental
results, such as identifying clusters of functionally
important residues and even multiple alternative
models can be useful for developing alternate
hypotheses that can be tested experimentally

It is difficult for us to judge the exact value of the
Pfam models generated in this study. On one hand,
they provide the only three-dimensional structural
information available for a very large number of
proteins, on the other, they contain inaccuracies
and are often entirely incorrect, and the confidence
functions only partially mitigate these failings.
Ultimately the value of the models will be
measured by the extent to which they help frame
hypotheses about function that are tested experi-
mentally, and we are eager to assist with this effort
wherever possible. The entire database of models,
along with confidence values and links to experi-
mental structures where available can be accessed
for academic use at the Pfam website.

Materials and Methods

Models were generated for three representative and
diverse sequences for each alignment (Pfam and test
set) as described.16 Sequences shorter than 60% of the
query sequence length were discarded. Sequences with
greater than 60% or less than 20% sequence identity to
the query were also discarded. The sequence of each
protein in the test set was extracted directly from the cor-
responding PDB file and a multiple sequence alignment
(MSA) was generated using PSI-BLAST37 (three
iterations, E-value cutoff of 0.01). For Pfam, alignments
were taken directly from the Pfam database.

Model generation

The protocol for generating predictions was nearly
identical to the protocol used during CASP4.13 Large
numbers of structures are generated and then filtered to
remove overly local topologies and improbable strand
arrangements. The remaining structures are then clus-
tered (using pairwise Ca RMSD values as a distance
metric) to produce a small set of models ranked by the
size of the cluster they represent. Top ranked models
are then compared to the PDB for matches to proteins of
known structure.32 Several subtle differences between
the current protocol and the CASP4 protocol are, how-
ever, key to the success of the method in the current
context.

During CASP4, predictions were manually selected
from the top 20 cluster centers produced for each target.
This manual reordering of the results was done in order
to remove commonly seen systematic errors from the
results and to rescue good predictions that were pro-
duced less frequently than incorrect models. This
manual step was abandoned in this study primarily due
to the difficulty of applying human judgment on a
genomic scale. Additionally, we were unsure that
manual intervention improved our CASP4 predictions:
the majority of our correct predictions were top ranked
prior to manual intervention and most of the failures
were not recoverable by any means. We do not believe

Figure 7. PF01059. The first ranked fold prediction
(best Z-score) for PF01059 is shown on the left; the clo-
sest match in the PDB (1di1 chain A) is shown to the
right. Proteins in the sequence family are known exper-
imentally to bind ubiquinone while 1di1-A binds
squalene.
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the omission of this step significantly detracts from the
performance of the method within the sequence size
range of 35–150 residues.

The other important change involves the method used
to detect structural similarities to our models. During
CASP4 and previous studies we used DALI to detect
structural similarities,29,30 but have since found
Mammoth28 to be superior for our purposes. We found
Mammoth Z-scores to be more highly correlated with
model quality and thus more useful in the context of de
novo structure prediction, where model quality is not a
given. Mammoth is less likely to find non-contiguous
alignments than DALI, and consequently, DALI finds
many false positives that Mammoth avoids. While
DALIs ability to find such disparate structural align-
ments is quite useful for matching experimental struc-
tures against the PDB, it is detrimental when non-
protein-like conformations, such as those found in de
novo structure predictions, are included in the analysis.

For each of the three representative sequences for each
family, fragment libraries for each three and nine-residue
segment of the chain are extracted from the protein
structure database using a sequence profile–profile com-
parison method as described.18 At no point is knowledge
of the native structure used to select fragments or fix seg-
ments of the structure in the test set. The conformational
space defined by these fragments is then searched using
a Monte Carlo procedure with an energy function that
favors compact structures with paired beta strands and
buried hydrophobic residues. A total of 2000 indepen-
dent simulations are carried out for each query represen-
tative sequence less than 110 residues and 4000
simulations for each sequence between 110 and 150
residues in length. The resulting structures are filtered
and then clustered as described below and
previously.13,33 Prior to clustering, many of the structures
produced by Rosetta are incorrect; for this reason, we
refer to raw conformations generated by Rosetta as
decoy conformations or decoys.

Decoy population filtering

Prior to clustering two filters were applied to remove
incorrect conformations: a contact order-based filter and
a strand arrangement filter; both filters were also used
during the CASP4 experiment.13,48 Estimation of the
allowable contact order range for different length and
secondary structure classes was carried out using a non-
redundant set of proteins from 50 to 160 residues in
length†.49 Decoys having absolute contact orders in the
lowest fifth percentile were discarded prior to clustering
to rid populations of overly local conformations. Decoys
with unpaired beta strands and other non-protein like
strand arrangements were also explicitly removed from
the populations prior to clustering.48

Clustering procedure

For each prediction, the combined decoy sets for the
three homologous sequences were clustered based on
Ca RMSD over the sets of residues common to all
three.16,50 The decoy with the 100 closest neighbors was
located, and the distance to the 100th closest neighbor

(or 3 Å, whichever was greater) was used as a cluster
threshold. In each iteration, the decoy with the most
neighbors within the threshold distance is identified as
the top cluster center. All members of this cluster are
then removed from the population, and the cycle
repeated. The top five cluster centers are the top ranked
models.

Structure matching

The Mammoth28 program was used to search a non-
redundant set (less than 50% sequence identity) of 3390
protein chains†49 for structures similar to the top five
ranked models. Mammoth estimates the maximal,
sequence-independent, structural superposition and
reports a MaxSub Z-score representing the likelihood of
finding a similar length match between similar sized
proteins by chance.49

Definitions of model “correctness”

Three different definitions of correctness were used.
First (Definition I), an individual model was considered
correct if the strongest structure–structure match in the
PDB was to a protein in the same SCOP superfamily as
the correct structure (when one or both members of a
structure–structure pair were not in the current SCOP
database, the fold linkage was considered correct if the
Mammoth Z-score between the two structures was
.5.0).34,51 Second (Definition II), the group of predictions
made for a protein or family were considered successful
if any one of the top five models matched a structure in
the correct SCOP superfamily. Third (Definition III), the
group of predictions made for a protein were considered
successful if one of the top five models was aligned by
MaxSub36 to the correct structure for 50 residues or
more with an RMSD value under 6 Å;for proteins
smaller than 50 residues predictions were considered a
success if lower than 3.0 Å in RMSD to the correct
structure.

Confidence estimation

We developed separate confidence functions for asses-
sing the likelihood that a given prediction is correct
according to each of the three definitions of success
described above.

Definition I. We fit the probability ( p ) that
an individual model matches a PDB struc-
ture in the correct SCOP superfamily, we
combined52 the Mammoth Z-score of the
match (Z ), the degree of simulation conver-
gence (C ), the length of the protein (L ), and
the ratio of the lengths of the protein and its
PDB match (LH/LQ) as follows (see Figure
3(a)):

log
p

1 2 p

� �
¼ 0:416ðZÞ þ 0:00982ðLÞ

2 0:326ðCÞ2 1:01ðLH=LQÞ2 2:17;

where C is the average RMSD value amongst
the five top ranked cluster centers.13

Definition II. We fit the probability that one
of the top five models has a strongest match
in the PDB to a protein in the correct SCOP

† The non-redundant set of proteins structures is
available from Roland Dunbrack at http://www.fccc.
edu/research/labs/dunbrack/cullpdb.html
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superfamily to a function of the best
Mammoth Z-score (Z ), the simulation con-
vergence (C ), and the protein length (L ) as
follows (see Figure 3(b)):

log
p

1 2 p

� �
¼ 0:527ðZÞ þ 0:012ðLÞ2 0:239ðCÞ

2 4:97

Definition III. For the probability that one of
the top five models matched the correct
structure, according to the MaxSub success
criteria, we fit our results to a function of
simulation convergence and length (see
Figure 3(c)):

log
p

1 2 p

� �
¼ 0:0619ðLÞ2 0:661ðCÞ2 1:39

The discrimination of good and bad predic-
tions provided by these logistic functions is
shown in Figure 3(a)–(c). Because the small
size of the test set precludes robust cross-
validation, confidence estimates may be
over-fit near the extremes of the confidence
distribution. We have therefore truncated all
confidences to a range of 0.15–0.85.
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