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ABSTRACT This study explores the use of mul-
tiple sequence alignment (MSA) information and
global measures of hydrophobic core formation for
improving the Rosetta ab initio protein structure
prediction method. The most effective use of the
MSA information is achieved by carrying out inde-
pendent folding simulations for a subset of the
homologous sequences in the MSA and then identify-
ing the free energy minima common to all folded
sequences via simultaneous clustering of the inde-
pendent folding runs. Global measures of hydropho-
bic core formation, using ellipsoidal rather than
spherical representations of the hydrophobic core,
are found to be useful in removing non-native confor-
mations before cluster analysis. Through this combi-
nation of MSA information and global measures of
protein core formation, we significantly increase
the performance of Rosetta on a challenging test set.
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INTRODUCTION

Recent blind tests (CASPIII) have demonstrated signifi-
cant progress in the field of ab initio protein fold predic-
tion.1,2 Although encouraging, this progress still leaves
the field without methods that can reliably predict protein
tertiary structure in the absence of homology to a sequence
whose structure is known. One of the major hurdles that
must be overcome in the development of consistently
reliable ab initio protocols is the difficulty of discriminat-
ing near-native models from incorrect models.3–6 The
method our group has developed, Rosetta, is able to
generate low root-mean-square deviation (RMSD) struc-
tures for most small proteins (good 5 3–7.5 Å RMSD,
small 5 ,100 residues), but it is not always possible to
recognize these structures amidst the larger population of
incorrect decoys.7 This work deals with this problem of
recognition via two main approaches: the use of multiple
sequence alignment (MSA) information and the use of
global measures of hydrophobic core formation.

MSAs contain a great deal of information not available
to prediction methods that use only a single sequence.
Central to the main method described in this article is the
empirical observation that two sequences sharing 25%
sequence identity, for more than 60 amino acids, almost

always share the same fold.8–11 Each sequence alignment
can therefore be thought of as representing a single fold,
with each position in the MSA representing the preference
for different amino acids and gaps at the corresponding
position in the fold. Badretdinov and Finkelstein and
colleagues used the theoretical framework of the random
energy model to argue that the decoy discrimination
problem is not currently possible unless the information in
the MSA is used to smooth the energy landscape.12,13

Using a three-dimensional (3D) cubic lattice model for a
polypeptide, these investigators demonstrated that averag-
ing a scoring function containing random errors over
several homologous sequences allowed the correct fold to
be separated from the rest of the averaged energy distribu-
tion, in spite of the random errors introduced into the
energy function. Keasar et al.14,15 showed that coupling
the folding of several homologous sequences on a tetrahe-
dral lattice significantly improved the performance of their
Monte Carlo routine for a 36-residue peptide hormone. In
this study, we test four methods for using MSA informa-
tion to assist in ab initio structure prediction. The method
we find most effective allows each homologous sequence to
fold independently of other aligned sequences, only using
the information in the MSA after the independent homolo-
gous folding runs are completed.

One of the major assumptions behind many ab initio
folding potentials currently used is that the free energy of
a conformation can be described as a sum of several
pair-additive terms meant to describe specific interactions
present in the molecule. There are many cases, however,
for which this fundamental assumption is likely to be in
error, especially cases involving entropies.16,17 Solvation
free energies are largely dominated by entropic terms and
are therefore not well described by pair additive terms.
The nearly ubiquitous presence of well-formed single
hydrophobic cores in small proteins suggests using mea-
sures that explicitly monitor hydrophobic core forma-
tion.4,18,19 We have developed three global features that
together screen for non-native core packing and topology.
Unlike previous global features designed to recognize
well-formed hydrophobic cores, our features use an ellipsoi-
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dal rather than a spherical representation, allowing them
to recognize a broader range of native core arrangements.

In the present study, we demonstrate that recognition of
native-like structures produced by Rosetta can be en-
hanced using MSA information and our measures of
hydrophobic core assembly. Using a combination of these
two approaches has allowed us to produce good models for
15 of the 18 query sequences used to test the methods
described in this work. Most of this increase in perfor-
mance is the result of our novel use of MSA information.
The global features are used to filter the decoy populations
before the analysis of the homologous decoy populations
via our clustering procedure, ridding the analysis of all
recognizably misfolded structures, and thus offer a smaller
but significant improvement in Rosetta’s performance.

RESULTS AND DISCUSSION
Test Set Selection

Initial tests of Rosetta were performed on a test set of 70
proteins less than 120 amino acids in length as described
elsewhere (Simons et al., J Mol Biol, in press). For testing
more computationally intensive methods, 18 query se-
quences were chosen from the larger set of 70. The smaller
test set includes five positive controls, for which good
models were generated using Rosetta and selected with
our clustering routine. Ten of the 18 structures folded were
structures for which Rosetta could produce good models
(,7 Å RMSD) that were not identified by clustering
(presumably because they occurred too rarely in the over-
all population). The remaining three were cases for which
Rosetta did not produce any good models. Any improve-
ment of the method must rescue some of the 13 cases for
which no good models were selected while preserving the
performance of the positive controls. The set contains 10
a/b, 5 b, and 3 a class proteins with a mean length of 79
residues. Because the main improvement to the method
involved homologous sequence information, the smaller
test set includes only sequences for which at least two
sequences, not highly correlated to the query or each other,
were aligned.

The Rosetta Method

The basic method used to generate and select models has
been previously described but will be reviewed briefly
because of its importance as a starting point for the
following discussion.7,20 One of the fundamental assump-
tions underlying Rosetta is that the distribution of confor-
mations sampled for a given nine residue segment of the
chain is reasonably well approximated by the distribution
of structures adopted by the sequence and closely related
sequences in known protein structures. Fragment librar-
ies for each 3- and 9-residue segment of the chain are
extracted from the protein structure database using a
sequence profile–profile comparison method as described
previously. At no point is knowledge of the native struc-
ture used to select fragments or fix segments of the
structure. The conformational space defined by these
fragments is then searched using a Monte Carlo procedure
with an energy function that favors compact structures

with paired b strands and buried hydrophobic residues. A
total of 1,000 independent simulations are carried out
(starting from different random number seeds) for each
query sequence, and the resulting structures are clustered
as described in Materials and Methods and as previously
reported.21 The most reliable selection method, before this
study, was simply to choose the centers of the largest
clusters as the highest confidence models.22 These cluster
centers are then rank-ordered according to the size of the
clusters they represent, with the cluster centers represent-
ing the largest clusters representing the highest confi-
dence models. This protocol produces good models with
rank 25th or better for 5 of the 18 queries folded in this
study. In the larger set, the performance is somewhat
better (as the 18-protein set was chosen to be a challenging
set) and ;40% of small proteins (,100 residues) produce
good models with the protocol described above. Before
clustering, most structures produced by Rosetta are incor-
rect (i.e., good structures account for less than 10% of the
conformations produced); for this reason, we refer to
conformations generated by Rosetta as decoys. The prob-
lem of discriminating between good and bad decoys in
Rosetta populations is the primary problem addressed in
this work.

The Use of Global Features for Filtering Large
Sets of Decoys

One of the problems we encountered during CASPIII,
and during the tests of Rosetta immediately after CAS-
PIII, was that the sequence dependent terms in Rosetta’s
energy function (the environment score and the pair score)
allowed topologies that formed multiple small hydrophobic
cores, as opposed to a single unified hydrophobic core. For
proteins of the size attempted, the probability of having
multiple domains is low,23 and most hydrophobic cores can
be roughly described by a single ellipsoid. In an effort to
address this problem and other commonly encountered
errors in decoys generated by Rosetta, we have developed
three measures of hydrophobic core formation loosely
based on a micelle model of proteins, which requires that
hydrophobic residues partition to the interior of a protein
and that the core is uniformly surrounded by backbone
and hydrophilic residues. These features are evaluated
using a method that partitions conformations into inner,
middle, and outer ellipsoidal spaces for the purpose of
recognizing single well-formed hydrophobic cores, as illus-
trated in Figure 1. The first feature, the core score,
measures the extent to which hydrophobic side-chains
partition to the central region of the molecule, to the
exclusion of polar and charged side-chains. The second
feature, the Ca partition score, measures the partitioning
of backbone elements to the outer region of the molecule.
Finally, the angle distribution score measures the degree
to which the backbone uniformly surrounds the central
core. Thus, the second and third score together check for
the uniform enclosing of the core cavity by the backbone
elements, while the first feature measures the extent to
which the central cavity is filled by hydrophobic side-
chains.
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Figure 2 presents a scatter plot of RMSD versus the core
score for three proteins. A standard correlation coefficient
is not useful for such a distribution because of the high
number of false-positive results and the fact that RMSD of
$8 Å are roughly equivalent for our purposes. Lower
RMSD models, however, generally have higher core scores
than the overall population as shown in the histograms in
Figure 2. This suggests that the score should be used to
filter out decoys falling in the worst part of the distribution
(i.e., that the feature should be used to determine whether
a decoy is bad, but not to determine whether the decoy is
good, due partly to the high rate of false-positive results).

To quantitate the value of each score as a filter, we
calculate enrichment values. The decoys are sorted with
respect to a given score (in this case, the core score), and all
but the top percentage of the population (according to the
score) is eliminated. In the case of Table I, all but 15% or
50% of the decoys are eliminated, so that only the decoys
with the best core scores remain. The degree to which the
ratio of good structures to incorrect structures is increased
in the best scoring population as compared with the total
population is calculated and reported as the enrichment
value in Table I. An average enrichment value of 1.61 for
the core score is reported in Table I. This shows that for the
18 homologous decoy sets the core score increased the ratio
of good structures to bad structures by a factor of 1.61 when
used to reduce the populations to 15% of their original size.

The Ca occupancy score was used to filter all 18 homolo-
gous decoy sets to eliminate topologies that violate the
simple micelle model, and the enrichment values are
reported in Table I. This score is useful for most proteins of
,100 amino acids but, as the length of the query increases,
the value of this score decreases, as the probability of
strands traversing the inner core gets larger. The score is
used here to rid the decoy populations of the worst scoring
topologies (worst 25%) before clustering.

The angle distribution score was found to be most
effective when used as a fixed cutoff, such that sets of
decoys that do not minimize this score are filtered more
heavily than sets of decoys that all fall below the cutoff.
The angle distribution score enrichment values for all-b
proteins was 1.7-fold with the angle-bin cutoff set such
that fewer than two large gaps were allowed in the angular
distribution of backbone elements around the common core.

The effectiveness of the features in the larger framework
of the protocol for clustering multiple homologues is shown
in column 12 of Table II. Before clustering, the decoys were
filtered with the three global scores, described above and
in Materials and Methods, so that the overall size of the
population was reduced and the proportion of good decoys
increased. The overall quality of the models produced by
the filtered clustering did not improve drastically as
compared with column 11 (unfiltered clustering). The rank
of the first occurrence of a good model produced by the
filtered clustering, however, was closer to first in many
cases. In two cases (1kde, 2ife), models were selected when
the unfiltered method failed to select good models.

Using MSA Information to Enhance Rosetta’s
Performance Energy Averaging

One possible way to use MSA information is to generate
a population of decoys using the single query sequence,
and then compute for each resultant model the average of
the scores of each of the homologous sequences when
mapped onto that structure.13 We initially tested this
score averaging method using the larger test set, which
contained 1,000 decoys for each of 70 different proteins.
The enrichment value for the core score increased from
1.84 to 2.26 when MSA information was summed using
sequence weights to account for redundancies in the
MSA.24 Smaller improvements were seen when the pair

Fig. 1. Schematic diagram of the ellipsoidal partitioning performed in
order to calculate the core score and Ca-partitioning score.
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score and environment scores from Rosetta’s scoring func-
tion were summed over the MSA in this way. Although
there was some enhancement of the predictive power of
these features, the enhancement was not large enough to
improve the performance of Rosetta significantly.

Clustering Using Common-Residue RMSD

The regions that are unimportant to the structure and
function of a protein may be less conserved, or absent, from

many homologues in the alignment. One simple use of this
information is to pay attention only to positions that are
present in most of the sequences aligned to the query when
attempting to select good models from a decoy population.
When the positions that are gaps in many of the aligned
sequences (often the edges of the alignment) are ignored,
the average length of the targets in our set of 18 proteins
drops from 79 to 68 residues. The yellow bar in Figure 3
shows the positions that remain after considering the MSA
for 2acy. For each target, the positions common to all
sequences folded were determined, and the number of
these common positions is shown in Table II. Based on the
assumption that the positions present in all aligned homo-
logues are more important than positions often absent, we
repeated the clustering for the full-length query sequence
folding runs using RMSD over just these common residues
as a distance metric (instead of global RMSD). Column 8 of
Table II shows the results from clustering with global
RMSD while column 9 shows the results obtained using

TABLE I. Enrichment Values for Global Features†

Feature Enrichment in top 15% Enrichment in top 50%

Core score 1.61-fold 1.40-fold
Ca score 1.73-fold 1.28-fold
†Enrichment values averaged over the 18 sets of homologous decoys.
The geometric mean of the enrichment values when homologous
populations are filtered until only 15% or 50% of the original set are
shown.

Fig. 2. Performance of the core score demonstrated for four proteins. Column 1, scatter plots of root-mean-square deviation (RMSD) versus the core
score for populations of homologous decoys for 1dol, 1vig, 1mzm, and 1sro;column 2, histograms of the core score for decoys closer than 6.5 Å RMSD to
native; column 3, core score histogram for the entire population.
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common position RMSD. Positions were considered com-
mon if they were present in all homologues selected for
folding as described in the methods section and above. The
decoy sets clustered for columns 8 and 9 are identical.
Some improvement in the quality of models selected using
common position RMSD is obtained but in no case are good
models selected for targets that failed to produce good
models using global RMSD as the distance metric.

Restricting Folding to Common Cores

An alternate approach is to fold only the cores of the
MSA (the green bar in Fig. 3). In tests of ab initio folding
algorithms, short unstructured N- and C-terminal regions
have been eliminated to bolster the performance of the
method being tested.3,7 In these cases, the investigators
used knowledge of the native structure to decide what
positions to exclude from the folding simulations. We have
made these decisions based only on the MSA. One might
expect that by removing disordered tail segments, the
quality of the models would increase over the remaining
core region in cases where the tails interfered with Roset-
ta’s folding of the more important core region.

We did this manually during CASPIII while predicting
the structure of MarA, which had a large and diverse

alignment to all but the N- and C-terminal residues. Ten
terminal positions were excluded from the folding runs
based on the alignment. These termini ended up largely
unstructured in the experimental structure, and the runs
with the unaligned tail positions excluded converged to
good models (which were submitted) while the full-length
runs failed to converge to good models.

After refolding just the MSA cores, and clustering using
RMSD over all residues remaining in the core of the MSA,
we find that 9 of the 18 targets have good models in the top
15 cluster centers. Using only this simplest form of informa-
tion present in the MSA, we achieve a moderate increase
in performance without increasing the time required for
the calculation.

Simultaneous Clustering of Multiple Independent
Homologous Folding Runs

The methods above are limited in that they are all
reliant on populations of decoy conformations constructed
using only the single query sequence and therefore do not
use MSA information to influence the buildup procedure.
To overcome this limitation, we have developed a method
whereby a subset of the aligned sequences are allowed to
fold independently; the resultant homologous populations

TABLE II. Summary of Clustering Results†

1 2 3 4 5 6 7 8 9 10 11 12 13 14

PDB
code

29
class

Best of
1,000
single

seq. runs

No.
of

seq.

No. of
res.
in

query
seq.

No.
of

res.
in

MSA
core

No. of
res.

common
to all in
MSA

Cluster
centers
from

clustering
1,000
decoys

(query seq.)

Cluster centers
from 1,000 decoys
(RMSD over just

common
residues)

Cluster
centers from
clustering
MSA cores

Homologous
clustering

(no filtering)

Homologous
clustering

(after
filtering)

Best MSA
core

match to
cluster
center

Best
full-

length
match to
cluster
center

1a68 a/b 6.3 6 87 86 83 — — — — 13th 7.5 — —
1aca a 5.0 9 86 79 79 — — 7th 6.2 (6.2) 3rd 5.2 3rd 5.2 5.2 (5.2) 5.6/5.7
1ah9 b 5.2 9 71 52 49 — — — — — — —
1aoy a/b 5.4 3 78 62 60 4th 5.9/7.1 5th 5.7/7.2 — 4th 6.2 3rd 6.2 6.2 (6.3) 6.4/7.0
1coo a 5.3 13 81 55 52 5th 5.5/13.5 10th 3.7/10.4 — 2nd 2.8 2nd 2.8 3.2 (4.0) 4.3/6.3
1ctf a/b 4.1 13 68 58 51 2nd 4.1/6.0 2nd 4.0/5.5 3rd 4.3 (5.2) 1st 6.9 2nd 4.0 4.3 (6.3) 6.8/7.8

5th 3.2/4.9 2nd 3.3 3.7/5.1
1dol a/b 5.5 11 71 56 52 — — — 4th 6.9 4th 7.5 — —
1hqi a/b 6.8 8 90 70 70 — — — 10th 7.4 — 7.7 (7.7) 6.7/8.4
1kde b 7.6 6 65 60 60 — — — — 10th 7.3 7.6 (7.7) —
1mzm a 4.9 12 93 90 85 1st 4.9/7.0 1st 4.9/7.0 1st 4.7 (5.4) 1st 4.6 1st 4.4 5.2 (5.3) 6.8/6.9
1pse b 6.9 11 69 63 53 — — 14th 5.6 (6.2) 9th 5.9 4th 6.2 7.0 (7.3) 5.9/7.2
1sro b 4.6 13 76 62 59 1st 6.0/6.7 1st 4.9/5.9 1st 5.0 (5.2) 1st 5.3 1st 4.8 4.8 (4.9) 5.2/7.0
1stu a/b 6.3 2 68 64 64 — — — 2nd 6.4 1st 6.3 5.9 (5.9) 7.1/7.2
1tnt a/b 5.2 3 76 65 46 6th 5.2/10.2 2nd 5.0/8.7 — 1st 6.1 1st 5.1 5.7 (5.8) 5.0/9.7
1vig a/b 6.6 3 71 59 59 — — 11th 6.5 (6.8) 1st 6.3 1st 6.6 5.1 (5.1) 6.9/10.3
1wkt b 9.3 2 88 86 86 — — — — — — —
2acy a/b 8.2 8 98 66 38 1st 5.9/14.2 1st 5.6/15.0 2nd 5.1 (5.6) 1st 2.8 1st 2.8 2.2 (4.7) 3.2/11.6
2ife a/b 4.7 12 91 86 82 1st 5.4/6.0 1st 5.4/6.0 12th 6.5 (7.0) — 14th 4.4 6.6 (6.7) 7.7/8.7

†PDB, Protein Data Bank; RMSD, root-mean-square deviation; MSA, multiple sequence alignment. Column 1, PDB code for each protein folded.
Column 3, RMSD of the best structure generated in 2,000 Rosetta runs using only the native sequence. Column 4, number of sequences folded for
each query. Columns 5, 6, 7, length of the full sequence, the length of the MSA core, and the number of residues common to all positions in MSA,
respectively. Column 8, results from clustering the full-length sequence runs using full-length RMSD as a distance metric; Column 9, results for
the same decoy population clustered with common residue RMSD. Columns 8, 9, 14, rank is given followed by the RMSD over the common
residues and the global RMSD (common/global). Columns 10, 13, common residue RMSD followed by the RMSD over the MSA core. Column 10,
rank of the best clusters when just the MSA cores are folded with the common residue RMSD followed by the RMSD over the length of the MSA
core in parentheses. Columns 11, 12, clustering results for the unfiltered and global feature filtered, respectively, simultaneous clustering of
multiple homologues, with only the rank and common residue rmsd given. Columns 13, 14, common residue and full-length RMSD for models
selected from the MSA core and full-length single sequence runs using RMSD to the homologous models as a selection criterion. In all columns,
the clusters reported are the best clusters in the top 15 clusters produced.
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are clustered simultaneously to produce the final models.
Each homologous sequence thus finds its own energy
minima independent of other homologous sequences. We
then compare all minima, each corresponding to a cluster
of decoy conformations generated with a single sequence
with each other via simultaneous clustering.

The ideal result is that only the correct free energy
minima will be present for all the homologues folded, and
that the false minima (incorrect conformations) will be
sufficiently different for different aligned sequences so as
to be diluted out as the homologous decoy populations are
combined. One advantage of this procedure comes from the
way the method handles gaps and insertions. If a gap or

insertion is present in one sequence and absent in another
sequence in the alignment, the gap/insertion will effect a
distance constraint when the structures generated for
these sequences are compared using common residue
RMSD clustering. The degree to which the constraint will
aid in the selection of the correct cluster/decoy is obviously
low if the gap is short; nevertheless, the information is
automatically considered by the simultaneous clustering
procedure.

Of the four methods discussed, the most consistent
improvement in our ability to generate good models comes
from folding multiple homologues for each query. In Table
II, column 4 shows the number of sequences selected, as

Fig. 3. MSA for 2acy. Sequences are ordered by PSI-BLAST E-value. The sequences folded using Rosetta
are underlined. Bars at top represent the full length of the query sequence (blue), the ungapped core of the
MSA (green), and the positions common to sequences folded (yellow).
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described in the methods section, for each query. Once a
representative subset of the entire MSA was selected, an
independent Rosetta run was carried out for each of the
selected sequences, producing 1,000 decoys for each se-
quence. Once generated, the multiple decoys were clus-
tered using RMSD over positions common to all sequences
folded as a distance metric. This common position RMSD
was chosen so that pairwise RMSD would be comparable
for homologues of variable length and composition.

The results for simultaneously clustering homologues
for the 18 queries in the test set are shown in column 11 of
Table II. In 13 of the 18 cases, good models are produced in
the top 10 clusters when the clusters are sorted by size,
and in all but 2 of these 13 successes, the good model is in
the top 5. This method selects better models with ranks
closer to 1 than does the original global RMSD clustering
of the single-query sequence folding runs. Generated mod-
els are compared with the corresponding native structure
for an a, a b, and an a/b class protein in Figure 2.

Once homologous models are obtained, the remaining
problem is how to use these homologous models to build
models completely consistent with the full-length query
sequence (the homologous models may contain gaps or
insertions that obviously complicate this process). Using
the homologous models to fish through full-length query
and MSA-core folding runs (using common position RMSD
to the homologous model as a selection criterion) allowed
us to select good models for all queries for which there were
good query-sequence models. The last two columns in
Table II show that good models over the common residues
were almost always selected, but globally correct models
were sometimes not present in the full-length single-query
sequence runs and were therefore not selected. This is the
case for 2acy, where the core 68 residues converged to a
very low RMSD model, but the C-terminal strands were
never folded correctly in the query single sequence runs
and were absent in most of the homologues. Consequently,
no good models were produced for this region, although 68
residues (the MSA core) were predicted to 4.7 Å RMSD.

One slight drawback to this method is that it increases
the length of the folding run by, on average, 6.5-fold for
each query. Currently this is not an issue; the 6.5-fold
increase still leaves the calculation short enough so that it
can be completed in less than 1 week on a 500-MHz Intel
Celeron processor. If this increase in computer time were
to become an issue, the length of the calculation could then
be reduced by reducing the number of homologous se-
quences folded or resorting to the simpler methods de-
scribed above. For five of the queries, only 2–3 sequences
were folded due to the shallowness of their MSA. For these
sequences, some improvement is still gained by simulta-
neous clustering even with this small number of homo-
logues, suggesting that folding fewer homologues when the
length of the calculation becomes problematic will not
completely destroy the increase in performance.

CONCLUSIONS

Recognition of native-like structures produced by Ro-
setta is considerably improved using MSA information and

global measures of hydrophobic core formation. Low RMSD
(,7.5 Å) models were ranked 15th or better for 15 of the 18
queries attempted and 5th or better for 13 of the 18 queries
(Table II). To indicate the quality of models with RMSD
within this range, the models generated for three of the
targets are shown in Figure 4.

The methods described for assessing hydrophobic core
formation and using multiple sequence information im-
prove on previously developed methods. The ellipsoid
model of protein cores is considerably more general than
the spherical models implicit in previous methods—the
ellipsoidal models of the three native proteins shown in
Figure 6 are clearly better representations than the best
spherical model. The hydrophobic core score also avoids
some of the problems inherent in pair-additive measures of
hydrophobic core association. Our use of multiple sequence
information—the clustering of structures generated in
independent simulations with different homologue se-
quences—outperforms methods based on simple score
averaging in facilitating recognition of low RMSD struc-
tures. The searches of conformational space for each

Fig. 4. Models for three of the 18 queries for which multiple homologs
were clustered. Models selected by the clustering routine are shown on
the left. Native structures are shown on the right with residues matching
the homologous model shown in red. RMSD values are give followed by
the number of matching residues in parenthesis.
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homologous sequence yield the lowest free energy struc-
tures consistent with the local sequence biases for that
sequence, and hence the clustering of the structures
generated for a number of different homologues identifies
the conformations that are most consistent with the (differ-
ent) local sequence biases and nonlocal interactions repre-
sented within the protein family.

MATERIALS AND METHODS
MSA Generation and Homologue Selection

Each query sequence was taken directly from the corre-
sponding PDB file. The MSA was generated using PSI-
BLAST26 and then inspected using MView.27 Because of
time constraints, we folded only a representative subset of
the MSA. The sequences were chosen to be a representa-
tive, diverse, subset of the MSA. Sequences shorter than
60% of the query sequence length were discarded, as were
sequences greater than 60% or less than 20% sequence
identical to the query. Pearson correlation coefficient
matrices based on sequence identity were then generated
for each MSA. A total of 12 sequences were chosen such
that their summed row in the correlation matrix was
lowest (in cases in which fewer sequences were present all
sequences were selected). Once a subset was chosen,
sequences with greater than 60% sequence identity to
other sequences in the subset were removed. If the short-
est sequence, over 60% of the length of the query, was not
in the set selected for folding, it was added to ensure that
the shortest allowable sequence was included in the final
set of homologues to be folded (regardless of its sequence
identity to sequences in the subset before adding the
shortest sequence). Once the final set of homologues to be
folded was selected, the positions common to all sequences
selected were determined. At this stage, the common core
of the MSA is the region between the first and last common
residues in the subset; positions common to all homologues
are also in reference to this subset (see Figs. 3 and 5).

General Clustering Routine

Our general procedure for clustering populations of
decoys has been described previously but will be reviewed
here due to its importance to the methods that follow.7 Two
structures are considered neighbors if they are closer in Ca
RMSD than an empirically derived cutoff. The clustering
procedure is iterative and begins by calculating a list of
neighbors for each structure. The structure with the
largest number of neighbors according to this list is then
the center of the first, largest, cluster. The cutoff for
considering two structures neighbors is started at 8.0 Å
and iteratively reduced until the first cluster contains
50–100 decoys or until the cutoff has reached 3.0 Å. Once
one of these conditions is met, the cutoff is fixed for the
remaining iterations. The first cluster center is then
written out and its neighbors are removed from the
population. The process is then repeated until the clusters
produced contain fewer than 5 neighbors. For populations
of ,3,000 decoys, the first cluster was set to contain 50
members, for populations of .3,000, the first cluster was
set to contain 100 decoys.

Simultaneous Clustering of Multiple Homologues

For each sequence, secondary structure predictions are
made and profiles generated as described above. Indepen-
dently generating a sequence profile for each homologue is
necessary because of the presence of gaps and insertions in
the homologous sequences. Once the profile is generated,
secondary structure predictions are made using PSI-
PRED, DSC, and PHD.15,28–30 Fragment libraries are
then generated for each sequence. A total of 1,000 decoys
are generated for each homologous sequence and the
original query sequence using Rosetta. A total of 1,000
decoys were also generated for each query’s core MSA
positions using the fragments generated with the full
length query. The sequences are then clustered as above,
using RMSD over the positions common to all homologous
sequences folded and the MSA as the key for mapping the
different homologous decoys onto each other. Clusters
reported in Table II are ranked by size (i.e. the number of
neighbors in each cluster). This practice of ranking by
cluster size is supported by our results from CASP330 and
the work of Shortle et al.,22 who found that, in populations
of decoys generated by Rosetta, native-like decoys were
surrounded by a larger number of similar conformations
than non-native decoys.

Global Measures of Core Formation

Ellipsoidal demarcations of protein cores were calcu-
lated based on the most buried 75% of the hydrophobic
residues. Burial is approx. by the number of centroid–
centroid contacts of less than 10 Å, the 25% of residues
with the fewest contacts are removed from the demarcat-
ing ellipsoid calculation. The principle axes of the remain-
ing buried hydrophobic residues are calculated based on
the coordinates of their Cb, Ca, and centroid atoms (the
centroids are weighted according to the number of hydro-
phobic heavy atoms they represent). Once the axes of the
best-fit ellipsoids (the principal axes) are determined the

Fig. 5. Native structure of 2ACY shown with the positions common to
all homologues folded, shown in gray. Two internal gaps, evident upon
inspection of Fig. 3, are indicated with asterisks.
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conformation is divided into four regions by scaling the
principal axis such that the resultant three ellipsoids
contain 25%, 50%, and 75% of all centroids. These three

ellipsoids now partition the decoy into four regions as
shown in two dimensions in Figure 4. The case for using
only the most buried 75% of the hydrophobic residues is

Fig. 6. A: 1PSE with all hydrophobics shown as CPK space-filling (left) and with all hydrophobics partitioned into inner (red), middle (orange), and
outer (yellow) cores (right). Note the exclusion of a large number of unstructured surface hydrophobics. B: Two orthogonal cutaway views of the native
structure for 1SRO with inner, middle, and outer cores labeled red, orange, and yellow space filling, respectively. Surface residues are shown in
wireframe. C: Same view for 2ACY. Core boundaries for A–C were generated as described in Materials and Methods.
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important for proteins such as 1PSE, which have consider-
able numbers of exposed hydrophobic residues (Fig. 4).

The core score was parameterized using 560 small,
single core, native structures. For each native structure
the ellipsoidal demarcations were calculated as described
above and the frequencies of all amino acids occurring in
each of the four regions were tabulated. Our initial set of
hydrophobics was as follows: A, F, G, I, L, M, P, V, W, and
Y. After looking at the initial frequency table for the inner
and middle cores we revised our hydrophobic set to: A, C,
F, H, I, L, M, V, W, Y (2G, 2P, 1C, 1H). The inclusion of C
is not surprising and H is probably present due to its
participation in metal binding sites. Once the new set of
hydrophobics was determined a frequency table (describ-
ing the probability of finding different amino acids in the
four possible shells defined individually for each native
structure) was regenerated and normalized to account for
the overall frequency of each amino acid in the 560
sequences. From this normalized frequency table, a log-
odds table was generated. The core score is determined by
calculating the demarcating ellipsoids for a given decoy
and then summing the log odds table entries for each
residue in each of the four regions; this sum now includes
hydrophilic residues as well as the hydrophobics used to
calculate the demarcating ellipsoids. We found that the
most significant signal was obtained by combining the log
odds sums for the inner and middle core. For the prefil-
tered clustering the 25% of the decoy population with the
worst core score was removed and the remaining decoys
were then filtered with the remaining features and clus-
tered.

The Ca score is simply the number of Ca atoms in the
innermost core divided by the number of atoms in the
outer core. This quantity is low for most proteins and high
for ;50% of the decoys generated by Rosetta. In the
filtered tests of the simultaneous clustering, the Ca parti-
tion score was used to filter rare topologies (topologies with
many backbone elements penetrating the core) from ho-
mologous decoy sets by removing the 25% of decoys with
the highest Ca partition score.

The third feature conceptually derived from the micelle
model is the angle distribution score. This score attempts
to exclude topologies where the backbone atoms do not
surround the core. Using spherical polar coordinates, we
divide the surface of a sphere centered at the conforma-
tion’s center of mass into bins with equal surface area (f
boundaries at 2p, 22.356, 21.571, 20.7853, 0, .785,
1.571, 2.356, and p; u boundaries at: 0, 0.72, 1.04, 1.57,
2.09, 2.42, and p). Each bin has eight neighboring bins.
The score is calculated by first binning the Ca atoms and
tabulating the number of Ca in each bin. Using this table,
the number of “holes” in the angle distribution are counted,
where a hole is an empty bin with five or more empty
neighboring bins. The angle distribution score is then the
number of holes averaged over three orthogonal choices for
the z-axis, to minimize effects due to the limitations of the
differently shaped longitude/latitude bins. Decoys having
an angle distribution score of .6.0 (.6 holes) were re-
moved from the population. The fixed angle distribution

score of 6.0 allows for roughly two holes in the distribution
of backbone atoms around the single unified core.

Each filtering is performed on the original decoy popula-
tion; thus, decoys removed by multiple methods are equiva-
lent to decoys removed by just one feature. Once filtering is
complete the remaining decoys are passed to the simulta-
neous clustering routine.
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