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Freed et at. have recently developed a lattice cluster theory of polymer solutions that involves 
series expansions in momentum space. Here we reformulate the lattice cluster theory in 
coordinate space. The present treatment has certain useful features. In particular, the terms in 
the reformulated theory can be obtained readily from existing exhaustive computer 
enumerations. Also, the Flory-Huggins theory can be shown to arise as the first term in a 
recentered coordinate-space expansion. Generalization to treat polymers in confined space is 
straightforward. 

I. INTRODUCTION 

The Flory-Huggins theory of polymer solutionsl has 
been one of the most widely. used theories in polymer 
chemistry. Its principal limitations are the two mean-field 
approximations used to compute the entropy and enthalpy. 
Until recently, no systematic improvement on the Flory
Huggins theory was available. 

Recently Freed2 and his colleagues2- 18 have taken a 
major step forward and developed a series (cluster) expan
sion for the partition function for lattice polymer solutions. 
The zeroth-order term in the series corresponds to a mean
field approximation with the succeeding terms providing a 
systematic correction to the mean field.2,3 They have ap
plied this theory to rods,4 semiflexible chains,5 chains with 
nearest-neighbor interaction energies,2,6 polymer blends,7 

branched chains and more complex chain architectures,8-11 
and cross linking in polymer networks. 12 Nemirovsky and 
Coutinho-Filho have applied the theory to count the num
ber of conformations of a single self-avoiding walk as a 
function of densityl9 and have studied the packing proper
ties of a collection of flexible polymers.2o An off-lattice 
version of this cluster expansion has also been developed 
by Freed.13 

A major contribution of the theory of Freed et at. is 
the insight it offers into the molecular origins of entropic 
contributions to the Flory-Huggins X parame
ter.3,5,7,9,1O,12,l4 It shows the basis for the polymer concen-
tration dependence of X and it repairs the well-known 
problem of the shape of the phase diagram, which is not 
predicted accurately by the original Flory-Huggins the
ory.l5,l6 

The original derivation of Freed2 is based on a field 
theory using a coupled-spin representation. It bears some 
similarity to the approach of de Gennes,21 which recog
nizes the mathematical equivalence of lattice polymers 
with excluded volume and the n-->O limit of a system of 
n-component lattice spins. An advantage of the Freed ap
proach2 is that the chain lengths of the polymers can be 
specified, whereas the chain length distribution is uncon
trolled in the magnet analogy of de Gennes. 

In light of the importance of the lattice cluster theory 

of Freed and his colleagues, it is worthwhile to explore 
whether alternative formulations of the theory may have 
advantages. For example, Freed and his colleagues have 
found a simpler algebraic derivation not· based on spin 
fields. 16,17 More recently, analytic relations suggested by 
this lattice cluster expansion have been ingeniously com
bined with exact conformational enumerations to provide 
expansions, in inverse powers of the spatial dimensionality, 
for the partition function and end-to-end distance of a self
avoiding polymer with nearest-neighbor interactions. 18 

Here we develop an alternative formulation of the lat
tice cluster theory. Whereas the treatments of Freed et ai. 
develop the theory using Fourier transforms and the dia
grams for the expansion involve sums over q vectors in 
momentum space, our approach is based on diagrammatic 
expansions in coordinate (real) space. Each of these ap
proaches has its advantages; the final results of the two 
formulations are identical. It is noteworthy, however, that 
in certain applications of Feynman-type diagrammatics,22 
a coordinate-space formulation23 may offer insights that 
would have been more obscure in a momentum-space for
mulation. 

The present reformulation of the lattice cluster theory 
has at least two useful features. First, it is quite flexible. 
For example, whereas the first term in the Freed expansion 
is not identical to the Flory-Huggins theory, in the present 
approach it is simple to center the expansion so that the 
first term is exactly the Flory-Huggins theory. Second, our 
coordinate-space formulation can draw readily on a large 
body of exact lattice enumeration results24-28 to compute 
the diagrams in the expansion. The coordinate-space treat
ment is particularly useful in dealing with nonperiodic lat
tice boundary conditions. This coupling of the analytical 
theory to computer simulation results should provide a 
simple way to obtain accurate expansions out to high or
der. It may be useful for testing the ansatz that is the basis 
for the current asymptotic expansions. 18 The possibility of 
extending the present formulation to treat heteropolymers 
will also be discussed. 
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II. THE PARTITION FUNCTION 

We follow the treatment of Dudowicz, Freed, and 
Madden 16 and first review their notation. 

Let a/3 ([3= 1,2, ... ,z; z is the lattice coordination num
ber) designate the vectors from a given lattice site to z 
other nearest-neighbor lattice sites and let ri denote the 
position of the ith lattice site. The condition that the lattice 
sites i and j are nearest neighbors is 

ri=rj+a/3 

for some [3= 1,2, ... ,z. Using the Kronecker 8, 

{
I, 

8Ci,j)= 0, 

the constraint 

for i=j 

for l=/=j, 

(2.1) 

(2.2) 

(2.3) 

ensures that lattice sites i and j are nearest neighbors. 
Let i,/: designate the lattice site occupied by the ath 

monomer of the mth chain. The partition function (Le., 
total number of conformations) of np polymers each of 
length N -1 (N - 1 bonds, N monomers) configured on a 
lattice with a total of N1 sites is 

where the summation over lattice sites 

e.v. 
L 

i[*i},6" '*i}" 
(2.5) 

*l~*l~*"'*lt 

is restricted to enforce the excluded volume (e.v.) con
straint (such that no site may be occupied by more than 
one monomer). The product of the Kronecker 8's in Eq. 
(2.4) then enforces the constraint that successively bonded 
monomers are nearest neighbors on the lattice. The np 
polymers and the two ends of each polymer are considered 
to be distinguishable in the partition function (2.4); if they 
are regarded as indistinguishable,16 Eq. (2.4) would be 
divided by np!2np. Equation (2.4) applies only to polymers 
with linear architecture, which is the focus of the present 
paper. However, the generalization to branched polymer 
architectures can easily be obtained by replacing the single 
Kronecker 8 in Eq. (2.4) with multiple Kronecker 8'S.16 

The definition 

Xa,m= N1 [ ± 8Ci':. ,i':.+1 +[3)] -1 
z /3=1 

(2.6) 

allows the partition function (2.4) to be rewritten in the 
form 

It is clear from the last two equations that X a,m/ N1 is the 
difference between the exact value and a mean-field ap
proximation of the insertion probability that monomer {a 
+ I,m} is at position i'/:+1 given that monomer {a,m} is at 
position i,/:. The exact probability is represented by a Kro
necker 8 which requires the two connected monomers to be 
spatial nearest neighbors. The mean-field approximation 
treats all monomers as if they were uncorrelated, hence the 
mean-field probability (lIN1) is independent of the posi
tions of the two monomers. Each single factor Xa,m repre
sents the correction for inserting one bond. The correction 
for inserting B bonds will involve a product of B Xa m 

2-20 ' factors. In the work of Freed and co-workers, the cor-
rection factor Xa,m is Fourier transformed and represented 
as a summation over nonzero q vectors in the first Brillouin 
zone (on the reciprocal lattice) in momentum space.29 In 
our approach, we retain the coordinate-space form of Eq. 
(2.6). 

Multiplication of the np(N -1) terms in the products 
in Eq. (2.7) over m and a yields 

( 

z )npClY-I) 
!l(np,N,N1)= N1 {To+T1+T2+'" 

+Tn (N-l)}, 
p 

(2.8) 

where the terms in the curly brackets are given by 

Here the shorthand notation ai' ml > a2' m2 represents the 
condition that either (i) al > a2; or (ii) ml > m2 for al 
=a2' The first summation in Eq. (2.9) is over possible 
spatial positions for all n~ monomers, whereas the second 
summation is over possibilities in choosing B bonds from 
the total of np(N -1) bonds in the system. Because the 
product of Xa,m's in Eq. (2.9) is invariant under any per
mutation of the {a,m} sets, the equality 

(2.10) 

holds for Eq. (2.9). The zeroth-order or zero-bond term in 
the series enclosed in curly brackets in Eq. (2.8) is 

To= 2: 1. (2.11) 
e.v. 

For this B=O term, because T B does not involve any sum
mation over {a,m}, the excluded volume sum can be eval
uated simply by restricting the limits on the multiple sum
mations over i'/:'s, viz., 

NZ Nz-l Nz-2 Nz-':!-,N+l 

To= L 1= L L L'" L 1 
e.v. ;;;=1 

Hence 

(N1-n~)! . 

(2.12) 
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( ) 

np(N -I) [ N , np(N -I) ] 

n(np ,N,N1)= ;1 (Nl-~pN)!+ B2:.1 T B , 

(2.13) 

where the combinatorial term in Eq. (2.13) is the mean
field partition function [the original Flory-Huggins parti
tion function I corresponds to this term with z - 1 in place 
of z in the overall multiplicative factor (z/ N1) npCN -Il], and 
the rest are B> 0 contributions that involve at least one 
Xa,m factor. 

III. THE CLUSTER EXPANSION 

We now consider the higher-order terms in Eq. (2.8); 
these are successive corrections to the mean-field approxi
mation. The systematic evaluation of T B'S may be con
ducted by first collecting the terms 

B 

(3.1) 

in the summations in Eq. (2.9) over monomer labels 
{a,m}'s into groups which are chosen such that every term 
of the form of Eq. (3.1) belonging to the same group sums 
to exactly the same final result when the last excIuded
volume summation ~e.v. over lattice sites is performed. We 
label these groups by A. That is, T Bin Eq. (2.9) can now 
be written as 

[ ( B)] T B= 2: 2: IT Xa m , 
e.v. A {a,~ A} r= I r' r 

(3.2) 

where ~A sums over different A groups, and ~{a,mIA} sums 
only over products of B factors of Xa,m's that belong to a 
specific A group with the restriction ai' ml > a2' m2 
> ... >aB, mB ofEq. (2.9). The summations ~e.v. and ~A 
can now be interchanged, hence 

(3.3) 

The main reason for factoring into A groups should now be 
clear. By construction, every product of B Xa m's belong-

r' r 
ing to a specific A group contributes an equal amount when 
summed over by ~e.v., Therefore the double summation 
~e.v. ~{a,mIA} in the above equation can be replaced by the 
product of the number y( B,A) of distinct sets of B {a,m }'s 
for the given A group and a single summation ~e.v. over 
anyone set of B {a,m}'s belonging to the given A group. If 
elements of this set are denoted by {a(A)"m(A)r} (r 
= 1,2, ... ,B), then 

T B= 2: TB(A), 
A 

B 

TB(A)=y(B,A) 2: IT Xa(A);n(A)r' 
e.v. r=1 

(3.4) 

Here the tildes on a and m indicate the specific set of 
monomer labels chosen to represent a A group, whereas 
the a and m without tildes in Eqs. (3.2) and (3.3) are 
summation indices. 

Each A group represents a different pattern of connec
tivity among the B bonds in the X's. Each A group is 

uniquely represented by a list (l1,/2, ... ,ln ), where II is the 
number of covalent bonds in a chain segment 1, 12 is the 
number 6f covalent bonds in a different chain segment 2, 
etc. The sum of the lengths of segments 11+ 12 + ... + In = B 
must add up to the number of bonds B in the A group. 
Chain segments are taken from within a given chain or 
among different chains. The shorthand notation y(B,A) 
and T B(A) in Eq. (3.4) will be replaced by yUI ,12, ... ,ln) 
and T UpI2 , ... ,ln) where necessary below to indicate the ex
plicit connectivity pattern of the B bonds in a particular A 
group. 

We now seek to establish a relation between the T B'S 

and the numbers of conformations of chain segments. In 
view of our choice of the A groups, it is useful to define the 
following quantities: 

S(O) = 2: I, 
e.v. 

S(1) = ~ (~1) [ pt o(i~ ,i~+1 +f3) ], 

S(2) = 2: (~1) [ t o(i~ ,i~+1 +f3)] (~1) 
e.v. f3-1 

(3.5a) 

(3.5b) 

x [ f o(i~: '1~:+1+f3)], (3.5d) 
f3=1 

etc. [S(O)=To; see Eq. (2.11)]. The general Sfunction is 
defined as 

N (p+q+"'+I) 

S(p,q, ... ,/) = ( ~) ~ [(p consecutive D's) 

X (q consecutive D's) X ... 

X (l consecutive D's)], (3.6) 

where 

(p consecutive o's)= Pif [ f O(i~+s,i~+s+I+f3)]. 
s=O P=I 

(3.7) 

Because each 0 in Eq. (3.7) represents a single polymeric 
bond, a factor of p consecutive D's represents a chain seg
ment with p bonds. Owing to the fact that there are N - 1 
bonds along a chain, p,q, ... ,l in Eq. (3.6) satisfy the con
straint that O<p,q, ... ,I<.N -1. Implicit in the definitions in 
Eqs. (3.6) and (3.7) are restrictions on the relationship 
between a's and m's of different factors of consecutive D's. 
These restrictions are needed to ensure that chain segments 
represented by two different factors of consecutive D's are 
disconnected, such that no two factors, say of p and q 
consecutive D's, can be joined with each other to become a 
factor with a string of p+q consecutive D's. For example, 
in the definition (3.5d) for S(1,1), we require either 

J. Chern. Phys., Vol. 98, No. 12, 15 June 1993 Downloaded 02 Feb 2011 to 140.142.20.229. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



9954 Baker. Chan. and Dill: Coordinate-space polymer lattice cluster theory 

iii=l=iii', or a'=I=a± 1 if iii=iii'. The meaning of the 
S-functions will become more apparent below. 

We now consider the first-order term in the expansion 
of Eq. (2.8). For B= 1, only one factor of X is involved in 
the definition of TI [see Eq. (3.4)]. There is only one a 
group, therefore, the single set of representative monomer 
labels {a,iii} may be taken to be {I,I}. For this case, the 
single y factor is the number of ways of choosing one single 
bond from the np chains each having N -1 bonds, thus 
y(l)=n/N-l). Hence, it follows from Eq. (3.4) as well 
as the definitions of X and S's in Eqs. (2.6), (3.5a), and 
(3.5b) that 

TI=T(l)=n/N-l) L X I•I =n/N-l) [SCI) -S(O)]. 
e.v. (3.8) 

As defined above after Eq. (3.4), the subscript (1) in T(1) 

is a label for the contributing a group. For this case, the a 
group contains only a single bond, T U1 ,12 .... ,ln) = T(1) be
cause 11=1 and 12=/3=···=ln=0. 

We next consider the second-order (B=2) term T2 in 
Eq. (2.8). T2 has two X's, representing two bonds [see Eq. 
(2.9)]. In this case, there are two a groups, each of which 
corresponds to a particular arrangement of the two 
bonds-either the two bonds are (i) connected, i.e., ml 
=m2 and al =a2 ± 1, or Oi) disconnected, i.e., either 
ml=l=m2 or al=l=a2± 1, or both. Hence, according to Eq. 
(3.4 ), 

(3.9) 

where the SUbscripts (2) and (1,1) stand for the two cases 
of bond connectivity. For the case "(2)" with two con
nected bonds, there are altogether npCN -2) such chain 
segments in the polymeric system. Because all these two
bond chain segments are equivalent with respect to the :Ie.v. 

summation, al = 1, a2 = 2, and iii I = iii2 = 1 may be used in 
Eq. (3.4) to evaluate T(2)' therefore, 

T(2)=npCN -2) L X I •IX 2,1· (3.10) 
e.v. 

For the case "(1,1)," the two disconnected bonds may 
be located either in the same chain or in two different 
chains. However, this difference does not have any effect 
on the ~e.v. summation. Therefore a single set of {a,iii}'s, 
e.g., al =a2= 1, iii I = 1, and iii2=2 may be substituted into 
Eq. (3.4) to give 

T(1,l) = [npCN -2) (N -3)/2+np(np-I) 

(3.11) 
e.v. 

where the first and second factors enclosed in square brack
ets are, respectively, the number of ways of putting two 
disconnected bonds (i) in the same chain and (ii) in two 
different chains. These factors are calculated as follows: (i) 
inserting two disconnected bonds to a single one of the np 
chains with N -1 bonds can either proceed by (a) insert
ing the first bond at one of the two chain ends, then the 
number of ways of inserting the second bond is (N - 3), 

thus resulting in 2 (N - 3) different arrangements for this 
case; or (b) not inserting the first bond at the chain ends, 
then there are (N - 3) possible positions for the first bond 
and (N -4) possible positions for the second bond, thus 
giving rise to (N-3)(N-4) different arrangements. The 
sum of these two contributions is (N-2)(N-3), which 
must then be divided by two because of the indistinguish
ability of the two bonds. This accounts for the first factor. 
Oi) If the two disconnected bonds are in different chains, 
the number of ways of choosing two among np chains is 
np(np-I )/2, and there are N -1 possible positions along 
the chain for each of the two bonds. This accounts for the 
second factor. 

Substitution of the definitions of X [Eq. (2.6)] and Ss 
[Eq. (3.5)] into Eqs. (3.10) and (3.11) and a little algebra 
yields 

T(2)=np(N-2) [S(2) -2S(1) +8(0)], (3.12a) 

x [S(1,1) -2S(1) +S(O)]. (3.12b) 

We have followed Freed and co-workers8,17 in writing 
each contribution to T B(Il) in Eq. (3.4) as a product of two 
factors. One is the combinatorial prefactor y(B,a); it is 
dependent on the chain architecture (branching) and is 
equal to the number of ways the given set of II, 12, ... ,ln 
segments of a specific a group may be partitioned among 
the polymeric system. The other is the architecture
independent factor 

B 

§J (B,Il) == L II Xa(Il),m(Il)r' 
e.v. r=1 

(3.13) 

The reason for adopting the notation y( B,a) and §J (B,a) 
instead of y D and DB of Freed and co-workers8

•
17 is to 

underscore the dependence of these quantities on both the 
number of bonds B (Kronecker D's in X's) and the pattern 
of connectivity Il among these B bonds. When the connec
tivity pattern (l1,l2, ... ,ln) among the B bonds is identical 
for .91(B,Il) and DB' our y(B,a) =y(ll,l2, ... ,ln) = Freed 
etal's YD, and our §J(B,Il)=§J(ll,l2, ... ,ln) is related to 
Freed et al.'s DB by 

.91 (B,a) =.91 (ll,l2,···,ln) 111+12+"'+ln=B 

(3.14) 

where the last equality follows from Eq. (2.12). An exam
ple of the factorization of Ts is provided by T (2) in Eq. 
(3.l2a), where y(2) =np(N -2) and .91 (2) =S(2) 
-2S(1) +S(O) in our notation. 

It is straightforward to deduce from the expansions 
(2.8) and (2.9) that the y's satisfy the identity 

(3.15) 

where 

n! 

r!(n~r)! . 
(3.16) 

J. Chern. Phys .• Vol. 98, No. 12. 15 June 1993 
Downloaded 02 Feb 2011 to 140.142.20.229. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



Baker. Chan. and Dill: Coordinate-space polymer lattice cluster theory 9955 

TABLE I. Architecture-independent factors 9) (II .I2 ..... ln ) as linear com
binations of S(P.q ..... I) for B=II+12+···+ln<4. 

. Bond 
connectivity 

1 S(I)-S(O) 
2 S(2)-2S(IHS(O) 

1.1 S(l.I)-2S(lHS(O) 
3 S(3)-2S(2)-S(l.IH3S(I)-S(O) 

2.1 S(2.I) -2S(l.1) -S(2) +3S(l) -S(O) 
1.1.1 S(l.I.l) -3S(l.I) +3S(l) -S(O) 

4 S(4) -2S(3) -2S(2.1H3S(2H3S(l.I) -4S(l) 
+S(O) 

3.1 S(3.I) -2S(2.1) -S(l.I.I) -S(3H2S(2) 
+4S(1.I) -4S(1HS(O) 

2.2 S(2.2) -4S(2.1) +2S(2) +4S(1.1) -4S( 1) +S(O) 
2.1.1 S(2.1.1) -2S(2.1) -2S(1.1.1) +5S(1.1) +S(2) -4S(l) 

+S(O) 
1.1.1.1 S(1.1.1.I) -4S( 1.1;I) +6S(l.l) -4S( I) +S(O) 

The combination ofEqs. (2.13), (3.4), (3.13), and (3.14) 
recovers the lattice cluster theory8.17 

( 
z )np(N-l) NJ. 

U(np,N,NI) = Nl (Nl-npN)! 

[ 

np(N-I) ] 

X 1+ B~I t r(B,a)DB , (3.17) 

where the summations in the square brackets can be writ
ten explicitly as 

1 niN-ll 
- I I r(lr. /2, .. ·,ln ) Pfl (II ,l2,· .. ,ln )· 
To B=1 11+/2+"'+ln=B 

(3.18 ) 

Freed and co-workers have shown that the DB'S [and 
therefore the Pfl (II ,l2, ... ,ln) 's] can be represented conve
niently by diagrams showing the connectivity among dif
ferent bonds. In their work, the DB'S are products of Fou
rier sums whose physical interpretation is not immediately 
obvious. The diagrammatic procedure for the evaluation of 
Freed et al.'s DB'S is straightforward, but the algebra can 
be quite tedious for high order terms. 

IV. ENUMERATING THE CONFORMATIONS AND 
EVALUATING THE DIAGRAMS 

In this section, we evaluate the diagrams Pfl (II '/2""'/n) 
as linear combinations of the quantities S(p,q, ... ,/), which 
in turn can be found as enumerations C(p,q, ... ,I) of real-
space lattice conformations. The first step of obtaining 
~ (ll,12 , ... ,ln ) as linear cOl;nbinations of S(p,q, ... ,I) is 
straightforward. As illustrated by the calculation leading 
to Eq. (3.12), we substitute the definition of X [Eq. (2.6)] 
and of the S's [Eqs. (3.5)-(3.7)] into Eq. (3.13). Table I 
shows the lowest order expression for g; (l1,12""'/n) count
ing up to four bonds (B=lt +12+," +In<4). 

A. Diagrams PJ)(/d2, ... ,ln) as linear combinations of 
S(p,q, .•. ,1) 

Here we describe the general procedure for obtaining 
the linear combination of S's for g; with any bond con-

nectivity pattern II ,/2 , ... ,ln • A basic quantity is the number 
of ways of ananging r disconnected chain segments with Ij 
bonds (lj>O, j=I,2, ... ,r) along a continuous string of M 
monomers (M - 1 bonds). This quantity is 

r! .(M-~j=llj) 
II~llv(l)! r ' 

(4.1 ) 

where v(l) is the number of chain segments with length I 
(i.e., I bonds) among the r segment lengths II' 12, ... ,lr ; 

hence ~fV(I) =r. The first factor in Eq. (4.1) is the number 
of distinguishable linear orderings of the r chain segments. 
The second factor accounts for the number of ways of 
arranging a given ordering of these chain segments along 
the M - 1 consecutive slots of possible bond positions 
("bond slots"). At least r-l empty bond slots are re
quired to separate the r disconnected chain segments-91 
is nonzero if and only if M>r+~j=l/j; otherwise 9 =0. 

We expand Pfl(lI,/2, ... ,ln) defined in Eqs. (3.13) and 
(3.14). There are a total of B=~i=I/Jactors of X's in the 
product of Eq. (3.14). We first identify groups of X's 
whose Kronecker S's aLe consecutively connected. By def
inition of g;, there are n such groups and the nu~ber of 
X's in these groups are 11,/2, ... ln • Schematically, 

Pfl(lI'/2'''''/n) = Ixx···x 
~ e.v. '-v-" 

ll+l2+"'+ ln=B B factors 

= I (XX-' 'X) (XX" ·X)··· (XX" 'X), 
e.v. "-"v-" "-"v-" "-"v-" 

II connected 12 connected In connected 

(4.2) 

where we have indicated the grouping of the X's by their 
connectivities. Now consider each individual group of X's. 
Each X factor consists of two parts-the Kronecker-S part 
and the -1 part [see Eq. (2.6)]. Owing to the -1 part, the 
expansion of the product of any given I; factors of X whose 
S's are connected gives rise to a weighted sum over terms 
which are products of multiple strings of consecutive S's. 
Obviously I; is the maximum number of consecutive S's in 
any expansion term of I; connected factors of X's. The 
number of these expansion terms with any given number 
rei) >0 of strings with 1;.1' 1;.2, ... I;.r(i) consecutive S's is ex
actly equal to the number of ways of bond arrangement 
f!Jl (I; II;, 1,1;,2, ... ,I;,r(i») given by Eq. (4.1). Here each S cor
responds to a bond in a chain segment and each -1 cor
responds to an empty bond slot. Hence the constraint 1;,1 

+ 1;,2 + ... + I;.r(i) + rei) <1;+ 1 applies. Therefore the 
maximum value of rei) is (1;+ 1)/2 for I; odd and 1/2 for 
I; even. The - 1 part in X also results in a sign (- 1 ) u. 

Thus the expansion is given by . 

X IT [(NI)li.
j 

I sIs .. · IS], (4.3) 
j= I Z {3 {3 {3 

'- 'V'~./ 

li,j consecutive lJ's 
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where 

L - (4.4) 
{d(li)} Zi,1 +Zi,2+'" +Zi,r(i) +r(i) <,Zi+ 1 

sums over all possible decompositions of Ii subject to 
the above constraint on Ii l' li,2, ••. ,li,r(i) , and 
U= u( Ii I/i,I,li,2,···,li,r(i) == li- ~j<!11/i,; • 

This procedure is used to expand each of the n groups 

of X's in Eq. (4.2). Then the only operation remaining in 
the calculation of g; is the excluded-volume summation 
~e.v. over monomer positions. Equation (4.3) implies that 
terms in this final summation are proportional to concate
nations of factors of (Nz/z)~p13 from all n groups of X's. 
Now we substitute S's [defined in Eq. (3.6)] for all these 
concatenations to yield the expansion of g; as a linear 
combination of S factors, 

g; (/1,/2,···,ln ) = L L... L [d (_1)ag; (lil /i,t>/i,2,···,li,r(i» ] 
{d(ll)} {dU2l} {dUn)} 1= 1 

XS(/I,1 ,/l ,2,· .. ,/l ,r(1) ,/2,1 ,/2,2""'/2,r(2) , .•• ,In,1 ,In,2'''''/n,r(n))' (4.5) 

It is easy to verify that the B.;;;;4 expansion of g;'s in 
Table I follows the general formula (4.5). For example, 

. the coefficient of S (0) in the expansion of any g; with B 
bonds is found to be (_1)B by setting li,j=O for all i,j in 
Eq. (4.5), which leads to rU) =0 and g; = 1. Similarly, the 
coefficient of S (1) is determined by Eq. ( 4. 5) to be 
( -1) B-1 B. Both of these relations are confirmed by the 
explicit calculations for B<4 in Table 1. 

B. The relationship between S(p,q, ••. ,1) and C(p,q, ••• ,1) 

Next, the key step is to relate the S(p,q, ... ,/) quantities 
to the total number of conformations C(p,q, ... ,/) for a poly-
meric system configured on the same lattice with the same 
total number of N z sites as the original system. Instead of 
the np (N -1 )-bond chains of the original system, the sys
tem represented by C(p,q, ... ,/) contains a p-bond chain, a 
q-bond chain, etc. For example, because a= 1 and m= I 
may be substituted into the definition of S(2) in Eq. (3.5c) 
without loss of generality, we have 

L 
i!*i~*"'*iJv 
*I~*'~*" ,*,t 

.1 .1 ] (Nz) 
2 

(Nz-3)! 
+(31){j(l2,l3+{32) = ~ (Nz-npN)! C(2), 

(4.6) 

where the indices {3 in the two sums in Eq. (3.5c) are 
renamed {31 and (32' In the second line of Eq. (4.6), the 
sum ~e.v. [Eq. (2.5)] over lattice positions of the npCN -1) 
monomers is separated into two terms. (i) The term inside 
the square brackets (~il*il*il) sum~ over the correlated 

I 2 3 

monomers represented by the Kronecker {j's in this case, it 
corresponds to a trimer (two-bond chain). (ii) The sum 

preceding the square brackets is over all the other uncor
related monomers. The quantity C(2), which arises from 
the term in the brackets, is simply the count of all the 
trimer conformations on the lattice, in the absence of the 
other monomers. The sum preceding the brackets, which is 
over the positions of the npN - 3 uncorrelated monomers, 
leads to the combinatoric factor (Nz-3)!I(Nz-npN)! in 
the third line. The generalization of this relation between S 
and Cis 

N z (P+q+"'+Z) 

S(p,q, ... ,/) = ( ~ ) 

[Nz-(p+1)-(q+ 1) -'" -(/+ 1)]! 
X----~--~~--~~---------

(Nz-npN)! 

x C(p,q, ... ,/). (4.7) 

In Eq. (4.7), one factor of (Nz/z) occurs for each bond 
[see Eq. (3.5)]; the third factor accounts for correlating 
monomers-it is the total number of conformations for a 
collection of polymers with a p-bond [(p+ 1)-monomer] 
chain, a q-bond [( q + I ) -monomer] chain, etc., as defined 
above; and the second factor gives the number of ways of 
placing the remaining npN - (p+ 1) - (q+ 1) -'" - (l 

+ I) uncorrelated (unconnected) monomers. Therefore, 
S(p,q, ... ,/) is the product of (Nz/z) (p+q+"'+Z) and the to
tal number of configurations of npN monomers having a 
connectivity pattern just specified. 

Equation (4.7) provides a recipe for evaluating the S 
factors in the expansion (4.5). This requires expressions 
for the partition functions (the number of configurations) 
for short single and multiple chains on the relevant lattice. 
Since the partition function for multiple chains is equal to 
the product of the partition functions for individual chains 
minus the number of configurations forbidden by excluded 
volume, every multiple-chain partition function can be ex
pressed as a function of single-network partition functions 
[a single chain is a special case of single networks (see Figs. 
1 and 2)]. Hence all lattice-dependent features of the ex
pansion (4.5) are supplied by the single-network partition 
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Topology 

( ...... ) 
(-) 

( A) 
(.,--) 
c........., 
(0) 

(e •••• ) 

(--r) 
(+) 
(~) 

C(p) Partition function on hypercublc lattices 

C(l) 

C(2) 

o 

N{z(z-l )(z-2) 

C(3) 

C(4) 

N[z(z-l )(z-2)(z-3) 

o 

FIG_ 1_ Single-network partition functions with at most four bonds. The 
diagrammatic representations of the partition functions show the topolo
gies of the networks. The relevant CCp) are listed for the single linear 
chains [see Eq. (4.7)]. The value of the partition functions for networks 
configured on d-dimensional hypercubic lattices are given. where z=2d is 
the lattice coordination number. The mUltiplicative factor N/ (the total 
number of lattice sites) in the partition functions accounts for the trans
lational degrees of freedom on lattices with periodic boundary conditions. 

functions. Figure 1 lists all possible topologies for single 
networks with at most four bonds (B<;4) and the values of 
their partition functions on hypercubic lattices (with peri
odic boundary conditions) in terms of the lattice coordi
nation number z. Figure 2 gives general lattice-independent 
expressions for some multiple-chain partition functions as 
functions of single-network partition functions. 

To illustrate our scheme for computing fiJ's as a linear 

(N,-2)! 
X (N,-npN)! C(l) 

Topology C(p,q, ... ,k) 

-C:::} C(l,l) 

C~) C(2,l) 

(:::) C(l,l.l) 

Co :-: 0) C(3,l) 

C=) C(2,2) 

(-:r) 
(a) 
(:;;) C(2,l,l) 

(§) C(l,l,l,l) 

Multiple-chain partition function 

[C(l )]2-4C(2)-2C(1) 

C(2)C(1 )-4C(2)-4C(3) 

-2 (or) -2 (A) 

C(l,l )C(l )-8C(2,l )-4C(l,l )-8C(3) 

C(3)C(1)-6C(3)-4C(4)-2 (0) 
-4 (-r) -4 (1)-) 

[C(2)]2_2C(2)-4C(3)-4C(4)-4 (A) 
-4 (T) -2 (0) -4 (---r) 
- (+) -8 (1)-) 

[C(1)-6] (T)-6 (-r) -6 (1)-) 

[C(1)-6] (A) -6 (1)-) 

C(2,l )C(l )-4C(3,l )-4C(2,2)-6C(2,l) 

-8C(4)-4 (-r) -2 ("!") -2 (e) 

C(l,l,l)C(1)-12C(2,l,l)-24C(3,l)-6C(l,l,l) 

FIG. 2. Topologies of multiple-chain (and multiple-network) partition 
functions are shown by their diagrammatic representations on the left. 
The column on the right gives the lattice-independent relationships be
tween multiple-chain and multiple-network partition functions (with at 
most a total of four bonds) in terms of previously defined partition func
tions in Figs. 1 and 2. Recursive substitutions give explicit expressions of 
the multiple-chain partition functions C(P.q .... ,I) in terms of the single
network partition functions in Fig. 1. 

combination of numbers of short-chain configurations, we 
evaluate ~ (3) explicitly by first using Table I for the ex
pansion of ~(3) in terms of S's, then Eq. (4.7) for the 
expressions of S's in terms of Cs [the explicit expression 
for S(O) =To is given in Eq. (2.12)], and last Figs. 1 and 
2 for the explicit values of Cs. We find 

(4.8) 
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The same result is obtained by momentum-space diagram
maticrulesinEq. (3.16d) of Ref. 3. 

C. Calculation of the combinatorial prefactors 
,),(/1 ,/2 , .. ·,ln) 

We now tum to the r(lu/2, ... ,ln ) term in Eq. (3.18). 
This combinatorial prefactor is defined as the number of 
ways of extracting the set of chain segments with /1, 12 , ••• ,ln 
bonds from the system of np (N -1)-bond chains. Some 
short-chain r prefactors for a variety of chain architectures 
are tabulated in Ref. 8. Here we briefly discuss a general 
procedure for evaluating these prefactors for linear chains. 

Consider the location of the n chain segments with /1, 

12, ... ,ln correlating bonds. LetA(a) denote a specific way of 
dividing the n segments into a groups. The number of 
chain segments in these groups are u(1),u(2), ... ,u(a), 
therefore '};}=lU(j) =n. The segment lengths /1, 12, ... ,ln are 

d 1(1) 1(1) 1(1) 1(2) 1(2) 1(2) I(a) now rename 1, 2 , ... , u(l), l' 2 , ... , u(2)'"'' 1 , 

I~a) , ... ,/~(~). If the condition 

u(j) 

L (I~j) + 1) <N (4.9) 
i=l 

is satisfied for j = I,2, ... ,a, each of these a groups of chain 
segments can fit into an (N-I)-bond chain [see Eq. 
(4.1)]. . 

The number of ways of choosing a chains among np for 
the location of the chain segments is 

(4.10) 

while the number of ways of arranging the chain segments 
with I~j) ,/~j) , ... ,/~{}) bonds along individual polymer chains 
with N - 1 bonds is provided by the function r!Jl in Eq. 
( 4.1). Thus we arrive at the general formula for evaluating 
the r prefactors 

d(l1,/2 ,· .. ,ln ) = L L 
{d(lll} {d(l2l} 

for this quantity, where the number of bonds a' in the Cs 
is a function of the summation variables li,/s, 

a' =a' (11,1 ,/1,2, ... ,11,7(1) ,/2,1 ,/2,2,· .. ,/2,r(2) , ... ,In,1 ,In,2, ... ,ln,r(n)) 

n r(i) 

== L L li,j' 
i=l j=l 

( 4.15) 

a 
" II (j) (j) (j) X £.. r!Jl (N -11/1 ,/2 , ... ,Iu(j»), 

A(a) j=l 

(4.11 ) 

where the summation '};A(a) is over all possible assignments 
of the n chain segments to a groups. 

D. The relationship between the two formulations 

In the work of Freed and co-workers, the contribution 
of a diagram r DD B corresponds to a specific list of chain 
segments with /1, 12, ... ,ln correlated bonds as well as a spe
cific assignment A of these chain segments to different 
chains (e.g., see Refs. 8 and 17). In contrast, our 
r(ll,l2, ... ,ln) 9 (lu/2, ... ,ln) contains all contributions with 
11 ,l2, ... ,ln correlated bonds regardless of the locations of 
these bonds among the different chains. However, because 
the value of 9 depends solely on 11, 12, ... ,ln [see Eq. (4.5)], 
the proportionality relation (3.14) holds for any diagram 
DB of Freed et al. if its B bonds are partitioned into seg
ments of 11,/2, ... ,ln. Aside from the constant To in Eq. 
(3.14), the only difference between the two definitions of 
diagrams is in the r prefactors. In general, one r of ours 
corresponds to the sum of several r D'S of Freed et al. be
cause a summation over A(a) is included in our evaluation 
ofr [Eq. (4.11)]. 

Freed and co-workers also consider the quantity8,17 

NI! 
dB (Nz-p,)! DB' (4.12) 

where p, is the number of monomers involved in the bonds 
of the given diagram DB' Equation (3.14) implies that dB 
is equivalent to 

NI! 9 (ll,l2, ... ,ln) 
d(ll,l2, ... ,ln)==(N ~n 1)1 T (4.13) 

l-n-~i=l i . 0 

in our formulation. Using Eqs. (2.12), (4.5), and (4.7), it 
is straightforward to obtain the explicit form 

(4.14) 

Table II summarizes the correspondence between the no
tation used in the present paper and that of Freed et al. 

v. INTERMONOMER INTERACTIONS 

The sections above describe a treatment of the chain 
conformational entropy. We now consider the incorpora
tion of nearest neighbor interaction energies. Again we 
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TABLE II. A comparison of notation; B=ll+l2+···+ln. 

The present notation Notation of Freed et al. 

!iJ (II ,l2,···,ln)ITO 
rUI ,/2 , ••• ,In) 

N)!iJ (II ,12, ...• ln)/[(NJ-n-~7= I Ii) I To] 

DB 
~==I~A(a) rD 
dB 

start with the formulation of Freed et at. 16,17 For a 
polymer-solvent or a polymer-void system, the total inter
action energy is given by 

z 

E=E L L L 8(i'/} ,i'/}: +(3), (5.1 ) 
a,m>a',m' /3=1 

where E is the interaction energy per monomer-monomer 
contact and all possible monomer pairs a, m>a',m' are 
summed to give the total energy. For any given configura
tion specified by the set of positions i':: for all monomers 
labeled by a= 1,2, ... ,N and m= 1,2, ... ,np , the Boltzmann 
factor is 

=exp[-tr L L 
a,m>a',m' 

.t 8 (i'/} ,i'/},' + (3) ] 
/3=1 

- IT IT exp[ -tr .t 8(i':: ,i'::: +(3) ] 
a,m>a',m' /3=1 

= IT IT {l+ ~ 8(i'/},i'/}:+(3)[exp(-tr)-1]}, 
a,m>a',m' /3-1 

(5.2) 

where k is the Boltzmann constant and T is absolute tem
perature. The third line follows because for any given set of 
monomer positions, the summation over 8's in the second 
line of Eq. (5.2) can be either 1 or o. This Boltzmann 

( 
z )npCN-1) " [ "" ~ , 

= N[ f::. 1 + fa,=:a":.m' /3~1 8(i'/} ,i,/}, +(3) 

factor is combined with the (athermal) partition function 
(2.4) for the conformational entropy to yield the full par
tition function with monomer-monomer interaction ener
gies 

(5.3) 

where 

(5.4 ) 

is the Mayer function. All possible monomer positions that 
do not violate excluded volume constraints are summed 
over by l:e.v. in Eq. (5.3). For any given set of monomer 
positions, terms in the first pair of curly brackets in Eq. 
(5.3) are either 1 or 0, depending on whether the set of 
monomer positions satisfies or violates the polymer con
nectivity constraints. If the set of monomer positions is 
viable, its weight is given by the €-dependent Boltzmann 
factor in the second pair of curly brackets. 

In their systematic analysis of the energy part of Eq. 
(5.3 ), Freed and co-workers proceed as with the entropy 
expansion and replace the Kronecker 8's with Fourier 
sums in momentum space.9,16,17 We now explore the en
ergy expansion in coordinate space. 

We first combine the full energy expansion series in the 
second pair of curly brackets of Eq. (5.3) with only the 
single leading term of the entropy series in the first pair of 
curly brackets [see Eqs. (2.8) and (2.11)]. Freed and co
workers call this formulation of the theory the "extended 
mean field" approximation,6,9 for which the partition func
tion is expanded as a standard Mayer30 cluster series 

L L .t .t 8(i'::1 ,i:,I+(31)8(i'::2,i:,2+(32) +O(f3) 1 
/3 1 /32= 1 1 1 2 2 al,ml>al,mla2,m2>a2,m2 1= 

'-~~_-"V~ ,/ 
al,ml>a2,m2 

( 
z )np(N-I) [N[ (N[-2) (npN) 2 1 

= N[ (N[-npN)!+ f (Nz-npN)! 2 C(l) +O(f) , (5.5) 
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where C( 1) is given in Fig. 1. Comparison with the en
tropy expansion in Sec. IV shows that the products of (j's 
(nearest-neighbor constraints) in Eq. (S.S) correspond to 
partition functions for single and multiple networks on the 
given lattice, with low-order corrections represented by 
small networks. Different networks correspond to different 
topologies, i.e., different connectivities among the (j's. 

Contributions to the extended mean field partition 
function (S.S) from any given topology of (j's are given by 
the value of the corresponding "diagram" g; and an ap
propriate combinatoric prefactor r. A factor of fk is asso
ciated with a diagram with k energetic interactions. Since 
each interaction contributes a factor of (j instead of a (j and 
an additional constant term in X [Eq. (2.6)], only a single 
C is required for any given 9J of the extended mean field 
partition function (S.S), in contrast to the linear combina
tions of Cs required for the entropic 9J's [Eqs. (4.S) and 
( 4. 7)]. Thus the evaluation of the energy corrections pro
ceeds more simply than for the entropy corrections in this 
respect. Using a similar analysis as in Sec. IV, it is easy to 
see that the diagram for any given collection of networks 
(including the special case of a single network) involving k 
energetic interactions among /.L monomers is given by 

(S.6) 

where C is the number of ways of configuring the given set 
of networks on the lattice, and the combinatoric factor 
(N[-/.L)!I(N[-n/V)! is the number of ways of positioning 
the monomers which are not involved in the networks. The 
r prefactor for a diagram contributing to Eq. (S.S) corre
sponds to the number of ways of extracting the number of 
monomers involved in that diagram from the entire system 
of n/V, hence 

(S.7) 

for any diagram with /.L monomers. 
We now consider the simultaneous expansion of both 

the entropy and energy series in Eq. (S.3). The procedure 
is straightforward, but tedious because of the presence of 
mixed entropy-energy terms. The nearest-neighbor con
straints now include both the (j's for the correlating bonds 
and the (j's for energy interactions. Each correlating bond 
from the entropy expansion contributes a factor of X [Eq. 
(2.6)], while each interaction from the energy expansion 

contributes a factor of ]2.P=1 (j(i';; ,i':;: + /3). These prod
ucts of X's and energy (j's may be expanded in a manner 
similar to that given in Table I. Again, aside from an over
all constant, expansion terms contributing to the general 
partition function (S.3) are decomposed into products ofr 
and g;. For any given topology of correlating bonds and 
nearest-neighbor interactions, the r prefactor gives the 
number of ways of extracting the given topology from the 
system of np N-monomer chains. As in the entropy expan
sion [Eqs. (4.S) and (4.7)], the diagram g; of a given 

topology can be expressed as a linear combination of Cs 
which are now numbers of ways of configuring subsets of 
the given topology on the lattice. 

As an illustration of this general procedure, we calcu
late the contribution r9J to the partition function (S.3) 
from the nearest-neighbor topology that has one monomer 
connected to another by a correlating bond and also one of 
the correlating monomers interacting with a third uncon
nected monomer (Fig. 2, b2 of Ref. 9). The combinatoric r 
prefactor 

r=2npCN -1) (n/V -2) (S.8) 

for this contribution is the product of two factors-npCN 
- 1) is the number of ways of extracting one correlating 
bond from the polymeric system with np N-monomer 
chains, while n/V - 2 is the total number of monomers not 
participating in the correlating bond and therefore avail
able to interact energetically with either one of the two 
monomers of the bonded pair (hence the overall factor of 
2). As in the entropy expansion, the contribution of the 
diagram 9J for this topology is evaluated by choosing any 
one assignment of {a,m}'s consistent with the diagram's 
topology. Therefore, using Eqs. (3.6) and (4.7), and 
Fig. 1, 

9J = L {[~[ ~ (j(i~'ii+/3I)] -1} 
e.v. /31-1 

is computed for this diagram. 

VI. APPLICATIONS 

fN[(2z-N[) (N[-3)! 

(N[-n/V)! 

(5.9) 

The present coordinate-space formulation is in some 
respects more amenable to generalization than the 
momentum-space formulation of the lattice cluster expan
sion of Freed et al. A simple example is the ease with 
which immediate self-reversals may be removed from the 
partition function to obtain the conventional Flory
Huggins approximation as the zeroth order term. This can 
be achieved simply by substituting z-l for z in the defini
tion of X in Eq. (2.6)31 

Xa,m-> (Z~[l) Ltl (jCi';; ,i';;+ 1 +/3) ] -1. (6.1) 

In comparison, the leading q=O conformational entropy 
term that arises naturally from the momentum-space for
mulation of Freed et al. differs from the conventional 
Flory-Huggins approximation by a factor of [(z 
- 1)/z]np(N-l), though it is possible to obtain the conven
tional Flory-Huggins mean field as the leading expansion 
term in the momentum-space formulation if immediate re-
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versals of the chains are eliminated by formulating the 
theory as a special case of semiflexible chains.5 

The lowest-order term in the energy expansion of 
nearest-neighbor interactions in the formulation of Freed 
et aL 2,6,7,9,16 corresponds to the case with zero interaction. 
The extended mean field approximation,6,9 which retains 
only the mean field entropy contribution, but retains all 
parts of the energy contribution, gives extra higher-order 
terms in addition to the conventional Flory-Huggins con
tact energy. To recover the random-mixing contact energy 
in Flory-Huggins theories,1 the q=O and q¥=O contribu
tions of energy diagrams have to be separated.9,16 By con
trast, it is relatively straightforward to obtain the conven
tional Flory-Huggins random-mixing interaction energy as 
the zeroth approximation in the coordinate-space formula
tion. To this end, Eq. (5.2) is rewritten as 

exp(-it)= II II [exp(-k~:vJ(1+~':")l' (6.2) 
a,m>a',m' 

where 

m' (ZE) ( ZE ) r,;:~, =exp kTN, -l+!(€)exp kTN, 

z 

X L SCi': .l;:: +(3). 
{J=1 

(6.3) 

Thus the zeroth-order term in Eq. (6.3) is the product of 
exp[ -zE/(kTN/)] over all monomer labels a, m>a',m'. 
The zeroth-order interaction energy is therefore given by 
the Flory-Huggins random-mixing result 

(6.4) 

As for the X factor defined in Eq. (2.6), the Yfactor in Eq. 
(6.3) is a sum of a constant and a Kronecker-S term. 
Hence the energy expansion of Eq. (6.2) has the same 
structure as the entropic expansion with X's, with products 
of Y's giving rise to linear combinations of Cs. 

It is more straightforward to deal with nonperiodic 
lattice boundary conditions in the coordinate-space formu
lation than in the momentum-space formulation with Fou
rier transforms. Nonperiodic lattice boundary conditions 
are needed in the study of polymeric systems with geomet
ric constraints. For instance, hard boundary conditions are 
useful in treating polymers in confined space. Here the 
general relation (4.7) between the S's and the Cs allows 
for the calculation of diagrams in the cluster expansion 
with any set of boundary conditions by simply evaluating 
the Cs with the same set of boundary conditions. As an 
illustration, Fig. 3 gives a few small-network partition 
functions (Cs) on an L 3 -site three-dimensional cubic lat
tice with hard boundary conditions (N,=L3

). To obtain 
the hard-boundary expression for .@ (3), e.g., it is only 
necessary to replace in Eq. (4.8) the Cs computed using 
periodic boundary conditions (from Fig. 1) by the Cs in 
Fig. 3. 

Topology Partition function 

(-) 6L2(L-l} 

(---) 6L 2(L-2)+24L(L-l)2 

( A) 0 

(T) 72L(L-l )(L-2)+48(L-l)3 

(---.-, 72L(L-l )(L-2)+48(L-l )3+24L(L-l)2+6L 2(L-3) 

(0) 24L(L-l)2 

(e •• • e) 120L(L-l)(L-2}+72L(L-2}2+288(L-l}2(L-2} 

+ 144(L-l }3+6L 2(L-4}+96L(L-l )(L-3) 

(-r) 72L(L-2}2+96L(L-l}(L -2}+288(L-l )2(L-2} 

+96(L-l}3+48L(L-l}(L-3} 

(+) 72L(L-2}2+288(L-l }2(L-2} 

(t>---) 0 

FIG. 3. Single-network partition functions (with at most four bonds) on 
a three-dimensional simple cubic lattice (z=6) with hard boundary con
ditions. The dimension of the lattice is equal to LX LX L, hence N/=L3

• 

The formalism of Freed et aL and its present formula
tion in coordinate space provides a means to approximate 
the partition function for a polymer solution of arbitrary 
complexity by using partition function Cs for the relevant 
short chains and small networks that contribute to the 
expansion. Conformational properties of short single 
chains have been studied extensively by exact computer 
enumerations.24-28 These computer results provide many of 
the terms required for evaluation of higher-order correc
tions in the series, and conversely, as shown by Ne
mirovsky et al., 18 the lattice cluster expansion provides a 
recipe for extrapolation from short chain results to the 
properties of longer chains. The present coordinate-space 
formulation of the lattice cluster theory may help assess 
the issue of convergence and to elucidate the general va
lidity of the suggested analytic properties of the cluster 
series (see, e.g., Ref. 18). 

The present treatment is generalizable to heteropoly
mers such as proteins. More diagrams will be needed for 
heteropolymers because diagrams will arise from the many 
different segments of monomer sequences (subsequences) 
that have to be taken into account for a given heteropoly
mer sequence in addition to those contributing to the ho
mopolymer case. For instance, if there are h > 0 types of 
monomers in each of the N-monomer chains and N l , 

N 2 , ••• ,Nh (> 0) are the numbers of monomers belonging to 
these different monomer types (-:£7=lNi =N), the y.@ ex
pression for a diagram involving k nearest-neighbor ener
getic interactions among J.£ monomers would be modified 
from Eqs. (5.6) and (5.7) for homopolymers to 
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I (Nl-J-L)! 
X L f[C(J-Ll,J-L2,···,J-Lh)] (N -npN)! C 

C(/Ll,/L2, ... ,/Lh l I 

(6.5) 

for heteropolymers. Here J-Li is the number of monomers of 
type i among the J-L monomers in the diagram, 
C(J-Ll,J-L2, ... ,J-Lh)'S are the J-L!/( I17=1J-Li!) different arrange
ments of the J-L=J-Ll +J-L2+··· +J-Lh monomers among the J-L 
positions prescribed by the given diagram (topology) C. 
Owing to the heterogeneity of the interactions, the Boltz
mann weight f now depends on the specific types of mono
mers involving in the k nearest-neighbor contacts in the 
diagram, and is therefore a function of the monomer posi
tion c. All possible Boltzmann weights that arise from all 
possible monomer positions c are included. The quantity in 
curly brackets in Eq. (6.5) may be viewed as a heteropoly
meric decomposition of the r jk factor for homopolymers. 
While this step greatly reduces analytic tractability, it 
should require only a slight increase in bookkeeping if 
these terms are to be determined by computer enumera
tions. A similar procedure for dealing with sequence het
erogeneity applies to mixed energy-entropy diagrams such 
as those in Eqs. (5.8) and (5.9). In particular, the combi
natorial prefactor r should be modified to account for the 
different number of ways of choosing a specific set of sub
sequences from the system of np heteropolymeric se
quences. 
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