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The polypeptide chains that make up proteins have thousands of atoms and hence millions of possible inter-atomic interactions. It
might be supposed that the resulting complexity would make prediction of protein structure and protein-folding mechanisms
nearly impossible. But the fundamental physics underlying folding may be much simpler than this complexity would lead us to
expect: folding rates and mechanisms appear to be largely determined by the topology of the native (folded) state, and new
methods have shown great promise in predicting protein-folding mechanisms and the three-dimensional structures of proteins.

Proteins are linear chains of amino acids that adopt unique three-
dimensional structures (`native states') which allow them to carry
out intricate biological functions. All of the information needed to
specify a protein's three-dimensional structure is contained within
its amino-acid sequence. Given suitable conditions, most small
proteins will spontaneously fold to their native states1.

The protein-folding problem can be stated quite simply: how do
amino-acid sequences specify proteins' three-dimensional struc-
tures? The problem has considerable intrinsic scienti®c interest: the
spontaneous self-assembly of protein molecules with huge numbers
of degrees of freedom into a unique three-dimensional structure
that carries out a biological function is perhaps the simplest case of
biological self-organization. The problem also has great practical
importance in this era of genomic sequencing: interpretation of the
vast amount of DNA sequence information generated by large-scale
sequencing projects will require determination of the structures and
functions of the encoded proteins, and an accurate method for
protein structure prediction could clearly be vital in this process.

Since An®nsen's original demonstration of spontaneous protein
refolding, experimental studies have provided much information
on the folding of natural proteins2±4. Complementary analytical and
computational studies of simple models of folding have provided
valuable and general insights into the folding of polymers and the
properties of folding free-energy landscapes5±7. These studies of

idealized representations of proteins have inspired new models,
some described here, which attempt to predict the results of
experimental measurements on real proteins.

Because the number of conformations accessible to a polypeptide
chain grows exponentially with chain length, the logical starting point
for the development of models attempting to describe the folding of
real protein is experimental data on very small proteins (fewer than
100 residues). Fortunately, there has been an explosion of informa-
tion about the folding of such small proteins over the last ten years3.
For most of these proteins, partially ordered non-native conforma-
tions are not typically observed in experiments, and the folding
reactions can usually be well modelled as a two-state transition
between a disordered denatured state and the ordered native state.
In contrast, the folding kinetics of larger proteins may in some cases
be dominated by escape from low-free-energy non-native confor-
mations. The folding of larger proteins is also often facilitated by
`molecular chaperones'8 which prevent improper protein aggregation.

To pass between the unfolded and native low-free-energy states,
the protein must pass through a higher-free-energy transition state.
In the unfolded state the protein can take up any one of many
conformations, whereas in the native state it has only one or a few
distinct conformations. The degree of heterogeneity of conforma-
tions in the transition state has thus been the subject of much
discussion9±11. For example, one of the main differences between the

Box 1
Dependence of folding mechanisms on topology

The structures of folding transition states are similar in proteins with
similar native structures. The distribution of structure in the transition
state ensemble can be probed by mutations at different sites in the chain;
mutations in regions that make stabilizing interactions in the transition
state ensemble slow the folding rate, whereas mutations in regions that
are disordered in the transition state ensemble have little effect4. For
example, in the structures of the SH3 domains of src18 (a) and spectrin17

(b), and the structurally related proteins Adah2 (ref. 37; c) and acyl
phosphatase16 (d), the colours code for the effects of mutations on the
folding rate. Red, large effect ; magenta, moderate effect; and blue, little
effect. In the two SH3 domains, the turn coloured in red at the left of the
structures appears to be largely formed, and the beginning and end of
the protein largely disrupted, in the transition state ensemble. (To facilitate

the comparison in c and d, the average effect of the mutations in each
secondary structure element is shown.) This dependence of folding rate
on topology has been quanti®ed by comparing folding rates and the
relative contact order of the native structures. The relative contact order is
the average separation along the sequence of residues in physical
contact in a folded protein, divided by the length of the protein. e, A low-
and high-contact-order structure for a four-strand sheet. In f, black
circles represent all-helical proteins, green squares sheet proteins and
red diamonds proteins comprising both helix and sheet structures. The
correlation between contact order and folding rate (kf) is striking,
occurring both within each structural subclass and within sets of proteins
with similar overall folds (proteins structurally similar to the a/b protein
acyl phosphatase16 are indicated by blue triangles).
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`old' and `new' views of protein folding is that the `new' view allows
for a much more heterogeneous transition stateÐreally a transition
state ensembleÐthan the `old' view, which concentrated on a
single, well de®ned folding `pathway'.

The primary measurements that can be made experimentally of
the highly cooperative folding reactions of small proteins are:
the folding rate; the distribution of structures in the transition
state ensemble, inferred from the effects of mutations on the folding
rate (Box 1); and the structure of the native state. Here I focus on
recent progress in predicting these three features.

Topology determines folding mechanisms
Are simple models likely to be able to account for the overall features
of the folding process, given the many possible inter-atomic inter-
actions in even a small protein? Recent data indicate that the
fundamental physics underlying the folding process may be simpler
than was previously thought.

The complexity of protein structure emerges from the details of
how individual atoms in both a protein's peptide backbone and its

amino-acid residues interact. However, the general path that the
polymer chain takes through spaceÐits topologyÐcan be very
similar between proteins. Three independent lines of investigation
indicate that protein-folding rates and mechanisms are largely
determined by a protein's topology rather than its inter-atomic
interactions12.

First, large changes in amino-acid sequence, either experimental13,14

or evolutionary15, that do not alter the overall topology of a protein
usually have less than tenfold effect on the rate of protein folding15.
This suggests evolution has not optimized protein sequences
for rapid folding, an encouraging result for simple model
development.

Second, using the consequences of mutations on folding kinetics
to probe the transition states of proteins with similar structures but
very different sequences has shown that the structures of these
transition states are relatively insensitive to large-scale changes in
sequence16±18. For example, in Box 1 there are two examples of pairs
of structurally related proteins with little or no sequence similarity
that have very similar folding transition-state ensembles.
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Box 2
Prediction of protein-folding mechanisms

Munoz and Eaton24 computed folding rates by solving the diffusion
equation of motion on the one-dimensional free-energy pro®les that
result from projection of the full free-energy landscape onto a reaction
coordinate corresponding to the number of ordered residues. a shows
the accuracy of their prediction by plotting computed folding rates (kcalc)
against experimentally measured rates (kexp). To predict folding transition
state structure, the lowest free energy paths to the native state can be
identi®ed. For example, a b-hairpin (b) has two possible paths to the
native state, beginning at the hairpin (pathway 1) or at the free ends
(pathway 2; ordered residues only are indicated; L is loop length). The
Table gives the contributions to the free energy of each con®guration
(total free energy is the sum of the ®rst three columns). Plotting the free
energy as a function of the number of ordered residues (c) shows that the
transition state for both pathways consists of con®gurations with two of
the residues ordered. Calculations on real proteins (d±f) have considered

all possible paths: the folding rate and transition state structure are
determined from the lowest free-energy paths. Galzitskaya and
Finkelstein25 and Alm and Baker26 predicted the folding transition state
structure of CheY (f), and CI-2 (d) and barnase (e), respectively. They
identi®ed the transition-state ensemble by searching for the highest free-
energy con®gurations on the lowest free-energy paths between unfolded
and folded states. The effects of mutations on the folding rate were
predicted on the basis of the contribution of the interactions removed by
the mutations to the free energy of the transition state ensemble, or by
directly determining the change in folding rate. The predicted effects of
mutations on the folding rates are shown on the native structure (left); the
measured effects, on the right (the colour scheme is as in Box 1; grey,
regions not probed by mutations; experimental results for CI-2 and
barnase, ref. 4; CheY, ref. 38).
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Third, the folding rates of small proteins correlate with a property
of the native state topology: the average sequence separation
between residues that make contacts in the three-dimensional
structure (the `contact order'; Box 1). Proteins with a large fraction
of their contacts between residues close in sequence (`low' contact
order) tend to fold faster than proteins with more non-local
contacts (`high' contact order)12,19. This correlation holds over a
million-fold range of folding rates, and is remarkable given the large
differences in the sequences and structures of the proteins com-
pared. Simple geometrical considerations appear to explain much
of the difference in the folding rates of different proteins.

The important role of native-state topology can be understood by
considering the relatively large entropic cost of forming non-local
interactions early in folding. The formation of contacts between
residues that are distant along the sequence is entropically costly,
because it greatly restricts the number of conformations available to
the intervening segment. Thus, interactions between residues close
together in sequence are less disfavoured early in folding than
interactions between widely separated residues. So, for a given
topology, local interactions are more likely to form early in folding
than non-local interactions. Likewise, simple topologies with
mostly local interactions are more rapidly formed than those with
many non-local interactions. More generally, the amount of con-
®gurational entropy lost before substantial numbers of favourable
native interactions can be made depends on the topology of the
native state. The importance of topology has also been noted in
studies of computational models of folding20±23.

As proteins' sequences determine their three-dimensional struc-
tures, both protein stability and protein-folding mechanisms are
ultimately determined by the amino-acid sequence. But whereas
stability is sensitive to the details of the inter-atomic interactions
(removal of several buried carbon atoms can completely destabilize
a protein), folding mechanisms appear to depend more on the low-
resolution geometrical properties of the native state.

Predicting folding mechanism from topology
The results described above indicate that simple models based on
the structure of the native state should be able to predict the coarse-
grained features of protein-folding reactions. Several such models
have recently been developed, and show considerable promise for
predicting folding rates and folding transition-state structures.
Three approaches24±26 have attempted to model the trade-off
between the formation of attractive native interactions and the
loss of con®gurational entropy during folding. Each assumes that
the only favourable interactions possible are those formed in the
native state. This neglect of non-native interactions is consistent
with the observed importance of native-state topology in folding,
and dates back to the work of Go on simple lattice models27.

Although the approaches differ in detail, the fundamental ideas
are similar. All use a binary representation of the polypeptide
chain in which each residue is either fully ordered, as in the native
state, or completely disordered. To limit the number of possible
con®gurations, all ordered residues are required to form a small
number of segments, continuous in sequence. Attractive interac-
tions are taken to be proportional to the number of contacts, or
the amount of buried surface area, between the ordered residues
in the native structure, and non-native interactions are completely
ignored. The entropic cost of ordering is a function of the
number of residues ordered and the length of the loops between
the ordered segments. Folding kinetics are modelled by allowing
only one residue to become ordered (or disordered) at a time. As the
number of ordered residues increases, the free energy ®rst increases,
owing to the entropic cost of chain ordering, and then decreases,
as large numbers of attractive native interactions are formed.

Such simple models can potentially be used to predict experi-
mentally measurable quantities such as the folding rate, which
depends on the height of the free-energy barrier, and the effects of
mutations on the folding rate, which depend on the region(s) of the
protein ordered near the top of the barrier. Predictions of both
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Box 3
Ab initio structure predictions

Blind ab initio structure predictions for the CASP3 protein structure
prediction experiment. For each target, the native structure is shown on
the left with a good prediction on the right (predictions by Baker39(a, c),
Levitt40(b) and Skolnick41(d) and colleagues; for more information see
http://predictioncentre.llnl.gov/ and Proteins Suppl. 3, 1999). Segments
are colour coded according to their position in the sequence (from blue
(amino terminus) to red (carboxy terminus)). a, DNA B helicase41. This
protein had a novel fold and thus could not be predicted using standard
fold-recognition methods. Not shown are N- and

C-terminal helices which were positioned incorrectly in the predicted
structure. b, Ets-1 (ref. 43). c, MarA44. This prediction had potential for
functional insights; the predicted two-lobed structure suggests the
mechanism of DNA binding (left, X-ray structure of the protein±DNA
complex). d, L30. A large portion of this structure was similar to a protein
in the protein databank but the best ab initio predictions were competitive
with those using fold-recognition methods. The three approaches that
produced these predictions used reduced-complexity models for all or
almost all of the conformational search process.
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folding rates and folding transition-state structures using these
simple models are quite encouraging (Box 2; other recent models
have also yielded good results28±33).

The success of these models in reproducing features of real
folding reactions again supports the idea that the topology of the
native state largely determines the overall features of protein-folding
reactions and that non-native interactions have a relatively minor
role. Incorporation of sequence-speci®c information into these
models, either in the inter-residue interactions or in the free-
energy costs of ordering different segments of the chain, should
improve their accuracy to the point where they may be able to
account for much of the experimental data on the folding of small
proteins.

Ab initio structure prediction
Predicting three-dimensional protein structures from amino-acid
sequences alone is a long-standing challenge in computational
molecular biology. Although the preceding sections suggest that
the only signi®cant basin of attraction on the folding landscapes of
small proteins is the native state, the potentials used in ab initio
structure-prediction efforts have not had this property, and until
recently such efforts met with little success. The results of an
international blind test of structure prediction methods (CASP3;
ref. 34) indicate, however, that signi®cant progress has been
made35,36.

As with the models for protein-folding mechanisms, most of the
successful methods attempt to ignore the complex details of the
inter-atomic interactionsÐthe amino-acid side chains are usually
not explicitly representedÐand instead focus on the coarse-grained
features of sequence±structure relationships. Problems in which the
full atomic detail of interactions in the native state is importantÐ
such as the design of novel stable proteins, and the prediction of
stability and high resolution structureÐwill almost certainly
require considerably more detailed models.

Some of the most successful blind ab initio structure predictions
made in CASP3 are shown in Box 3. In several of these predictions
the root-mean-square deviation between backbone carbon atoms in
the predicted and experimental structures is below 4.0 AÊ over segments
of up to 70 residues. Several of these models can compete with more
traditional fold-recognition methods. At least one case (Mar A) gave
a model capable of providing clues about protein function39.

The predictions are an encouraging improvement over those
achieved in the previous structure-prediction experiment (CASP2),
but improvements are still needed to the accuracy and reliability of
the models. Improvements in ab initio structure prediction may
allow these methods to generate reliable low-resolution models of
all the small globular proteins in an organism's genome.

Emerging simplicity
The experimental results and predictions discussed here indicate
that the fundamental physics underlying folding may be simpler
than previously thought and that the folding process is surprisingly
robust. The topology of a protein's native state appears to determine
the major features of its folding free-energy landscape. Both protein
structures and protein-folding mechanisms can be predicted, to
some extent, using models based on simpli®ed representations of
the polypeptide chain. The challenge ahead is to improve these
models to the point where they can contribute to the interpretation
of genome sequence information. M
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