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We recently described general principles for designing ideal protein
structures stabilized by completely consistent local and nonlocal
interactions. The principles relate secondary structure patterns to
tertiary packing motifs and enable design of different protein
topologies. To achieve fine control over protein shape and size
within a particular topology, we have extended the design rules by
systematically analyzing the codependencies between the lengths
and packing geometry of successive secondary structure elements
and the backbone torsion angles of the loop linking them. We
demonstrate the control afforded by the resulting extended rule set
by designing a series of proteins with the same fold but considerable
variation in secondary structure length, loop geometry, β-strand reg-
istry, and overall shape. Solution NMR structures of four designed
proteins for two different folds show that protein shape and size
can be precisely controlled within a given protein fold. These ex-
tended design principles provide the foundation for custom design
of protein structures performing desired functions.
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Protein design holds promise for applications ranging from
therapeutics to biomaterials, with recent progress in designing

small molecule binding proteins (1, 2), inhibitors of protein–protein
interactions (3, 4), and self-assembling nanomaterials (5–7). Most
of these efforts have repurposed naturally occurring scaffolds,
which are likely not optimal starting points for creating new
functions because they generally contain sequence and structural
idiosyncrasies that arose during evolutionary optimization for their
natural functions (8). Robust design of new functional proteins
would be considerably enabled by the capability of precisely de-
signing from scratch arbitrary protein structures.
We previously described general principles that allowed the de

novo design of ideal protein structures with five different folds (9).
In this paper, we focus on the “variations on a theme” problem of
precisely controlling structural variation within the same fold. To
achieve such control, we begin by characterizing the coupling
between loop backbone geometry and the packing of the flanking
secondary elements. We then use the resulting extended set of
design principles to systematically vary structure for two different
folds and describe the experimental characterization of five of
these de novo designed proteins.

Results
Local Structure Building Blocks. The design rules described in our
previous paper relate the packing orientation of ββ-, βα-, and
αβ-units to the length of the loop connecting them (9). Here, we
begin by extending these rules to the level of specific loop con-
formations to allow more detailed control over local geometry
and overall protein topology.
It is convenient to describe protein local geometry by using the

ABEGO (10) alphabet illustrated in Fig. 1A. “A” indicates the

alpha region of the Ramachandran plot (11); “B,” the beta region;
“G” and “E”, the positive phi region; and “O”, the cis peptide
conformation. We color code the different ABEGO regions as
shown in Fig. 1A throughout the paper. For what follows, it is
instructive to consider the change in chain orientation brought
about by each of the 16 dipeptide combinations of the A, B, G,
and E backbone conformations (Fig. 1 B and C). These 16 two-
residue units can be viewed as “lego blocks” for assembling sec-
ondary structures in different orientations. For example, the AA
block induces a 50° change in orientation of the polypeptide chain;
the BB block, a 170° change; the BA block, a 140° change; and the
EA block, a 30° change. Two-residue loops can be described by a
single block, three-residue and longer loops by multiple blocks in
series. In the following sections, we describe how these blocks
determine the packing geometry of the flanking secondary struc-
ture elements.
ββ-connections. β-hairpins—two paired β-strands connected by a
loop—have either R or L chirality (Fig. 2A). If the cross-product of
a vector pointing in the direction of the first strand and a vector
from the first strand to the second strand is parallel to the Cα-Cβ-
vector of the strand residue preceding or following the loop the
chirality is R, otherwise it is L. Fig. 2B shows that in native protein
structures (SI Appendix), two-residue loops always have L-chirality,
and that the GG block is particularly common. As is evident in the
schematic in Fig. 1C, the GG block is compatible with the twist of
adjacent β-strands. The also-observed EA and AA blocks similarly
induce a twist in the ingoing and outgoing strands. Examples
of L-hairpins with GG and EA loops are shown in Fig. 2 C
and D. For five-residue loops, the R-chirality is preferred over
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the L-chirality. The most common five-residue loop, BAAGB,
is shown in Fig. 2E.
In the standard β-turn type nomenclature (12), the AA and GG

loops are the mirror-image turn types I and I′, respectively, and

the less common BG and EA loops are the turn types II and II′.
We use the more general ABEGO torsion nomenclature to fa-
cilitate parallel analyses of loops connecting different secondary
structure elements (ββ, βα, and αβ) and having different lengths.
βα-connections. The packing geometry of βα- and αβ-units can be
described based on the orientation of the Cα-Cβ-vector of the
strand residue closest to the helix relative to the vector from the
first secondary structure element to the second—if the vectors
are parallel, the orientation is “Para,” and if the two are anti-
parallel, it is “Anti” (see schematics in Fig. 2 F and K).
In βα-units, the Para orientation is favored for two-residue loops

and the Anti orientation for three-residue loops (9). Fig. 2G shows
the dependence of the orientation on the specific loop type in native
structures. For two-residue loops, the Para orientation is almost
always achieved with AB loop geometry, and for three-residue
loops, the Anti orientation is achieved most often with BAB loop
geometry. As illustrated in Fig. 2H, in βα-units with a AB loop, the
consecutive B residues in the β-strand follow a relatively straight
trajectory, and then the A residue produces a direction change (see
the BA block in Fig. 1C) and together with the following B residue
produces a tight turn in backbone direction. The three-residue loop
preferences inherit from the two-residue loop preferences: extend-
ing the strand by inserting one B residue before an AB loop to make
a BAB loop flips the pleat at the end of the strand, switching the
orientation from Para to Anti (Fig. 2I). The other common three-
residue loop connecting a β-strand with a following helix is GBB,
which leads to an Anti packing orientation with the G residue to-
gether with the preceding B residue in the β-strand, producing the
change in chain direction (see the BG block in Fig. 1C). Although
the A and G residues both change the direction of the polypeptide
chain, because of the opposite sign of the φ angle, the change is in
the opposite direction (compare the BA and BG images in Fig. 1C).
αβ-connections. For αβ-units, the preferred packing orientation is
Para (9). As shown in Fig. 2L, the Para orientation is achieved by
GB loop geometry, and the longer loops generated by inserting
A residues at the beginning or B residues at the end (corre-
sponding to changing the definition of the helix end and strand
start) have the expected inherited orientation (AGB is “Para,”
GBB is “Anti”). The Para orientation is also achieved by the
unrelated BA, GBA, and BAAB loops.
For tertiary structure design, we select the most frequently ob-

served loop geometries that favor interaction between the flanking
secondary structure elements. For ββ-connections, we selected the
GG and EA loops for the L-chirality. For βα-connections, we se-
lected the AB loop for the Para orientation and the BAB and GBB
loops for the Anti orientation. Although the BBB loop is also
commonly observed, the loop geometry prevents close interaction
between the flanking strand and helix (SI Appendix, Fig. S1). For
αβ-connections, we selected the GB, GBA, and BAAB loops for
the Para orientation. The BA loop is also frequently observed, but
the loop geometry does not provide hydrogen-bonded helix capping
(SI Appendix, Fig. S2). The amino acid sequences in the loop re-
gions were designed by using Rosetta as described below with two
exceptions where the local geometry strongly prefers a single amino
acid: in GB, GBA, and GBB loops, the G was set to glycine, and in
BAAB loops, the first A was set to proline (SI Appendix, Fig. S3).

Extended Emergent Rules. The different loop types have different
geometries, which change the register of the attached secondary
structure elements. The correlations between the lengths of the
secondary structure elements and the flanking loop types were
determined through secondary structure and ABEGO torsion
constrained Rosetta folding simulations with a sequence-in-
dependent backbone model (9) (SI Appendix) for βαββ- (SI Ap-
pendix, Fig. S4), βαβ- (SI Appendix, Fig. S5) and βαβαβ- (SI
Appendix, Fig. S6) units; the most frequently observed helix
length for each strand length and loop combination is indicated
in SI Appendix, Tables S1–S3. For each choice of loop types,

A

B

C

Fig. 1. Discrete state model of protein local geometry. (A) ABEGO repre-
sentation of protein local structure shown on Ramachandran plot. A, alpha
region; B, beta region; G and E, positive phi region. The most frequently
observed torsion angles for each region are indicated by the white circle.
(B) Two-residue “lego blocks” are represented by four consecutive Cα atoms
connected by virtual bonds. It is useful to consider the net change in chain
direction θ and the net twist τ produced by each lego block. θ is the angle
between the vector from Cα(i) to Cα(i-1) and the vector from Cα(i+1) to Cα(i+2),
and τ, the dihedral angle defined by Cα(i-1), Cα(i), Cα(i+1), and Cα(i+2). (C) Two
views of each of the 16 lego blocks built from the A, B, G, and E geometries
indicated by the white circles in A. θ (Left) and τ (Right) are indicated at the
bottom of the images. For simplicity, the gray parts in B are omitted. While the E
residues and most of the G residues are generally Gly, to make the structural
feature of the blocks clear, Cβ atoms are shown.
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there is a distinct codependence of the secondary structure ele-
ment lengths. For the βαββ-motif with the BAB loop preceding
the helix and the BAAB loop following the helix as shown in Fig.
3A, the optimal helix length goes from 10 to 22 as the strand
length increases (Fig. 3B; the change in overall size and shape is
illustrated in Fig. 3C). For a βαβ-motif with five-residue strands
and a GB loop connecting the helix to the second strand, the op-
timal helix length is ∼14 if the loop preceding the helix is BAB, but
11 if this loop is GBB (Fig. 3E); these differences result from the
different curvature of the two types of loops (Fig. 3 F and G). For
αβ-units, the tilt angle of the helix relative to the β-sheet (Fig. 3H
and SI Appendix) is determined by the loop type: With the BAAB
loop, the helix is parallel to the β-strands, whereas with the GBA
loop the helix runs diagonally to the β-strands (Fig. 3I).

Generation of Structures with Varying Shape and Size Using Extended
Rule Set. The relationships between loop type and secondary
structure packing geometry and length described in the previous

sections allow the generation of structure diagrams of ideal
αβ-proteins with different shapes and sizes. Fig. 4 shows design
backbone blueprints for a series of ferredoxin-like fold and
Rossmann2x2 fold variants, referred to in the following as Fd
and Rsmn2x2, respectively. Structures Fd_7A and the Rsmn2x2_6
were designed in the previous paper (9). For the ferredoxin-like
fold, strand lengths 5, 7, and 9 were used with or without a β-strand
register shift between the first and third strands. Suitable loop types
for each secondary structure connection were selected based on the
packing orientation as described above, and for αβ-connections,
the helix-sheet tilt angle (Fig. 3H and I). In the αβ-connections, the
GBA loop that leads to helices which run diagonally on the β-sheet
is less compatible with the ferredoxin-like fold than the BAAB loop
that leads to helices parallel to the β-sheet: The two helices in the
ferrredoxin-like fold can readily pack together on the β-sheet in the
latter case but not the former (SI Appendix, Fig. S7). Hence, we
used the BAAB loop for the αβ-connections in the new ferredoxin-
like fold designs. The helix lengths were then chosen based on the
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loop types and the strand length using SI Appendix, Tables S1–
S3; the lengths of the helices in the ferredoxin-like fold series
are based only on the βαββ-motif simulations (SI Appendix,
Table S1), whereas those of Rsmn2x2_5 are based on both the

βαβ- and βαβαβ-motif simulations (SI Appendix, Tables S2
and S3).
For each blueprint, backbone structures were built up by

carrying out multiple independent Rosetta folding simulations

A B C

D E F

G

H

I

Fig. 3. Loop geometry controls second-
ary structure lengths and helix-sheet tilt
angles in alpha-beta super secondary struc-
ture elements. (A and D) Schematics of
the βαββ-units and the βαβ-units found
in the ferredoxin-like fold and the Ross-
mann fold, respectively. (B) Helix length
depends on the strand length. Multi-
ple sequence-independent simulations of
βαββ-unit folding were carried out with
fixed loop types and different strand and
helix lengths, and the frequencies of suc-
cessful βαββ-unit folding were assessed.
For different strand lengths, optimal
folding of the structure occurs for differ-
ent helix lengths. (C) Examples of four
βαββ-units with the same loop types but
different strand lengths and the corre-
sponding optimal helix lengths. (E) Helix
length depends on βα-loop type. Multiple
sequence-independent simulations of
βαβ-unit folding were carried out with a
fixed αβ-loop type and strand lengths but
different βα-loop types, and the frequencies
of successful βαβ-unit folding with different
helix lengths were determined. Different
βα-loop types yield different optimal helix
lengths. (F and G) BAB and GBB loops result
in different optimal helix lengths. (H) The tilt angleΩ of the α-helix relative to the β-sheet for αβ-units. (I) TheΩ angle depends on αβ-loop type. The angle distribution
was calculated from βαββ-unit folding simulations with the BAB loop for the βα-unit, with strand lengths 7 and helix length 14.
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(SI Appendix). For each of the generated backbone structures,
we designed amino acid sequences by iterating between searching
for the lowest energy combination of sidechain identities and
conformations for fixed backbone structure (13) and searching for

the lowest energy backbone structure for fixed amino acid se-
quence (14). Inward-pointing charged residues were introduced in
edge β-strands and nonpolar residues were penalized at surface
exposed positions to disfavor aggregation (the sequence design

Table 1. Design success rate

Structure Designs tested Expressed* Soluble* αβ-protein CD spectrum Monomeric† Well-resolved HSQC Success (%)‡

Fd_5S 6 6 6 0 3 0 0 (0)
Fd_5A 12 12 12 6 9 4 4 (33)
Fd_7S 10 10 8 6 7 1 1 (10)
Fd_7A 11 9 8 6 3 3 2 (18)
Fd_9A 12 12 11 11 7 3 3 (25)
Rsmn2x2_5 9 9 7 8 6 2 2 (22)
Rsmn2x2_6 12 12 12 10 4 4 4 (33)

The second column shows the number of designs experimentally tested for the backbone blueprints (Fig. 4) indicated in the leftmost
column. The subsequent columns give the number of designs that satisfy each criterion.
*Expression and solubility were assessed by SDS/PAGE and mass spectrometry.
†SEC-MALS was used to determine oligomerization state.
‡The successful designs are defined as those that satisfy all criteria. The details of the results are shown in SI Appendix, Tables S4–S8.
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protocol is described in detail in the methods and figure S12 in ref.
9). The designed structures were then filtered based on the
Rosetta full-atom energy, sidechain packing (15), and the local
sequence-structure compatibility (9). For each designed sequence,
we then carried out multiple independent Rosetta ab initio
structure prediction simulations (16) starting from an extended
conformation, and selected designed sequences with energy land-
scapes strongly funneled into the designed target structure (Fig.
5A) for experimental characterization.
For the ferredoxin-like fold, we obtained synthetic genes

(Genscript) encoding six designs for Fd_5S, 12 for Fd_5A, 10 for
Fd_7S, and 12 for Fd_9A (sequences are provided in SI Ap-
pendix, Tables S10–S13). All but one design (Fd_7S) are
not homologous to any known proteins (Blast E value <0.02
against the nonredundant protein sequence database nr). For the
Rossmann2x2 fold, nine designs were selected for Rsmn2x2_5
for experimental characterization, only one of which has weak
sequence similarity to a known protein (Blast E value 0.019; the
structures of this Rsmn2x2_5 design sequence similar protein and
the homolog of Fd_7S are not known). The proteins were
expressed, purified, and characterized by circular dichroism (CD)
spectroscopy, size exclusion chromatography combined with multi-
angle light scattering (SEC-MALS), and 1H-15N heteronuclear single
quantum coherence (HSQC) NMR spectroscopy.
For the ferredoxin-like fold, 37 of 40 designs (from Fd_5S,

Fd_5A, Fd_7S, and Fd_9A) are well expressed and highly solu-
ble, although two of the soluble Fd_9A designs tend to aggregate
after being stored at 4 °C for 2 days perhaps due to the large
hydrophobic core. The far-UV CD spectra show that 23 of the 31
soluble designs for Fd_5A, Fd_7S, and Fd_9A have the expected
αβ-secondary structure content. In contrast, for the smallest
variant—Fd_5S—none of the designs had CD spectra consistent
with folded αβ-proteins. Twenty-six of the 37 soluble designs
were found to be monomeric by SEC-MALS. Two-dimensional
1H-15N HSQC spectra were measured for a total of 17 designs
that were monomeric and had αβ-secondary structure content.
Well-dispersed and sharp peaks indicate that these designed
proteins fold into rigid tertiary structures, and not molten glob-
ule-like structures. The experimental results for the ferredoxin-like
fold designs are summarized in Table 1, along with the designs of
Fd_7A reported in the previous paper (9).
For the Rossmann2x2 fold, nine designs were tested for Rsmn2 ×

2_5 (sequences are provided in SI Appendix, Table S14). All of
the designs were expressed at high levels, and all but two designs
have high solubility. Eight designs have the expected CD spectra
for αβ-proteins, and of these, six designs were found to be mo-
nomeric by SEC-MALS. For the monomeric designs with the
expected CD spectra, HSQC spectra were measured, and two
designs have well-dispersed and sharp 1H-15N HSQC peaks,
suggesting well-packed tertiary structures. The properties of the
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Fig. 6. Comparison of computational design models with experimentally
determined NMR structures. (A–F) Comparison of protein backbones of
design models (Left) and NMR structures (Right); the Cα root mean square
deviation (RMSD) between the two is indicated. (G–J) Comparison of core
side-chain packing in superpositions of design models (rainbow) and NMR
structures (gray). (A and G) Fd_5A_3 (2N2U). (B and H) Fd_7S_6 (2N2T).
(D and I ) Fd_9A_11 (2N76). (E and J) Rsmn2×2_5_6 (2N3Z). (C) Fd_7A_5 and
(F) Rsmn2×2_6_10 designed by Koga et al. in 2012 (9) are included here for
shape and size comparison.

Table 2. ABEGO-based comparison between design model and
NMR structures for the five loops in the three ferredoxin-like
folds

L1 L2 L3 L4 L5

Fd_5A_3 BAB/BAB BAAB/BAAB GG/BG* BAB/BAB BAAB/BAAB
Fd_7S_6 BAB/BAB BAAB/BOBB† GG/GG BAB/BAB BAAB/BAAB
Fd_9A_11 BAB/BAB BAAB/BAAB GG/GG BAB/BAB BAAB/BAAB

The columns L1–L5 correspond to the five loops shown in Fig. 4. In each
cell, the loop type for the design model (left) and the most frequent loop
type in the NMR ensemble (right) are shown.
*The B conformation at the position 1 was confirmed by chemical shift
data (30).
†The cis proline conformation at position 2 was confirmed by both proline
Cβ/Cγ chemical shifts and a characteristic strong sequential Hα-Hα NOE.
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Rsmn2x2_5 designs are summarized in Table 1, along with the
previously described Rsmn2x2_6 (9).
For each target structure, we selected one design that was

monomeric, had the expected secondary structure content, and
well-dispersed NMR peaks for further thermodynamic character-
ization (Fig. 5). The free energy of unfolding of the ferredoxin-like
fold designs ranges from 1.7 kcal/mol to 10.1 kcal/mol, with
stability increasing with chain length: The 66-residue Fd_5A_3
design is marginally stable with a ΔGunfold of 1.7 kcal/mol, whereas
the 98-residue Fd_9A_11 design has a ΔGunfold of 10.1 kcal/mol.
All designs of Fd_5S, which has 58 residues, did not fold; the
hydrophobic core in such a structure may be too small to over-
come the entropy loss in folding.
The solution NMR structures of the selected designs were

determined using triple-resonance NMR with standard data
collection and analysis protocols of the Northeast Structural
Genomics consortium (17) (SI Appendix, Table S9). In addition
to distance restraints derived from NOESY data, dihedral angle
restraints were derived for each design from backbone chemical
shift data by using TALOSN, and used for structure calculations.
Residual dipolar coupling (RDC) restraints from at least one
alignment media were also obtained for three designs, Fd_5A_3,
Fd_9A_11, and Rsmn2x2_5_6, and used in these structure cal-
culations. RDC and chemical shift-based restraints were in-
cluded only for residues in regular secondary structures and
ordered regions of surface loops. For Fd_5A_3, Fd_7S_6, and
Rsmn2x2_5_6, the structures agree quite closely with the com-
putational models for both the backbone and the core side
chains (Fig. 6 A, B, E, G, H, and J). For Fd_9A_11, the design
and NMR structure topologically are quite similar to one other,
but the helices of the NMR structure are shifted and are more
twisted than those of the design as shown in Fig. 6 D and I.
We further compared the loop geometries at the ABEGO level

(Tables 2 and 3) in the design models and NMR structures. All but
two of the 22 loops in the four NMR structures of the newly
designed proteins have ABEGO patterns matching the design
models. For L3 of Fd_5A_3, the design is GG, but the NMR
structure is BG and for L2 of Fd_7S_6, the design is BAAB, but the
NMR structure is BOBB, with a cis proline in the second position.

Discussion
Classic early studies beginning nearly 40 years ago classified the
loop types connecting regular secondary structure elements
(β-strands and α-helices) observed in the native structures solved
at that time (12, 18–29). Chou and Fasman categorized β-turns
into 11 types based on their backbone torsion angles (18) and
Hutchinson and Thornton modified the classification after more
protein structures were solved (12). An extensive study of short
loops connecting regular secondary structures by Donate et al.

identified common groups of loop geometries connecting different
secondary structure elements (19). The analysis of loop types in this
paper extends and updates this previous work, taking advantage of
the much larger number of protein structures that have now
been determined. Common loop geometries such as type I, II, I′, II′
β-hairpins (12, 18, 19, 26) and α-helical C-capping (19–24, 27) are
reidentified as expected, and previously unidentified loop
geometries such as the GBB loop in βα-connections are
identified. Most importantly, we uncover relationships between
loop geometries and the packing orientations of the flanking
secondary structures, which, to our knowledge, have not been
previously described. The analysis of the dependencies between
loop types and secondary structure packing orientations enables
the extension of our previous design rule set to more precisely
control overall protein size and shape.
The framing of αβ-protein design principles in terms of spe-

cific loop types in this paper makes possible a systematic building
block-based approach to designing new structures. The basic
algorithm consists of (i) choosing a topology (placement of sec-
ondary structure elements with order along the sequence specified),
(ii) choosing the strand lengths and registers, (iii) choosing from the
loop types specified by the extended rules, and (iv) choosing helix
lengths compatible with the strand lengths and loop types.
Complete information for steps 3 and 4 are provided in SI Appendix,
Tables S1–S3.
The high similarity between the designed structures and the

experimental NMR structures demonstrates the capability of this
algorithmic approach to systematically and accurately vary pro-
tein shape and size. This capability will be invaluable in the
creation of the next generation of designed functional proteins
with backbones finely tuned to be optimal for their functions.

Materials and Methods Summary
Rosetta folding simulations for building backbone structures were performed
on a sequence-independent backbone model with a pseudoatom repre-
senting a generic side chain, using a potential function that favors compact
structure and hydrogen bonds between amide hydrogen and carbonyl ox-
ygen and disfavors overly close atom pairs. Each Monte Carlo simulation
attempt replaces the torsion angles of a randomly selected residue with
torsion angles randomly selected from the region of the Ramachandran plot
compatible with the assigned secondary structure and ABEGO type.
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