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ABSTRACT 
 
 
We describe CASP11 de novo blind structure predictions made using the Rosetta 

structure prediction methodology with both automatic and human assisted protocols. 

Model accuracy was generally improved using co-evolution derived residue-residue 

contact information as restraints during Rosetta conformational sampling and refinement, 

particularly when the number of sequences in the family was more than three times the 

length of the protein.  The highlight was the human assisted prediction of T0806, a large 

and topologically complex target with no homologs of known structure, which had 

unprecedented accuracy -- <3.0 Å root-mean-square deviation (RMSD) from the crystal 

structure over 223 residues.  For this target, we increased the amount of conformational 

sampling over our fully automated method by employing an iterative hybridization 

protocol.  Our results clearly demonstrate, in a blind prediction scenario, that co-

evolution derived contacts can considerably increase the accuracy of template-free 

structure modeling. 
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INTRODUCTION 
 

The Eleventh Critical Assessment of Techniques for Protein Structure Prediction 

(CASP11) had considerably more free modeling targets (45 domains) than recent CASP 

experiments (three times more than in CASP10) and hence provided a significantly larger 

benchmark for template-free modeling methods.  In this article, we describe the methods 

used to generate structure models for these targets by our fully automated structure 

prediction server, Robetta1 (BAKER-ROSETTASERVER), and the human assisted 

approaches used to generate models in cases we thought could significantly improve with 

human intervention (BAKER).  As in previous CASP experiments, our general approach 

was to sample a diverse set of conformations using the Rosetta fragment assembly 

method2 followed by all-atom refinement3, and select final models based on clustering 

and Rosetta all-atom energy.  Due to the sheer size of the conformational search space, 

the success of this approach for high accuracy models has been limited to small proteins 

(<100 residues).  In CASP11, we used residue-residue co-evolution derived restraints4-6 

during sampling and refinement to help guide the search towards the native 

conformation.  The results clearly indicate that given sufficient numbers of aligned 

sequences, co-evolution derived contacts can considerably increase structure prediction 

accuracy.  For one example (T0806), the predicted structure had significantly higher 

accuracy than any previous prediction in the 20 years of CASP experiments for proteins 

over 100 amino acids lacking homologs of known structure. 

 

MATERIALS AND METHODS 
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Robetta de novo pipeline 

Figure 1 outlines the automated Robetta protocol used for difficult targets without clearly 

detectable homologs of known structure.  The individual steps are described in the 

following sections.  At the very beginning of the protocol (not shown in Figure 1), 

Robetta scans the query sequence for signal sequences using SignalP7 and removes them 

if found as they are unlikely to be present in the final structure. 

Domain boundary prediction 

Domain boundaries were predicted from PDB structures with sequence similarity to the 

query using an iterative process.  For each iteration, HHSearch8, Sparks-X9, and 

RaptorX10 were used to identify templates from the PDB100 database and generate 

alignments.  The sequence was threaded onto the template structures to generate partial 

models, which were then clustered to identify distinct topologies that were ranked based 

on the likelihood of the alignments (RosettaCM supplementary methods11).  Structural 

similarity in the top ranked cluster was determined within a 30 residue sliding window 

using MaxSub12 with a 4Å threshold and the closest coil positions to sites where the 

MaxSub value was less than 10, 20, or 30% (in order of precedence) were selected as 

potential domain boundaries.  Potential domains of at least 35 residues, including regions 

that were not covered by the partial-threads or not similar in structure (<30% average 

windowed MaxSub), were passed on to a next template search iteration.  A confidence 

score
11 was estimated for each domain using the degree of structural consensus between 

the top ranked partial threads from each alignment method.  Since templates were likely 

to be incorrect for regions with low confidence, domain boundaries were also identified 

in regions with confidence scores less than 0.2 using the multiple sequence alignment 
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(MSA) based method “msa2domains”.13  Through this iterative process, the most 

confident non-overlapping clusters were identified that, together, covered the full length 

of the target sequence, and domain boundaries were assigned at the transitions between 

the clusters.  Final domains with confidence scores less than 0.2 were classified in the 

“twilight” regime14, and modeled using the Rosetta comparative modeling (RosettaCM11) 

and ab initio (RosettaAB2,15) protocols. 

GREMLIN co-evolutionary restraints 

For each domain with a confidence score equal to or less than 0.6, Robetta determined if 

there were enough homologous sequences to accurately predict residue-residue co-

evolution contacts.  High confidence targets were excluded since additional information 

was likely not gained over that contained in the template coordinates.  Due to the three 

day time constraint for servers, a fast alignment tool, HHblits16, was used to find at least 

2L (2 times the sequence length) sequences with e-values within the range of 1E-20 to 

1E-4, 75% to 50% alignment coverage, and a 90% identity redundancy cutoff.   During 

CASP11, the latest clustered uniprot database available for HHblits was from 2013, 

therefore, if less than 2L sequences were found, Jackhmmer17 was used to search against 

the latest uniref90 sequence database18 with the same search criteria.   If at least 1L 

sequences were identified, GREMLIN5 was used to learn a global statistical model of the 

MSA using a pseudo likelihood approach,4 and contacts were predicted using the residue-

residue coupling values obtained from the model fitting procedure.  The top 3L/2 contacts 

with sequence separation of at least 3 were converted to restraints, and the weights of 

these restraints were normalized by the average of the coupling scores.  Distance 

restraints were implemented as sigmoidal functions of the form: 
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restraint(d)=3*weight*(1+exp(−slope(d−cutoff))-1 where d was the distance between the 

constrained Cβ atoms (Cα for glycine) and the cutoffs and slopes were amino acid pair 

specific (Supporting Information Table III in reference5).  These distance restraints 

supplement the Rosetta energy function; the combination ensures the sampling of 

physically realistic structures consistent with the contact predictions.  Given that both the 

number of contacts and the Rosetta energy function are roughly proportional to the length 

of the protein, we found that simple scaling of the restraint score by 3 fold gave a 

dynamic range similar to that of the Rosetta energy roughly independent of the protein 

length. 

 

Residue pairs with strong co-evolution signals are not always in contact, some 

interactions may be intermediate, ligand mediated, or between copies of a homo-

oligomeric protein.  When the number of homologous sequences is low, an increased 

number of predicted contacts may be incorrect due to noise.  To overcome these 

inaccuracies, we use a sigmoidal restraint with no penalty after a certain distance, as 

opposed to a linear (bounded) or quadratic (harmonic) penalty [Fig. 2(A)].  The 

disadvantage of using sigmoidal restraints is that there is no gradient past the distance 

cutoff, and therefore, a large amount of sampling is required (see sections below).  The 

advantage is the ability to sample within protein-like space while maximizing self-

consistent contacts [Fig. 2(B)]; inconsistent contacts, which are likely to be incorrect, do 

not contribute to the restraint score. 

Rosetta ab initio modeling 
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RosettaAB has previously been described in detail2,15.  Conformational sampling is 

carried out using a Monte Carlo fragment replacement strategy guided by a low-

resolution score function that favors protein-like features.  Bond angles and bond lengths 

are kept fixed, and side-chains are represented by a single “centroid” interaction center; 

the only degrees of freedom are the backbone phi, psi, and omega torsion 

angles.  Conformational sampling proceeds, starting from an extended chain, by random 

replacement of backbone torsion angles with torsion angles from fragments selected from 

PDB templates using the Rosetta fragment picker19.  Previously described sequence 

profile, secondary structure (SS), and Ramachandran based score terms were used for 

fragment selection, in addition to depth dependent structure profile20, phi and psi 

torsion21, and solvent accessibility21 score terms.  Score term weights were optimized 

from a previous unpublished benchmark and used as default in the “make_fragments.pl” 

wrapper script available in the Rosetta software package.  The previously described SS 

quota mechanism19 was not used in favor of a single predictor, PSIPRED22.  Variable 

fragment lengths of 3-19 residues were used as previously described23.  If GREMLIN 

contacts were predicted, they were used as sigmoidal restraints for sampling and 

refinement, and only 3 and 9 residue fragments were used. 

Rosetta comparative modeling 

RosettaCM has previously been described in detail11.  In summary, the protocol 

recombines structural elements from clustered partial-threads and models missing 

segments using a combination of fragment insertion and mixed torsion-Cartesian space 

minimization.  Conformational sampling is performed using the Rosetta low-resolution 

score function2 with spatial restraints that are generated separately from each cluster24.  If 
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GREMLIN contacts were predicted, the clusters were re-ranked using this information, 

and the template based spatial restraints were supplemented with the co-evolution 

restraints for sampling and refinement.  The weighted fraction of top contacts made in 

each partial-thread was used to modify the p-correct scores11 for re-ranking clusters.  The 

contribution of the GREMLIN term was scaled so that the score of the best scoring 

template was zero. 

Rosetta refinement 

All models were relaxed in the Rosetta full atom energy function first in torsion space 

and then in cartesian space3.  If GREMLIN contacts were predicted, the GREMLIN score 

was added to the all atom energy during full-atom refinement; in both the RosettaCM and 

RosettaAB protocols, the Cβ-Cβ amino acid specific GREMLIN restraints were replaced 

with ambiguous distance restraints between side-chain heavy atoms (cutoff 5.5, slope 4). 

Model Sampling and Selection 

Robetta uses the BOINC25 distributed computing project, Rosetta@home (R@h; 

http://boinc.bakerlab.org/rosetta), to generate models.  Each R@h work unit runs as many 

independent sampling trajectories as possible within a 4 hour average run time limit on a 

host computer.  RosettaAB models were generated from 12,000 work units for the query 

sequence, and 4,000 each for up to 2 sequence homologs and 2 query sequence variants 

with at least 90 percent coverage whose termini were trimmed based on predicted 

disorder26.  Around 71,000 models were generated for each query sequence and 28,000 

for each homolog and trimmed variant, on average.  If GREMLIN contacts were 

predicted, models were only generated for the query sequence.  The top 10,000 all-atom 

scoring (and restraint fit if GREMLIN contacts existed) query models were clustered with 
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the top 2,000 scoring models for each homolog and trimmed variant.  The top scoring 

query model from each of the top 4 clusters ranked by cluster size and the overall top 

scoring query model not represented in the clusters were selected, and the top 3 scoring 

models from this subset were submitted as models 2, 3, and 5, ordered by score.  The 

remaining models, 1 and 4, were selected from among the best scoring 100 RosettaCM 

models by identifying low-energy clusters and averaging.  For each model, we compute a 

neighbor-weighted probability, where the Bolzmann weight of each structure is 

calculated, and then -- for each conformation -- the weight of nearby neighbors is added, 

scaled by the similarity of the two structures using maxsub with a 3Å radius.  Using this 

metric, the highest-probability structure and its ten nearest neighbors are selected, and 

they are averaged in Cartesian space by superimposing and computing the mean 

coordinates for each atom.  Positions with too much variability (positional B factor > 

100) are not averaged, but instead are assigned the coordinates of the selected 

model.  These averaged models are then refined using Rosetta relax with coordinate 

constraints.  The order of these final models was determined by the rank of the alignment 

cluster from which they belonged to.  RosettaCM models were generated from up to 

3,000 work units; the number of work units was a function of L*log(L) where L is the 

sequence length.  On average, 5,100 models were generated for up to 5 partial-thread 

clusters each. 

Domain assembly                                                                   

The method used for domain assembly for multiple domain targets depended on whether 

an alignment was generated to a template that contained all of the domains.   If no such 

template was found, the final selected models for each domain were combined into a full-
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length model using the Rosetta domain assembly method27, which assembles domains by 

performing fragment insertion within the linkers.  If domain models superimposed with a 

full-length partial thread, RosettaCM was used to guide assembly based on the 

orientation in the full length model by recombining the domain models with the full-

length partial thread. 

Human intervention 

We decided to manually intervene only for targets we thought would significantly 

improve in prediction accuracy using either methods not yet implemented in Robetta or 

with more sampling (7 FM domains).  For the remaining targets, we simply submitted the 

Robetta models.  The general protocol we used is shown in Figure 3.  The majority of 

human targets were chosen if GREMLIN contacts were predicted.  If a large fraction of 

the top co-evolving contacts were not made in the Robetta models, more RosettaAB 

models were produced (T0824, T0826 and T0836).  If most contacts were made, further 

optimization of the Rosetta all-atom energy and co-evolution restraints was carried out 

through multiple RosettaCM iterations starting with the Robetta models as initial 

templates (T0806).  Fragment insertions were also made in template regions (10 percent 

of  the total moves) to introduce more diversity.  Some targets were also chosen if there 

were templates suggesting possible homo-oligomeric states that Robetta did not 

detect.  For these targets (T0763, T0785 and T0799), RosettaCM was used to generate 

models in the oligomeric states inferred from templates.  The final submissions for these 

targets were selected from the oligomeric state runs and the original Robetta server 

models ranked by GOAP score28.  

RESULTS 
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As described in the methods, for CASP11 we sought to automate as much of the 

prediction process as possible, and for many targets the “human” group submitted 

Robetta server models.  We first describe automated Robetta results and second, results 

for targets where additional human-guided calculations were carried out. 

Robetta 

A significant development in Robetta since last CASP was the use of predicted co-

evolution contacts to generate restraints for conformational sampling.  To evaluate the 

contribution of the predicted contacts in our automated protocol, we reran the CASP FM 

targets for which they were used through the standard automated protocol without 

predicted contact information.  As shown in Figure 4, 9 out of 13 domains have improved 

GDT-TS29 quality scores in the original run with contact information compared to this 

control, and 5 improve by over 6 GDT-TS units.  It is clear that co-evolutionary 

information can significantly improve modeling accuracy.  Figure 5 shows a number of 

notable Robetta submitted models.  T0790-D2 (domain 2; 130 residues alpha/beta; 2.9L 

sequences) model 3 has 3.9 Å Cα-RMSD over 92 residues to the native [Fig. 5(A)].  The 

modeled region (101-293) covering the assessor’s official domain (136-265) includes 63 

extra residues due to an incorrect domain parse and missing coordinates at the C-terminus 

in the native structure.  Despite modeling the incorrectly parsed domain, a significant 

portion of the native topology consisting of helices packed against an anti-parallel beta-

sheet was correctly modeled.  The most confident predicted contacts are within the anti-

parallel beta-sheet [right structure in Fig. 5(A); contacts are represented as lines in the 

native structure].   The prediction accuracy is better by 13.1 GDT-TS units than the no 

contact control.  Another highlight was the correctly predicted helical region in T0789-
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D1 model 2 (residues 6-81; 2.7L sequences), which has 2.8 Å Cα-RMSD over 71 residues 

to the native structure [Fig. 5(B)].  The predicted contacts are consistent with the overall 

topology [right structure in Fig. 5(B)], and the prediction accuracy is better than the 

control by 6.5 GDT-TS units. 

 

Robetta also made notable predictions for T0761-D2 [model 4; Fig. 5(C)] and T0767-D2 

[model 3; Fig. 5(D)], which do not use co-evolution information.  Although Robetta 

incorrectly predicted the domain boundary for T0761-D2 (residues 150-285), it modeled 

a shorter region spanning residues 202-285 with 3.9 Å Cα-RMSD over 68 residues to the 

native.  RosettaCM was used for this prediction and improves upon the best input 

template (4fnq) in TM-score30 from 0.43 to 0.57.  For T0767-D2 (residues 133-312), 

Robetta correctly assigns the domain boundary and models a 188 residue region (residues 

131-318) with 4.0 Å Cα-RMSD over 92 residues to the native.  Although the quality of 

models is generally low for most FM domains due to their difficulty, length, and/or lack 

of homologous information, Robetta’s best models are top ranked among servers for a 

significant number of domains (13).  Robetta ranked 3rd overall considering the best 

submitted models among humans and servers according to the official assessment for FM 

domains; two human groups (BAKER and Kiharalab) rank better. 

Human intervention 

For the four targets, which had sufficient sequences for GREMLIN contact predictions, 

the human protocol yielded better models than the automated Robetta protocol.  The 

primary differences between the human and the Robetta protocol were increased 

sampling in the first topology level search, and iterative recombination of the resulting 
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models (this makes it possible for accurately modeled features in different models to be 

combined; the chance that all regions are correctly modeled in one fold level Monte Carlo 

trajectory is very small).   For two of the four targets, the submitted models were the best 

for these targets in CASP11 by a considerable margin.  These include T0806 (34.4 vs. 

60.7 GDT-TS) and T0824 (41.2 vs. 55.3 GDT-TS).  Both targets had no detectable 

structural homolog in the PDB, but had a large number of homologous sequences for 

accurate co-evolution contact prediction (T0806 had 5L and T0824 had 3L 

sequences).  The second best model for both targets came from David Jones’ group, 

which also used co-evolutionary information in their modeling protocol.  The two other 

targets were trans-membrane domains and had less sequences (T0826-D1 with 2L and 

T0836 with 1L). For these targets, David Jones’ group submissions were better (T0826-

D1: 37.7 vs 29.1 and T0836: 44.1 vs 39.0 GDT-TS).  For T0836, we incorrectly excluded 

the first 30 residues as a signal peptide, which hurt performance.  Our successful 

predictions and those of David Jones’ clearly show that co-evolutionary contact 

information can significantly improve structure prediction for difficult targets provided 

there are sufficient numbers of sequences in their families. 

 
The predictions made using oligomeric states inferred from detected templates (T0763, 

T0785 and T0799) were no better than the Robetta models, which is not surprising given 

that the templates were incorrect. 

 
What went wrong 

As in previous CASP experiments, correct domain parsing and classification remains 

challenging yet important for accurate modeling.  The assessors parsed 19 out of 30 full-
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length FM targets into multiple domains accounting for 34 domains from multi-domain 

targets, and Robetta reasonably parsed only 5 domains.  2 out of 11 single domain targets 

were incorrectly parsed into multiple domains, and 4 multi-domain targets were modeled 

as single domains.  It is not surprising that domain prediction was difficult for CASP11 

FM targets due to the lack of detectable structure homologs and, for some targets, the 

number of homologous sequences was also limited.  In addition to incorrect domain 

parsing, some targets were modeled using the Robetta CM protocol only (T0793-D5, 

T0824, and T0827), and would likely have improved using the de novo RosettaAB 

protocol. 

 

The model ranking by Robetta was quite poor; only 6 of 45 FM domains had model 1 

submissions that were the best of the 5 submitted models.  To make the bookkeeping 

simple, Robetta during CASP11 always selected template based RosettaCM structures for 

submitted model 1 and 4, and de novo structures for 2, 3 and 5 submitted models.  This 

was clearly a very poor strategy for producing good model 1 predictions, since, in the 

difficult target regime, the de novo models were generally better and the templates for 

comparative modeling were quite distant from the actual structure. 

 
Because the CASP11 Robetta ranking scheme was so poor, it can be improved 

(retrospectively) very easily.  Model Quality Assessment (MQA) methods use features 

such as evolutionary information, residue environment, statistical and knowledge based 

potentials, and various predicted structural features to score models and have been shown 

to improve model ranking in previous CASP experiments31,32.  Simply re-ranking the 5 

submitted Robetta models using the MQA method, ProQ233, significantly improves 
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model 1 accuracy for the FM domains [Fig. 7].  Still better results could likely be 

obtained by re-ranking a larger set of models from both RosettaCM and RosettaAB.  We 

will implement an improved model selection scheme in the public Robetta server and test 

it in the ongoing CAMEO34 structure prediction evaluation project. 

 

Among our human submissions, three (T0806, T0824 and T0826) of the four targets that 

used GREMLIN restraints had regions with poor fragment quality due to incorrect SS 

predictions.  It is likely that using GREMLIN restraints directly in fragment selection 

would yield improved models.  We did not improve upon our server submissions for the 

three targets that were modeled using homo-oligomeric states due to the use of incorrect 

templates. 

 

Discussion 

Compared to CASP10 and CASP9, CASP11 had substantially more FM domains and 

overall many challenging targets.  Although most targets were difficult to model 

accurately, there were a few outstanding highlights owing to the use of accurately 

predicted co-evolutionary contacts.  The results suggest that provided there are enough 

homologous sequences available, large topologically complex proteins with no 

homologous structures in the PDB can be modeled with close to atomic-level accuracy 

using Rosetta with co-evolutionary restraints; T0806 is the first blind prediction of a 

relatively large (258 residues) topologically complex protein with such accuracy (<3.0 Å 

RMSD over 223 residues). 
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Our results and those of others clearly show that predicted contacts are useful at the 

conformational sampling stage.  Predicted contacts may also be useful at other steps in 

the structure prediction process.  Many FM domains were from multi-domain targets that 

were difficult to accurately parse using our template and MSA based domain prediction 

methods, and GREMLIN contacts could help to improve domain prediction and 

accurately model domain orientation.  Predicted contacts likely can also 

improve fragment selection for Rosetta de novo folding calculations, help validate 

oligomeric states inferred from templates and model symmetric oligomers de novo (as 

illustrated by T0680 from CASP10, modeling with the correct oligomeric state in 

addition to sparse contact information can improve prediction accuracy). 

 

 
The major limitation to methods such as GREMLIN is the dependence on the availability 

of homologous sequences, and indeed, half of the CASP11 FM targets had less than 1L 

homologous sequences.  Although 5L sequences provide consistent high accuracy 

contacts5, we reasoned that less accurate contacts from at least 1L would still be better 

than no predicted contacts for free-modeling targets.  However, it was the targets with 

close to 5L sequences, T0806 and T0824, for which the most accurate models were 

produced.  Further analysis on a benchmark of 13 free-modeling targets with more than 

5L sequences, showed similar results.  11 of the 13 targets converged and the Cα-RMSD 

of the predicted structures to the experimentally determined structures over the converged 

residues were below 4.0Å39.  This study also showed that the number of non-redundant 

(at 80% identity cutoff) sequences over the square-root of length is a better predictor of 

accuracy than sequences per length when there are less than 5L sequences.  The proteins 
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that had many sequences typically represented families that are found in prokaryotic 

organisms.  The amount of available sequence data continues to expand through 

sequencing efforts covering many different organisms, and there is also potential for 

using in-vitro evolution involving “directed evolution” selection schemes35 and deep 

sequencing36 to identify coupled residue pairs.  Large scale genome and metagenomic 

sequencing is having an unanticipated impact on protein structure modeling, enabling 

accurate protein structure modeling using co-evolution based predicted contacts.  As 

more simple yet diverse eukaryotic organisms are sequenced, through projects such as the 

recent Tara Ocean expedition37,38, it will make it possible to accurately model not just 

prokaryotic protein families but also a large number of eukaryote specific protein 

families. 

 

 

 

Availability 

Robetta and GREMLIN are available for non-commercial use at 

http://robetta.bakerlab.org and http://gremlin.bakerlab.org, respectively.  The Rosetta 

software suite can be downloaded from http://www.rosettacommons.org.                
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Figure Legends 

Figure 1: Fully automated Robetta structure prediction protocol. 
 
Figure 2:  Choice of restraint functional form.  A) Alternative functional form for 
restraint penalty functions.  B) Use of sigmoidal restraints with no gradient beyond 8Å 
requires a large amount of sampling, but reduces the impact of incorrect contact 
predictions on the resulting models, which maximize satisfaction of internally consistent 
sets of contacts. 
 
Figure 3: Human assisted structure prediction protocol. 
 
Figure 4: Comparison of Robetta results with (during CASP11) and without (post CASP 
control) GREMLIN predicted contacts. 
 
Figure 5: Robetta highlights. A) T0790-D2 (residues 136-265); B) T0789-D1 (residues 6-
81); C) T0761-D2 (residues 202-285); D) T0767-D2 (residues 133-312).  All the 
GREMLIN contact predictions used in modeling are shown in the scatter plot; most of 
the high scoring residue pairs were indeed in contact in the native structure (x axis). Lines 
connect residue pairs with GREMLIN score ≥ 1.5 (for cases with more sequences, more 
contacts are shown, with cutoff as indicated in figure); green, minimal heavy atom 
distance less than 5Å; yellow, distance less than 10Å and red, greater than 10Å. 
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Figure 6: Human assisted prediction highlights. A) T0806; B) T0824; C) T0836 

Figure 7: Re-ranking the 5 submitted models using a single-model MQA method, ProQ2, 
improves model 1 accuracy for FM domains 
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Figure 1: Fully automated Robetta structure prediction protocol.  
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Figure 2: Choice of restraint functional form. A) Alternative functional form for restraint penalty functions. B) 
Use of sigmoidal restraints with no gradient beyond 8Å requires a large amount of sampling, but reduces the 
impact of incorrect contact predictions on the resulting models, which maximize satisfaction of internally 

consistent sets of contacts.  
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Figure 3: Human assisted structure prediction protocol.  
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Figure 4: Comparison of Robetta results with (during CASP11) and without (post CASP control) GREMLIN 
predicted contacts.  
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Figure 5: Robetta highlights. A) T0790-D2 (residues 136-265); B) T0789-D1 (residues 6-81); C) T0761-D2 
(residues 202-285); D) T0767-D2 (residues 133-312). All the GREMLIN contact predictions used in modeling 

are shown in the scatter plot; most of the high scoring residue pairs were indeed in contact in the native 
structure (x axis). Lines connect residue pairs with GREMLIN score ≥ 1.5 (for cases with more sequences, 
more contacts are shown, with cutoff as indicated in figure); green, minimal heavy atom distance less than 

5Å; yellow, distance less than 10Å and red, greater than 10Å.  
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Figure 6: Human assisted prediction highlights. A) T0806; B) T0824; C) T0836  
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Figure 7: Re-ranking the 5 submitted models using a single-model MQA method, ProQ2, improves model 1 
accuracy for FM domains  
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Table I.  BAKER human targets 

* Number of sequences / length of target, e-value threshold, search iterations, search method 

 

  
Best GDT-TS 

Target Parameters for MSA* Human Robetta Server Others 

T0806 4.60L, 1E-40, iter8, jackhmmer 60.7 26.2 34.7 

T0824 2.46L, 1E-06, iter8, jackhmmer 55.3 28.5 41.2 

T0826-D1 1.80L, 1E-40, iter8, jackhmmer 29.1 23.4 37.7 

T0836 1.10L, 1E-06, iter4, hhblits 39.0 27.0 44.1 

T0763 N/A 20.8 20.8 39.0 

T0785 N/A 25.7 25.7 30.1 

T0799-D1 N/A 16.0 19.9 21.6 

T0799-D2 N/A 23.5 27.9 31.9 
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