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ABSTRACT

In the design of new enzymes and binding proteins, human intuition is often used to modify computationally designed

amino acid sequences prior to experimental characterization. The manual sequence changes involve both reversions of

amino acid mutations back to the identity present in the parent scaffold and the introduction of residues making additional

interactions with the binding partner or backing up first shell interactions. Automation of this manual sequence refinement

process would allow more systematic evaluation and considerably reduce the amount of human designer effort involved.

Here we introduce a benchmark for evaluating the ability of automated methods to recapitulate the sequence changes made

to computer-generated models by human designers, and use it to assess alternative computational methods. We find the

best performance for a greedy one-position-at-a-time optimization protocol that utilizes metrics (such as shape complemen-

tarity) and local refinement methods too computationally expensive for global Monte Carlo (MC) sequence optimization.

This protocol should be broadly useful for improving the stability and function of designed binding proteins.
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INTRODUCTION

Computational protein design has been used to design

proteins with new structures or functions. The new func-

tions range from small-molecule binding to specific pro-

tein binding to catalytic activity.1–4 The computational

design of proteins that bind reaction transition state

models, and ligands more generally, often starts from a

set of naturally occurring protein scaffolds of known

structure. It proceeds by first identifying placements of

the ligand in the scaffolds and second, optimizing the

surrounding residues for favorable interactions with the

ligand without compromising the overall stability of the

protein. The resultant designed proteins are usually

inspected by a researcher and modified before they are

experimentally tested. These modifications are based on

human intuition about protein stability, aggregation, and

binding interactions. Sequence changes far from, or fac-

ing away from, the designed site are often reverted, and

larger residues substituted for smaller ones (very small

clashes during fixed-backbone computations may disfa-

vor larger residues, with better packing, from being

selected). Automation of these human intervention steps

is desirable for systematically optimizing the design pro-

cess, for reducing the human time required for design,

and more generally, for making protein design more

broadly accessible.

Automation of a process requires a benchmark for

evaluation of performance. Several types of benchmarks

have previously been described for protein–small-

molecule interaction modeling. These include small-

molecule docking, prediction of small-molecule–protein

interaction affinity,5–7 and amino acid sequence recovery

at natural protein–small-molecule interfaces.8,9 The

problem of how to alter the sequence of a naturally

occurring protein to bind a new small-molecule is much

more challenging, and not directly addressed by existing

benchmarks. For example, it is necessary to consider

whether an amino acid substitution that increases the

apparent binding affinity for a new ligand overly com-

promises the stability of the protein scaffold.

Additional Supporting Information may be found in the online version of this

article.

Niv�on L.G. and Bjelic S. contributed equally to this work.

*Correspondence to: David Baker, Department of Biochemistry; Howard Hughes

Medical Institute (HHMI), University of Washington, Seattle, WA 98195. E-mail:

dabaker@u.washington.edu

Received 27 June 2013; Revised 25 September 2013; Accepted 21 October 2013

Published online 30 October 2013 in Wiley Online Library (wileyonlinelibrary.-

com).

DOI: 10.1002/prot.24463

VVC 2013 WILEY PERIODICALS, INC. PROTEINS 1



To guide the automation of human intuition in the

manual stages of protein design, we assembled a bench-

mark set of 51 proteins that tests the ability of a method

to recapitulate mutation decisions made by human pro-

tein designers in realistic novel-design situations. We also

developed a new local sequence optimization procedure

that uses a greedy algorithm and allows multiple sampling

methods to be carried out in serial using metrics too com-

putationally expensive for global sequence design. We

show that the new protocol improves on traditional design

methods on the human designer benchmark. Monte Carlo

(MC) based Rosetta design together with the novel greedy

optimization provide a fully automated pipeline for com-

putational design of enzymes and ligand-binding proteins

with minimal human intervention.

MATERIALS AND METHODS

Match–design–order benchmark: human
design interventions on Rosetta designed
proteins

The match–design–order (MDO) benchmark consists

of proteins gathered from our protein engineering

efforts: design of a de novo Morita Baylis Hillman cata-

lyst (MBH prefix)10; design of a phosphorylated-ester

binding protein (1kux1 prefix; Niv�on unpublished);

design of a binding protein for digoxigenin (DIG prefix;

Tinberg et al.)4; design of a de novo galactosidase (GA

and GF prefixes; Bjelic unpublished); design of a binder

for the fluorophore 3,5-difluoro-4-hydroxybenzylidene

imidazolinone (DFHBI; MB prefix; Bick unpublished);

design of a beta-lactamase (BL prefix; Khersonsky

unpublished); and design of de novo chorismate mutase

(dCM prefix; Richter unpublished). The MDO bench-

mark is available via the link: http://robetta.bakerlab.org/

downloads/ligand_design_benchmarks/MDOBENCH/

Overall the design set differs from the native (match)

set by a mean of 19.0 (SD 5.5) mutations (Fig. S1A, Sup-

porting Information). The design set differs from the

order (human modified) set by mean of 10.3 (SD 4.0)

mutations (Fig. S1A, Supporting Information). Human

designers place fewer mutations than Rosetta does, and

have less variance in the number of mutations

introduced.

The design and order set of structures differ by a total

of 527 mutations, of which 62.4% (328) are reversions to

the native sequence identity. The mutations in the order

set are not strongly weighted toward hydrophobic or

polar residues, with 22.4% going from hydrophobic in

the design to polar in the order, and 25.2% going in the

opposite direction. Mutations from the design to order

set are slightly more likely to increase amino acid size

(54.5%) rather than decrease it (45.5%). The most fre-

quent type of change was a slight size increase of 10–20

Da, for example, adding a methyl group (Fig. S1B, Sup-

porting Information, mass distribution). Mutations made

by human designers in the order set range from adjacent

to the ligand (3–4 Å distance from residue CA to the

ligand) up to second shell (12–13 Å distant) with a small

minority of mutations over 13 Å (Fig. S1C, Supporting

Information, distance distribution).

The greedy protocol performs sidechain repacking

with a stochastic MC algorithm, and therefore it is not

deterministic. To estimate sample variation we tested the

best greedy Protocol (see Results section, below, ES10_b-

road2) over five independent runs, giving a mean of 8.75

with SEM 0.03. Because the SEM is small, we report the

results of single runs over the full benchmark set, and

only draw conclusions from differences at least three

times the SEM (0.1 mutations).

Native sequence recovery benchmark for
protein2ligand complexes

We chose a representative member from each protein

class (binding, immunological, transport, etc.) in the

Binding Mother Of All Databases (MOAD) to construct

the sequence recovery benchmark.11 The proteins in

MOAD are well resolved (<2.5 Å) with biologically rele-

vant ligands (small organic molecules and cofactors, but

not crystallographic additives, salts, etc.) and binding

data derived from the literature. The proteins in each

class were inspected manually, curated to include only

binders of natural ligands in the affinity range of 10 mM

or lower. Structures were prepared for Rosetta calcula-

tions as described in Supporting Information Appendix

A. Our data set was directed specifically toward natural

small-molecule binders and excludes enzymes and cata-

lytic antibodies. Small-molecule binding proteins should

be evolutionarily optimized only for binding and overall

stability, which we can effectively model. Enzyme model-

ing would require additional information about the func-

tional residues, such as the requirement for a catalytic

triad at a specified set of distances from a substrate pep-

tide in a protease. Catalytic antibodies were also excluded

from the benchmark as they did not have an evolution-

ary timeframe over which to evolve, and have less con-

verged sequences. Transition metal-binding proteins were

also removed from the benchmark, as these require addi-

tional metal-specific interactions with amino acids to be

included for optimal performance. The resulting set con-

sists of 51 proteins with ligands, as summarized in Sup-

porting Information Appendix B. The protein–ligand

native sequence recovery benchmark is available as part

of the standard Rosetta package on github at: Rosetta/

main/tests/scientific/biweekly/enzdes_benchmark

Sampling and algorithm

The protein–ligand native sequence recovery bench-

mark enabled evaluation of new scoring terms and new
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sampling algorithms for protein–ligand interaction

design. These were tested by adding the modifications to

the standard Rosetta energy terms one at a time.12,13

Evolutionary information from a Multiple Sequence

Alignment (MSA) was introduced via a position-specific

scoring matrix (PSSM) to give a likelihood score to each

residue at each position. The MSA implementation uses a

PSSM generated by sequence alignment of homologs with

a maximum E-value cutoff of 0.0009 using blastpgp. This

gives a log-odds score derived from the relative proportion

of each amino acid and the prior probability of observing

each amino acid.14 The influence of PSSM score on

sequence recovery was investigated by iterating the PSSM

weight over a set of 11 discrete values: 1, 2, 3, 4, 5, 10, 20,

50, 100, 200, and 300 in the native recovery benchmark.

Energy terms for sidechain repacking are represented

in a graph-like data structure with connections between

each residue describing their pairwise interactions.15 The

enzyme design protocol16 is typically run with a higher

weight on protein–ligand interactions in the energy

graph, so that alterations in these energies will play a

larger role during MC sidechain repacking steps. This

up-weighting is only applied to residues that change

identity, and not applied during minimization, when res-

idue identity is static. However, finding an appropriate

value for this protein–ligand interaction adjustment is

problematic without a large training set. Here protein–

ligand interactions were up-weighted between one- and

threefold in increments of 0.2. The default benchmark

was always run with a weight of 1.8.

Modulation of the repulsive part of the Lennard–Jones

(LJ) potential has been demonstrated to improve sampling

and free energy calculations,17 and a reduced-repulsion

“soft” LJ term allows for higher sequence recovery of

natives during design. Here we test different methods for

applying the “soft” LJ potential during design.

Deeper sampling of rotamers can be accomplished by

increasing the number of MC cycles within a trajectory

or by running multiple trajectories in parallel. Rotamer

sampling is carried out using MC while temperature is

slowly decreased, in a simulated annealing method. Each

step in the temperature cycle is an “inner” iteration, with

a set number of rotamer sampling steps. The “outer”

iterations carry out each “inner” cycle a set number of

times while the temperature is varied. A set number of

“inner” quench cycles can optionally be performed N

times with the multi-cool annealer (MCA) (after N inde-

pendent runs of temperature annealing, the best individ-

ual final score is passed on as the output structure). The

MCA may allow for better sampling in many cases, due

to the stochasticity of an MC trajectory. Here we tested

the effect of outer iteration scaling and MCA sampling

on sequence recovery in the native sequence benchmark

(Supporting Information).

In the enzyme design protocol applied here a “design

cycle” is a set of MC rotamer substitution (as described

above) and a gradient minimization. We determined the

effect on sequence recovery of increasing the number of

design cycles up to five. The number of cycles defaults to

two for the enzyme design protocol and always allows at

least one round of sampling with a soft LJ potential

while the last cycle is performed with a hard potential. A

higher number of design cycles will increase overall sam-

pling, but may lock the structure into any energy min-

ima encountered during the earliest cycles, or

minimization steps may perturb the backbone and intro-

duce errors.

Rotamer sampling can be improved by utilizing the

existing sidechain rotamers from the input structure.

These rotamers are used until they are swapped for lower

energy ones, which eventually leads to the loss of these par-

ticular rotamers from the set of allowed conformations.

Code version and availability

Rosetta deposited SVN revision 51912 was used

throughout the study to enable the reproducibility of the

results presented here.15 Sequence recovery calculations

over the protein–ligand benchmark were carried out with

the enzyme design application (which is used for any pro-

tein–ligand design problem, “enzyme” design being

accomplished by introducing a set of extra geometric con-

straints in addition to Rosetta scoring).16 The final greedy

optimization Rosetta protocol (in RosettaScripts format18

with an example run in Supporting Information Appendix

C) for recapitulation of human design intervention is

available in the standard Rosetta package: Rosetta/main/

source/src/apps/public/enzdes/ES10_broad2.xml

RESULTS AND DISCUSSION

Match–design–order benchmark:
recapitulating human design interventions

Native protein sequences have been optimized over an

evolutionary timescale to have optimal stability and

function. Protein design algorithms that optimize overall

protein stability can correctly recover many of the native

residue identities.8 Alternative design methods can be

evaluated based on the extent of recovery of native

sequence over a set of monomeric proteins, and a similar

approach can be used to optimize ligand-binding design

methods.

However, native sequence recovery is an imperfect

measure of the performance of a method for designing

new small-molecule binding sites. The protein backbone

is pre-configured for ligand binding, the second-shell

(and further) sidechain interactions are also pre-

configured to buttress first-shell interactions, and the

ligand is already placed in the optimal conformation and

orientation. In contrast, in a novel design scenario, nei-

ther the backbone nor the surrounding sidechains are
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likely to be precisely configured to support the new

binding site. A native sequence recovery approach also

cannot be used to assess the utility of a bias toward the

native sequence, which is often used to reduce the inci-

dence of potentially destabilizing mutations from the

native sequence.

We have developed a new benchmark of raw Rosetta

designs along with the final human-designer modified

sequences to test design algorithms in a more realistic

context, design of a novel function into a protein back-

bone structure previously lacking that function. We call

this the MDO benchmark. The benchmark consists of 51

protein-triplets: (a) a native PDB structure (here the out-

put from the matcher, or “match,” that has all native

sequence except at important catalytic or binding posi-

tions specified in advance), (b) the raw output from

Rosetta with designed residues around the ligand of

interest (“design”), (c) and the final human modified

sequence, which is often substantially different from the

raw design output (“order”). The MDO benchmark con-

sists of proteins gathered from protein engineering

efforts in the Baker lab (see Materials and Methods sec-

tion for details of the proteins and mutations made by

human designers).

Algorithm choice and development

We sought an algorithm to recapitulate the changes

introduced by human designers over the 51 protein

MDO set, essentially a piece of software that would pro-

duce an output design as similar as possible to a human

designer’s sequence. This algorithm should be as general

as possible, allowing for hypothesis testing; for example,

does filtering using shape complementarity19 measures

between protein and ligand help imitate human behav-

ior? It should allow for complex scoring and sampling

methods that require long computation times. Since

human designers typically consider residue positions

one-by-one, we chose an algorithm for sequence optimi-

zation that tests mutations one-by-one around the active

site (with adjustable sampling and scoring methods) and

then incorporates those changes in rank order by score.

This protocol for navigating a tree of decisions in a

multi-parameter search space is a greedy algorithm, as it

evaluates each possibility independently, sorts them by a

selection function, and then takes the best options first.

Greedy algorithms may not be able to locate a global

optimum, instead getting stuck in a local minimum, but

in some cases they very quickly converge on a global

optimum. One would expect a greedy algorithm to per-

form well when the starting sequence is already close to

the optimum sequence, but not to do well in an overall

sequence optimization problem starting from a random

sequence. For the late-stage design optimization problem

considered here the input is already MC optimized and

somewhat close to a global optimum. Greedy algorithms

have been applied to many problems in computational

biology including sequence alignment,20 fragment selec-

tion,21 RNA structure building via a stepwise

approach,22 protein–peptide specificity prediction,23 and

a recent study using a greedy algorithm after a MC

rotamer search for sidechain placement.24 The greedy

algorithm applied to the protein design problem is most

similar to the Self-Consistent Mean-Field method25,26

but with mutations applied in rank order, and without

iteration or a check for self-consistency.

The protocol uses a variety of easily swappable struc-

ture assessment conditions, called filters, and sampling

methods, referred to as movers.18 The protocol operates

on a designed structure and examines each position that

has been altered from the native structure. Every amino

acid point mutant and rotamer state at every position is

sampled independently as follows:

� After rotamer optimization, gradient minimization of

all neighbor sidechains within an 8 Å sphere, and a

user-defined further optimization (termed the

“mover”; e.g., rotamer optimization in a larger sphere,

ligand torsion-angle minimization, and others as

detailed below), the total energy is stored.

� Substitutions that fail any user-defined quality filters

(e.g., shape complementarity) are eliminated.

� After all point mutants and/or rotamers have been

evaluated, substitutions at each position are sorted by

energy, and positions are rank-ordered by the energy

of the optimal substitution at each position.

� Substitutions are combined by first attempting place-

ment of the optimal substitution at the optimal posi-

tion, evaluating the total energy, and accepting if the

total score improves. The substitution at the second

ranked position is then attempted, accepted, or

rejected, and the process is continued until substitu-

tions at all positions have been attempted.

Due to the deterministic nature of the algorithm, this

approach converges reliably to nearly identical solutions,

with slightly more variation if a more aggressive mover

is applied.

We do not know whether human intuition systemati-

cally improves designs, and a difficulty in even formulat-

ing an answer to this question is that every human has

somewhat different preferences in design. The MDO

framework allows us to begin to frame and rigorously

test hypotheses about how to improve protein design;

without such a benchmark, evaluation of new algorithms

is largely anecdotal.

Recapitulation of designer interventions in
the match–design–order set

We ran a series of tests using the MDO benchmark to

find the optimal mover, filter and native sequence-

favoring weight to use with the greedy protein design

L.G. Niv �on et al.
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refinement protocol. We ran the different protocols on

the design set to produce an output set of structures, cal-

culated the average number of mutations between this

output set and the order (human modified) set, and

used this as the scoring metric. Lower numbers are bet-

ter, and zero indicates that the protocol has perfectly

recapitulated all of the human design decisions in the

order set. We also calculated the number of mutations in

the output set to the native sequence (match), and the

number of mutations to the input design set (designs) to

keep track of how many sequence changes the protocol

is making. The starting point is 10.3 mutations to the

order set, 19.0 mutations to the natives (and 0.0 to the

design set, which is the input).

We experimented with the use of a favorable weight

on native residues through the favor sequence profile

(FSP) mover in Rosetta. For example, an FSP weight of 2

gives a bonus of 22 Rosetta Energy Units (REU) to the

native residue at each position, while any other residue

has no added bonus. The number of mutations to the

order set achieves a broad minimum from 1.5 to 3 as

FSP weight is adjusted, centered around 2–2.5 [Fig.

1(a)]. Optimization of a native-sequence favoring weight

with a traditional sequence recovery benchmark is

impossible. The recovery of native sequence would sim-

ply increase monotonically with increasing native-

sequence weight. The MDO benchmark makes this test

possible.

We tested a number of different movers in the greedy

algorithm for energy minimization upon introduction of

each mutation at each position (Table I). The same filter

is used in all cases, the shape complementarity (SC) filter

with a weight of 25 in addition to the total energy.

These movers range from a relatively simple mover (local

repack around the mutated residue followed by a mini-

mization of the protein–ligand interface) to more com-

plex movers with multiple cycles of repacking and

minimization (Table I). A mover of (repack interface

Figure 1
Design improvements from a greedy scanning algorithm. (a) The number of mutations to order as a function of the native sequence favoring

weight. Lower numbers are better, indicating a closer sequence to the order set. The optimal native weight is in the range 2–2.5. (b) The number
of residue improvements (fewer mutations to the order set) for the best greedy protocol, for each of the 51 proteins in the MDO test set. (c) A

comparison of the raw Rosetta design output with positions adjusted by the greedy algorithm indicated as sticks (left, blue) and the greedy protocol

output with those same positions indicated (right, orange) for MB11, the most improved case.
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with low LJ repulsion ! minimize interface ! repack

with normal LJ repulsion ! minimize) has the best per-

formance. More complex movers are not able to improve

the number of mutations to the order (Table I).

Larger design shells give a lower number of mutations

to order. The standard Rosetta design protocol optimized

the identity of residues within 6 Å of the ligand, or 8 Å

if the residue Ca–Cb vector is pointing toward the

ligand. Expanding the design shell to 10/12 Å allows the

protocol to alter 3312 residues in 51 proteins, versus

1049 residues in the standard design shell. Human

designers tend to make changes outside of the standard

design shell, for example, adding backing-up interactions

to keep first-shell residues in place. The smaller design

shell by definition cannot recapitulate human design

decisions outside of the sphere of residues it examines.

The best mover produces on average 8.8 mutations

from the order set (vs. 10.3 in mutations in the starting

structures; Table I). For comparison, the same protocol

over an expanded shell without any bias toward native

sequence produces 17.7 mutations from the order set.

We tested the greedy protocol with a variety of filters

to find the optimal behavior in the MDO benchmark set

for recapitulation of human designed sequences and

found similar behavior for total energy alone or total

energy plus a SC filter with a weight of 25 (Table S1,

Supporting Information). All other filter combinations

gave worse behavior, such as a heavy negative weight on

SC or any weight on the SASA filter.

Sequence analysis of outputs from the best greedy
protocol

Most sequences in the MDO benchmark are slightly

improved, with 0 to 8 fewer substitutions [Fig. 1(b)]. In

some cases there is actually an increase in the number of

mutations to the ordered sequence [negative numbers in

Fig. 1(b)], but in most of these cases the method has

simply placed a number of reversions to native that were

not placed by the human designer. The best case is

MB11 with 15 mutations from the ordered sequence in

the input design and only 6 in the output from the

greedy protocol [Fig. 1(c); residue identities in the design

on the left in blue, residues after the greedy protocol on

the right, in orange]. More than half of the residues that

are altered have a Ca–Cb vector pointing away from the

ligand. These mutations from wild type are unlikely to

favorably impact ligand–protein interaction energies. In

this case all nine of the correctly altered amino acid posi-

tions are reversions to the amino acid identity in the

original scaffold. The case with the least improvement is

BL23 with only 5 mutations from the ordered sequence

in the input design, and 14 in the output from the

greedy protocol. Again most of the changes introduced

by the greedy protocol are reversions to native, but in

this case those changes do not agree with those made in

the ordered sequence.

Native sequence recovery benchmark

With results from the MDO benchmark and the new

greedy protocol in hand, we sought to optimize the MC-

based design protocol used before manual modification

or the greedy protocol. This MC-based protocol has pre-

viously been optimized for monomeric native proteins,

not for protein–ligand interaction design. Our results

from the MDO indicated that the preservation of native

sequence is important to maintain the stability of engi-

neered proteins. We aimed to optimize the MC enzyme

design protocol in Rosetta to minimize the need for

sequence reversion in subsequent greedy optimization,

Table I
Optimal Mover in the Greedy Protocol

Name Mover Order Match Designs

Designs NA (input set, unmodified) 10.33 18.96 0.00
ES10_broad2 cut 10/12/13/15 and ES10 mover 8.78 12.51 8.2
ES10_broad3 cut 11/13/14/16 and ES10 mover 8.96 12.39 8.82
ES10_broad cut 8/10/11/13 and ES10 mover 8.96 12.71 7.55
ES9_broad2 cut 10/12/13/15 and ES9 mover 9.02 13.29 7.82
ES9 softpackLOC/minINT 10.24 15.39 4.29
ES13b softpackLOC/softenzpackINT/minINT/hardenzpackINT/minINT 10.35 15.49 4.31
ES10 softpackLOC/minINT/hardpackINT/minINT 10.47 15.39 4.29
ES13a softpackLOC/enzpackINT/minINT 10.51 15.12 4.65
ES14 Nativescan followed by enzscan with ES10 mover 10.59 14.51 5.51
ES10_broad2_nofsp ES10_broad2 with no native sequence bias 17.65 25.67 9.76

The greedy protocol was run over the MDO test set with the mover specified in the Table, always using the ES10_baseline (-5SC) filter.

Definitions: INT, all interface around ligand; LOC, only the region around the mutated residue; softpack, repack the specified region with a lower vdW repulsion; cut a/

b/c/d, Values for automatic determination of the design and repack region around the ligand. Residues with atom CA < a Angstroms from the ligand are designable;

those with CA -> CB vector pointing toward the ligand are designable if CA < b. Residues with CA < c from the ligand are repackable; those with CA -> CB vector

pointing toward the ligand are repackable if CA < d. All other residues are left with natural identity and rotamer (neither repackable nor designable); hardpack, repack

the specified region with standard vdW; enzpack, repack the ligand pocket, allowing ligand repacking, rigid body moves; broad, larger design shall (with broad 2 and 3

each larger, respectively); min, sidechain minimization; nativescan, only allow native residue or designed residue at each position, while enzscan allows all residues at

each position.
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and, more generally, to improve the quality of design

outputs.

To optimize the existing MC-based computational

design protocol for the protein–ligand design problem,

we assembled a protein–small-molecule benchmark set of

wild-type (as opposed to computationally designed) pro-

tein structures (as described in more detail in the Materi-

als and Methods section and Supporting Information

Appendices A and B) with biological ligands, high struc-

ture resolution, and measured binding affinity better

than 10 mM. The benchmark samples 1041 amino acid

positions in 51 proteins, which gives an average of 20

designable residues per protein active site. We used this

benchmark to assess protein sequence recovery with dif-

ferent design algorithms or score functions. The overall

sequence recovery for the benchmark set with the stand-

ard Rosetta enzyme design protocol is 44%.16

Monte Carlo design algorithm improvement
with the native sequence benchmark

General features of sequence recovery benchmark

To quantitatively evaluate how the MC design algo-

rithm behaves with different scoring and sampling meth-

ods we first examine the complexes with highest and

lowest sequence recovery. The best case is the 1DB127

complex in which 22 residues out of 35 are recovered

[Fig. 2(a)], with a total sequence recovery of 63%. In the

case of the 2PFY28 complex only 2–3 residues out of 11

are correctly predicted [Fig. 2(b)], with a resulting

sequence recovery of only 24%. In general the sequence

recovery is correlated with the chemical composition of

the active site and the ligand, as the energy function per-

forms better with more hydrophobic amino acids.8 1DB1

is a nuclear receptor in complex with vitamin D, which

is large and relatively hydrophobic [Fig. 2(a)]. 2PFY is an

extra-cytoplasmic receptor bound to pyroglutamic acid,

which is quite small and polar [Fig. 2(b)].

Incorporating evolutionary information with a position
specific scoring matrix

Protein design onto an existing protein structure can

benefit from knowledge of the close evolutionary homo-

logs encoded in a PSSM29 and included in the energy

function as an additional term. Including a PSSM term

provides a relatively large increase in sequence recovery

(15%) with only a very small increase in total Rosetta

score [Fig. 2(c)]. We observe an optimal PSSM weight

above which sequence recovery deteriorates; this behavior

is different from a native-sequence favoring weight,

which would simply produce perfect recovery at a high

level [Fig. 2(c)]. Sequence design for a novel function

might benefit less from a PSSM term, although con-

served residues that are vital to stability would be pre-

served using this method.

Figure 2
Native sequence recovery examples and incorporation of evolutionary infor-

mation in design through a PSSM. (a) Comparison of the most successful
case in the benchmark, 1DB1 complex, and (b) the most diverged sequence,

2PFY complex. Purple is the WTstructure and orange are the mutations
introduced during the design stage. (c) Sampling of the WT sequence can

be improved by including information from homolog structures with a
PSSM. A moderate weight on the PSSM score increases the sequence recov-

ery significantly while the overall energy is unchanged or moderately

increased. PSSM weight is varied between 0 and 300.
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Optimal scoring and sampling methods for native recovery

We used the sequence recovery benchmark to test

alternative energy function parameterization and sam-

pling methods. These include recent force field modifica-

tions from Song et al.12 and Leaver-Fay et al.,30

modulation of unfavorable repulsive interactions, up-

weighting of protein–ligand interactions, altering the

number of annealing cycles during MC rotamer packing,

and modifying rotamer-inclusion schemes. Increasing the

number of cycles in annealing, and employing an

expanded “multi-cool-annealing” (MCA)31 protocol per-

formed well, as did the energy function term changes of

Song et al. (SOM).

We next explored the combination of the force field

and algorithm improvements with each other and with

the native sequence and rotamer bias terms. The combi-

nation of the best sampling method, MCA, with the

Song et al. force field corrections yielded an additional

small improvement in sequence recovery (Table II; other

combinations did not generally lead to improvements).

The best sequence recovery was achieved with a PSSM

score term, MCA sampling, and the Song energy correc-

tions (55.4%), and we recommend this combination for

most protein–ligand design cases (Table II). The scoring

behavior of Song et al.12 and Leaver-Fay et al.30 is

default in Rosetta as of git tag @2fac63a via the

“talaris2013” scoring function (Supporting Information).

Native rotamer inclusion leads to an even better

sequence recovery of 56.0%, but as soon as one needs to

redesign the active site to introduce a new function

(instead of recapitulating the native ligand-binding site

as we do here) it is advantageous to use the more general

PSSM information instead with weight set to one.

CONCLUSION

The human-design benchmark (MDO) is uniquely

suited to evaluating the ability of algorithms to recapitu-

late human intuition during the design of novel function

into protein scaffolds. It formalizes a test system for

design algorithms, allowing for rigorous hypothesis

testing without resorting to individual design examples.

Of course we do not know if human intuition improves

upon computationally designed proteins. Now, with the

greedy algorithm and the MDO benchmark, we can sys-

tematically evaluate different human-imitating algorithms

(e.g., one emphasizing shape complementarity, another

emphasizing solvent accessible surface area).

The optimal greedy protocol combines the best mover,

FSP weight, and filters. The sampling in this protocol is

local—an attempted mutation is introduced at a given

position and only nearby residues are optimized—and

not global over the entire designed interface, as is the

case in standard Rosetta MC-based sampling. This proto-

col should perform well for small-molecule binding pro-

teins. A separate optimization would be required for

other problems, such as protein–protein interaction

design, with an appropriate benchmark set.

The two primary bottlenecks in the production of

high numbers (hundreds) of computational designs are

the human time required to evaluate and refine each

structure, and the cost and complexity of synthesizing

large numbers of genes. The greedy protocol reduces the

amount of time required to produce each design, while

increasing the likelihood that individual designs are sta-

ble and functional. The recent developments in array-

based DNA synthesis will increase the number of testable

independent sequences.32 In many instances of computa-

tional protein design a very small fraction, approximately

1%–2% of designs, is folded and active. The combination

of the greedy optimization protocol and array-based

DNA synthesis could significantly increase the chance of

success for difficult design challenges.
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Table II
Optimization of Sampling and Energy Evaluation for the Native Sequence Recovery Benchmark Set

Method Details Sequence recovery (%)

M1 No probability of amino acid given backbone phi/psi,a no pairwise statistical
residue–residue contact term,b Song et al. correctionsc

44.7

M2 M1 1 design with standard Lennard–Jones potentiald 44.8
M3 Deeper rotamer sampling during packinge; 10 parallel trajectories of the packer,

choosing the best single runf
44.8

M4 M1 1 M3 45.0
M5 M3 with PSSM (weight 5 1) 55.4
M6 M3 with wild-type residue rotamer addedg 50.9

Each test was run with Rosetta options as indicated in the legend.

List of corresponding Rosetta flag names: ap_aa_pp, bfa_pair, ccorrect, dno soft_rep_design, eouteriterations_scaling 4, fmulti_cool_annealer 10, guse_input_sc.

L.G. Niv �on et al.
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