
Community-wide Evaluation of Methods for Predicting the Effect
of Mutations on Protein-Protein Interactions

A full list of authors and affiliations appears at the end of the article.

Abstract

Community-wide blind prediction experiments such as CAPRI and CASP provide an objective

measure of the current state of predictive methodology. Here we describe a community-wide

assessment of methods to predict the effects of mutations on protein-protein interactions. Twenty-

two groups predicted the effects of comprehensive saturation mutagenesis for two designed

influenza hemagglutinin binders and the results were compared with experimental yeast display

enrichment data obtained using deep sequencing. The most successful methods explicitly

considered the effects of mutation on monomer stability in addition to binding affinity, carried out

explicit side chain sampling and backbone relaxation, and evaluated packing, electrostatic and

solvation effects, and correctly identified around a third of the beneficial mutations. Much room

for improvement remains for even the best techniques, and large-scale fitness landscapes should

continue to provide an excellent test bed for continued evaluation of methodological improvement.
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Introduction

Protein-protein interactions are crucial in biology1–3. Understanding the thermodynamics of

protein-protein interactions is important for quantitative understanding of biological function

and for enabling the design of proteins, small molecules and other compounds to modulate

these interactions4, 5. A large number of computational methods have been developed to

predict protein-protein binding affinity6–9.

Blind community-wide tests of computational methods provide a means to objectively

assess the current state of the art and identify potentially promising approaches. CASP has

actively evaluated protein structure prediction methodology, and CAPRI has evaluated

protein-protein docking methodology10–13, but there has been no similar test of methods for

predicting the effects of mutation on protein-protein interactions.

Here we describe the results of a community wide test of methods for evaluating the effect

of mutations on protein-protein interaction affinity. This test employed two comprehensive
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datasets on the effects of every point mutant on the enrichment under yeast display selection

of two designed protein binders of influenza hemagglutinin (HA).

Materials and Methods

Description of Data

Enrichment data were derived from experiments described previously14. Briefly, single

point mutant variants were created, corresponding to all 20 amino acids at each of 53 and 45

positions for the computationally designed influenza binders HB36.4 and HB80.3,

respectively. These were expressed as yeast cell surface-conjugates, and subjected to a non-

purifying selection for hemaglutannin binders using FACS (Fluorescence-Activated Cell

Sorting) by using concentrations of HA roughly at the KD of the respective interaction. The

pre-sort and enriched libraries were subjected to high-throughput sequencing on an Illumina

GA-II sequencer, and the enrichment value for each sequence was calculated by taking the

base-2 logarithm of the ratio of the number of times the sequence was seen in the enriched

library to the number seen in the naïve library.

Prediction

Participants in CAPRI round 26 exercise for targets T55 (HB36) and T56 (HB80) were

asked to predict both the ranking (on an arbitrary 0-1 scale) and the mutational class

(beneficial/neutral/deleterious) of each of mutation. A full description of the methods for

each group is included in the Supporting Information. Predictions were completed prior to

the public release of Whitehead et al.14

For the initial prediction round, participants were provided with a description of how the

experimental data was derived, the starting sequences (Table S3), the positions at which

mutations were made, and structures for HB36.3 (PDBID 3R2X15) and HB80.4 (provided as

a pre-release structure, further refined and submitted as PDBID 4EEF14) complexes. (The

structures for the HB36.4 and HB80.3 complexes were not provided, as they have not been

crystalized.) HB36.3 differs from HB36.4 by a K64N mutation, and HB80.4 from HB80.3

by G12K, L17I, L21I, A35K, and S42K. Additionally, in the pre-released structure, the first

HB80 chain, chain G, had been modeled with an additional K28A mutation.

To see if more specific knowledge of deep mutational scanning experimental data would

help prediction, a second round of prediction was run. In addition to the information

available from the first round, participants were also provided with the enrichment values of

one half of the mutations, randomly selected (9 aa at each of the mutated positions plus the

starting identity). Participants were free to modify their procedure how they saw fit to

account for the additional information - details on how each group used the additional data is

provided in the Supplementary Information.

For classification purposes, mutations with a log2(enrichment ratio) greater than +2 were

considered beneficial, and those with values less than −2 were considered deleterious. For

the BLOSUM model, each mutation was assigned the BLOSUM6216 matrix value (an

integer in the range of −4 to 11) for the wild type/mutation amino acid pair. BLOSUM

values greater than or equal to +2 were considered beneficial, and those less than or equal to
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−2 were considered deleterious. These cutoffs were chosen to most closely approximate the

distribution of beneficial/neutral/deleterious mutations that was observed experimentally.

Continuous predictions were evaluated by the Kendall tau-b correlation to the

log2(enrichment ratio) values, as calculated by the cor() function of R17. Kendall's tau

examines the experimental and predicted values for the exhaustive list of mutation pairs,

considering them concordant (e.g. x1 < x2 & p1 < p2) or discordant (e.g. x1 < x2 & p1 > p2).

The tau-b metric is then (C-D)/√(NxNp), where C is the number of concordant pairs, D the

number of discordant pairs, and Nx and Np the number of total pairs not tied on

experimental and predicted values, respectively. To evaluate the correlation of mutants for a

single position, a derivative of Kendall's tau-b was used, where pairs were evaluated only

between mutations at the same position, but summed across all positions. AUC values were

calculated with the ROCR package in R18. Predictions were evaluated on recall ([number of

correctly predicted mutations for a class]/[total number of mutations in that class

experimentally]) and precision ([number of correctly predicted mutations for a class]/[total

number of mutations predicted to be in that class]).

Results

The hemagglutinin (HA) binders HB36.4 and HB80.3 were designed previously using

Rosetta15. Starting with these base designs, exhaustive single point mutant libraries were

made and subjected to yeast display enrichment for binding to HA using non-purifying

FACS (Fluorescence-Activated Cell Sorting) selection14. By comparing the frequency of

mutations in the enriched and unenriched libraries, an estimate of the effect of each point

mutant on binding was obtained (the enrichment value, calculated as the log2 of the ratio of

amino acid frequencies in the enriched library to that of the unenriched library).

Using crystal structures of design variants of HB36 and HB80 bound to HA as a guide (Fig.

1), participants made predictions of the effects of mutation on HA binding. These

predictions were then compared to the experimental enrichment values (Fig. S1). The

twenty-two groups that made submissions varied considerably in their ability to distinguish

beneficial and deleterious mutations (Fig. 2A&B). Only two groups (G15, Weng, and G21s,

Dehouck) had Kendall correlations above those of the BLOSUM62 model for both HB36

and HB80, although a few others (including G47, Flores, who only submitted predictions for

HB36) were improved for a single protein (Table S1).

Of particular interest for applications of the prediction methods are the recall – the fraction

of the experimentally beneficial mutations which are identified as such – and the precision –

the fraction of predicted beneficial mutations which actually are. For HB36, 3.4% of the

substitutions are experimentally beneficial, and for HB80, 2.4%. The precision of a method

that selected randomly would hence be ~3%; the BLOSUM model is roughly at this level.

Three groups had precision better than 10% for both proteins (G05s, Bates; G15, Weng;

G21, Fernandez-Recio), two of which (Weng & Fernandez-Recio) had recalls in the 25 to

40% range for both proteins (Table S1).
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One limitation of the participant submitted classifications is that their performance is

dependent on a somewhat arbitrary choice of threshold separating beneficial and non-

beneficial mutations. Another approach is to examine the performance of the ranking across

all choices of thresholds with the area under the receiver operator characteristic (ROC) curve

(AUC), which can also be interpreted as the probability that a randomly chosen positive item

will be ranked appropriately against a randomly chosen negative item19. Several groups

exceed the performance of the simple BLOSUM model for predicting both true beneficial

(against neutral and deleterious) and true deleterious (against neutral and beneficial)

mutations, with G15 (Weng; HB36 beneficial, deleterious AUC; HB80 beneficial,

deleterious AUC: 0.667, 0.657; 0.705, 0.668) and G21 (Fernandez-Recio; 0.610, 0.726;

0.743, 0.651) on the Pareto front (Fig S4).

The groups showing good performance were particularly successful in predicting deleterious

mutations: low-ranking predictions were generally observed to be deleterious, whereas only

a subset of the high-ranking predictions were beneficial (Fig. S1).

Mutations can influence binding if they disrupt the folded state, an effect particularly

relevant for mutations away from the interface. To focus more on the ability of the methods

to model binding affinity independent of monomer stability, we also compared results on the

subset of residues at the protein-protein interface (Fig. 2C,D, Fig S1 and Table S1). The

overall ranking of the groups did not change significantly on this subset.

It is instructive to break the results down based on the polarity of the initial and substituted

residue. While the best groups did well predicting the effects of apolar to polar mutations,

they overestimated the affinity of polar to polar and polar to apolar mutations (Fig. 3). This

could be due to inaccuracies in treating electrostatics in the interfaces, as five of the six polar

residues in the starting sequence for HB36 and three of the nine for HB80 are charged.

To test whether participants would be able to do better if they had additional data, in a

second round nine mutations were randomly selected at each position of the two designed

binders, and the experimental enrichment values for those mutations and for the starting

amino acid were provided to participants. Fourteen groups submitted updated results, with

improved results in most cases (Figure 4A,B, Fig. S2,S3, and Table S1). Groups using

machine learning techniques showed the greatest gains, though others using simpler

reweighting strategies also improved performance. The top performing of these groups

(G05s, Bates, and G21, Fernandez-Recio) included information from position/site specific

models derived from the unblinded portion of the data, which, while potentially useful for

evaluating combinations of mutations or modeling from sparse experimental data, would not

be generalizable to other binding systems lacking experimental enrichment data.

Features contributing to good predictions

We used three approaches to identify factors which contributed to good predictions. First, to

identify overall trends we evaluated the scoring and methodological features used by high

performing groups. Second, we evaluated individual scoring terms used by several of the

top-performing groups. Third, we released all of the experimental data to predictors, and

asked groups to retrospectively identify which terms contributed to their performance.

Moretti et al. Page 4

Proteins. Author manuscript; available in PMC 2014 November 01.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



The various protocols differ in how the mutant complexes are modeled. Some groups used

coarse-grained models which do not require sidechain modeling, others kept all sidechains

other than the mutated one fixed, and others carried out various combinations of sidechain

rotamer optimization, off-rotamer sampling, and backbone optimization. Many of the top

performing groups optimized surrounding residues with off-rotamer sampling and backbone

flexibility (Table I). Groups which normalized the score of the optimized mutant based on

that of a similarly optimized reference structure also did somewhat better than average.

Groups which explicitly accounted for the effect of the mutant on structural stability

generally performed better (Table I). Mutations which disrupt folding will necessarily

disrupt binding: P(binding) = P(folding)P(binding|folded), and mutations can affect either

term. Methods which assume a stably folded protein will miss the effects of mutation on the

first term. Accounting for stability is likely to be of particular importance for proteins with

low starting stability20.

The highest performing groups employed packing metrics such as Lennard-Jones potentials

(Table I). For example, the attractive portion of the van der Waals potential term was

identified as one of the important terms by the Weng group (Table III), and statistical

contact and distance scores, such as the OPUS_PSP group potential21 and the Tobi coarse-

grained potentials22, were among the single terms with the highest correlation to the

enrichment data (Table II).

Other measures of packing such as convoluted fit and volume delta also correlated with

improved performance (Table I). Of particular note is the PoPMuSiC packing defect term23

from the Dehouck group, which correlated well with experimental results in both all residue

and interface-only contexts (Table II), and was identified as the most influential term in the

Dehouck group models (Table III). This coarse-grained metric measures the difference in

residue volume between the starting and mutated residues, weighted for solvent

accessibility.

Top groups also explicitly modeled electrostatics and solvation. Short range electrostatics

were important for HB36, and Lazaridis-Karplus solvation24 for HB80, according to the

Weng group's analysis (Table III). While the ACE solvation term25 by itself was correlated

with the HB80 experimental results (Table II), adding it to a model with other terms had no

appreciable benefit (Table III). The FoldX hydrophobic solvation term26 correlates with

interface enrichment values in both proteins (Table II), and the FoldX electrostatic terms

ranked high in model feature importance (Table S2). Poisson-Boltzmann electrostatics have

previously been shown to improve modeling this enrichment data14.

Discussion

In the community wide test of methods for predicting the effects of point mutations on

protein interaction reported here, the best groups are able to identify one third of the

beneficial mutations with less than a 10× excess of mispredicted mutations. This is better

than the performance of a simple model based on BLOSUM scores, and over three times the

value expected from a random assignment. Accurate modeling clearly requires explicit
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consideration of the effects of mutations on stability, as methods which did not take this into

account did not do as well. The best performing groups also modeled packing – either using

a Lennard Jones model or considering volume changes – and electrostatics and solvation.

The best methods used diverse overall approaches: machine learning (G21, Fernandez-

Recio, and G05s, Bates), atom-level energy functions (G15, Weng), or coarse-grained

models (G21s, Dehouck). The community wide experiment also reveals that there is

considerable room for improvement in current methods; predicting the effect of mutations

on polar starting positions appears to be a particular challenge.

We anticipate that many more comprehensive single-site scanning datasets should become

available over the next several years as next generation sequencing methodology is

increasingly applied to problems in biophysics. When modeling these data sets, it is

important to recognize that there are a number of factors beyond binding affinity, such as

stability, which contribute to the observed enrichment ratios in these experiments, and must

be accounted for. Although enrichment results do not directly represent binding ΔΔG values,

consideration of stability effects in making predictions is generally useful, as a theoretically

tight binder is not useful if it is difficult or impossible to produce a folded protein. For those

proteins which are stably folded, the values from deep mutational scanning experiments

have been shown to match binding affinities.27, 28 In particular, McLaughlin et al. found

good correlation with the measured enrichment value and the ΔΔG of binding for 85

selected mutants (ref 29, Figure S2d).

The thousands of mutations which can be analyzed in parallel under identical conditions

should compensate for many of the limitations of the high throughput binding assays. For

example, the prediction of small molecule binding affinity to proteins is confounded by the

fact that the available datasets consist of a small number of mutations on many different

scaffolds with affinities measured by different groups using different techniques. As more

comprehensive scanning datasets become available, further community wide experiments

should continue to be useful for assessing methods and determining how best to model the

effects of mutations on protein-protein interactions. The development of improved energy

functions would also benefit from additional data from lower throughput but more accurate

direct KD measurements.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The structures of A) HB36 B) HB80 in complex with hemagglutinin (blue) which were

provided to participants. Residues probed in the deep sequencing enrichment experiment are

in orange; the remainder are in grey. Residues at the interface are represented as sticks.
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Figure 2.
Predictor performance. Participant predictions (provided as a value between 0 and 1) are

plotted versus the experimental enrichment value, with predictions of beneficial/neutral/

deleterious colored green/blue/red. Enrichment ratios of -2 and 2, which defines the range of

mutation considered experimentally neutral, are plotted with dotted lines. A) Plot of all

submitted predictions for HB80 for one of the top performing groups (G15, Weng) B) Plot

of all submitted predictions for HB80 for an average performing group. C&D) As in A&B,

but only mutations at those positions in the interface are plotted.
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Figure 3.
Mutations involving polar residues are more difficult to model. Breakdown by mutation

polarity for a representative top performing group (G21s, Dehouck). The subset of HB36

interface mutations which are classed as A) apolar to apolar B) apolar to polar C) polar to

apolar D) polar to polar for a representative top-performing group are displayed. For this

analysis, residues D, E, H, K, N, Q, R, S, T and Y are considered polar, and A, C, F, G, I, L,

M, P, V and W apolar. Green/blue/red correspond to participant's prediction of beneficial/

neutral/deleterious. As a reference, the remaining interface mutations (those from the other

three polarity groups for each graph) are plotted in grey.
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Figure 4.
Improved performance upon refitting. Comparison of prediction results for group 21

(Fernandez-Recio) for A) all round 1 HB80 interface predictions and B) the reserved HB80

interface mutations for the round 2 predictions. C) Prediction results for all interface

positions when refit to the completely unblinded data without the position/site specific

model.
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Table I

Common features of top performing methods. Tallies of (# of groups using item in best performing half)/(# in

other half)

All Positions Interface

Structural stability 5/3 6/2

Comparison to re-optimized starting structure 5/2 4/3

Entropy metric 4/1 3/2

Off-rotamer sampling 5/3 5/3

Statistical contact/distance metric 9/6 9/6

Lennard-Jones-style van der Waals 7/6 7/6

Other packing metrics 6/2 6/2

Optimization of surrounding residues 6/5 8/3

Backbone flexibility 5/3 6/2

Amino acid identity metric 2/3 1/4
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Table II

Kendall correlation of individual metrics against experimental enrichment values.

HB36 All Residues HB80 All Residues HB36 Interface HB80 Interface

PoPMuSiC Packing Defect (D
a
)23 0.300 0.288 0.294 0.260

Tobi T2 AP
b
 (F)22 0.162 0.110 0.270 0.254

Tobi T1 AP (F)22 0.135 0.094 0.268 0.225

OPUS PSP (F)21 0.134 0.077 0.228 0.223

Tobi TSC CP (F)22 0.135 0.069 0.217 0.230

Skolnick SJKG CP (F)30 0.116 0.118 0.219 0.209

Floudas RMFCA CP (F)31 0.078 0.045 0.209 0.208

DComplex (F)32 0.140 0.071 0.256 0.206

FoldX hydrophob solv (B)26
nc

c nc 0.204 0.212

Park-Levitt HLPL CP (F)33 0.121 0.082 0.235 0.201

Li & Liang GEOMETRIC (F) 0.119 0.026 0.270 0.131

Boniecki Qp CP(F)34 0.182 0.062 0.265 0.155

Vendruscolo BFKV CP (F)35 0.166 0.057 0.242 0.185

Skolnick SKOa CP (F)36 0.155 0.087 0.237 0.160

FoldX bb_hbond (B)26 nc nc 0.234 0.005

Miyazawa-Jernigan MJ2h CP (F)37 0.092 0.131 0.198 0.265

DFIRE2 (B)38 0.212 0.216 0.196 0.261

ACE (W)25 0.105 0.171 0.145 0.252

Tobi TB CP (F)22 0.109 0.070 0.111 0.233

Tanaka-Scheraga TS CP (F)39 0.050 0.096 0.153 0.223

a
Calculated by (D)ehouck, (F)ernandez-Recio, (B)aker, (W)eng groups

b
AP – atomistic statistical potential; CP – coarse-grain statistical potential

c
not calculated
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Table III

Evaluation of contribution of individual terms to prediction performance. Difference in Pearson correlation on

omitting terms from all-data linear refits.

Dehouck Group23, 40, 41 HB36 HB80

packing defect 0.167 0.075

solvent accessibility 0.018 0.005

pairwise interactions 0.000 0.004

backbone conformational preference 0.018 0.000

Weng Group42 HB36 HB80

vdW atractive 0.055 0.056

vdW repulsive 0.000 0.000

solvation 0.012 0.050

short range elec 0.052 0.020

long range elec 0.015 0.029

hydrogen bond 0.001 0.001

ACE 0.000 0.000
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